Electronic Supplementary Material (ESI) for Dalton Transactions.

Supplementary Information for

$\mathrm{C}-\mathrm{H}, \mathrm{Si}-\mathrm{H}$ and $\mathrm{C}-\mathrm{F}$ abstraction with an extremely electron poor I(III) reagent

Tania, Marcus Sceney, Jason D. Bennetts, Lachlan Barwise, Keith F. White and Jason L. Dutton*

Department of Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
j.dutton@latrobe.edu.au

Table of Contents

Experimental Details 3
General Experimental 3
Experimental Methods 4
NMR Spectra 7
Structural Data 22
Reference chemical shifts for NMR Spectra 23
Computational Details 24
Cartesian Coordinates for optimised compound geometries 24
References 39

Experimental Details

General Experimental

Solvents were dried using an Innovative Technologies Solvent Purification System. The dried solvents were stored under N_{2} atmosphere over $3 \AA$ molecular sieves in the glovebox. Deuterated solvents for NMR spectroscopy were purchased from Cambridge Isotope Laboratories and dried by stirring for three days over CaH_{2}, distilled prior to use, and stored in the glovebox over $3 \AA$ molecular sieves. All other reagents were purchased from SigmaAldrich and used as received. $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ was synthesised by following literature procedure. ${ }^{1}$ Glassware was dried in an oven at $120{ }^{\circ} \mathrm{C}$ overnight and transferred to the glovebox port or Schlenk line where it was subjected to three vacuum cycles over 30 minutes prior to use. NMR spectra for all experiments were recorded using a Bruker Ultrashield Plus 500 MHz . Single crystals were selected under paratone-n oil, mounted on nylon loops and placed into a cold stream (150 K) of N_{2} on a Rigaku SuperNova CCD diffractometer using Cu Ka radiation. Structure solution and refinement were performed using the SHELXTL suite of software.

Experimental Methods

Reactions of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}, \mathrm{PhI}(\mathrm{TFA})_{2}, \mathrm{PhI}(\mathrm{OAc})_{2}$ with triethyl silane $\left(\mathrm{Et}_{3} \mathrm{SiH}\right)$

A reaction vial was charged with the respective I(III) species (0.04 mmol) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. To this solution, $\mathrm{Et}_{3} \mathrm{SiH}(6.4 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ was added while stirring. The sample was analysed by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR Conversion with respect to $\mathrm{Et}_{3} \mathrm{SiH}: 100 \%\left(\mathrm{Et}_{3} \mathrm{SiOTf}\right)$, 76% ($\mathrm{Et}_{3} \mathrm{SiTFA}$), 27\% ($\mathrm{Et}_{3} \mathrm{SiOAc}$)

Reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ and $\mathrm{Phl}(\mathrm{OAc})(\mathrm{OTf})$ with triphenylmethane $\left(\mathrm{Ph}_{3} \mathrm{CH}\right)$

A reaction vial was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}(22 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. To this mixture, a solution of $\mathrm{Ph}_{3} \mathrm{CH}(9.7 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added while stirring. The clear mixture turned yellow immediately. The solution was treated with hexanes (8 mL) and stored at $-35^{\circ} \mathrm{C}$ for 2 hours resulting in formation of a yellow precipitate. The solid was washed with hexanes ($3 \times 5 \mathrm{~mL}$) and dried in vacuo to afford $\left[\mathrm{Ph}_{2} \mathrm{CHPhl}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right.$]OTf (yield 75%). Single crystals suitable for X-Ray crystallography were obtained via vapour diffusion (CHCl_{3} :Pentane) at $-35{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta(\mathrm{ppm}): 8.25-8.23(\mathrm{~d}, 2 \mathrm{H}), 8.18-8.16(\mathrm{~d}, 2 \mathrm{H}), 7.95-7.93(\mathrm{~d}, 2 \mathrm{H}), 7.31-$ $7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 4 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H})$
${ }^{19}$ F NMR (472 MHz, CDCl_{3}) δ (ppm): -78.29

ESI m/z: 492.0467

Reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with cycloheptatriene

A reaction vial was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}(22 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. To this solution, cycloheptatriene ($3.6 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added while stirring. The clear mixture turned yellow immediately and then brown gradually. The sample was analysed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR Conversion with respect to $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}: 18 \%$ (tropylium)

Reactions of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}, \mathrm{Phl}(\mathrm{TFA})_{2}$ with adamantane

A reaction vial was charged with respective I(III) species (0.04 mmol) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. To this solution, adamantane ($5.4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added while stirring. The clear mixture turned yellow immediately. The sample was analysed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR Conversion with respect to adamantane: 17\% (adamantyl triflate), 0\% (adamantyl TFA)

Optimised reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with adamantane

A reaction vial was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}(22 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(2 \mathrm{~mL})$. To this solution, adamantane ($5.4 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added while stirring. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 30 minutes. The clear mixture turned pale brown upon heating. The sample was analysed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR Conversion with respect to adamantane: 72\% (adamantyl triflate)

Reactions of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with 1-fluoro adamantane

A reaction vial was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}(\mathrm{OTf})_{2}(22 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. To this solution, 1 -fluoro adamantane ($10 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added while stirring. The clear mixture turned pale yellow immediately. The sample was analysed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR Conversion with respect to $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}: 70 \%\left(\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf}) \mathrm{F}\right)$

Reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with cyclohexene

A reaction vial was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}(22 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. To this solution, cyclohexene ($4 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was added while stirring. The clear mixture turned violet immediately. The sample was analysed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR Conversion with respect to $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}: 2 \%$ (benzene)

Optimised reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with cyclohexene

A Schlenk flask was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Il}(\mathrm{OTf})_{2}(38 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $3 \mathrm{mLCH} \mathrm{Cl}_{2}$ and cooled to $-94^{\circ} \mathrm{C}$. A solution of cyclohexene ($14 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) in $3 \mathrm{mLCH} \mathrm{Cl}_{2}$ was transferred via cannula into this mixture while stirring. The solution turned pale pink with white solid. Subsequently, the reaction was gradually warmed to room temperature and solid dissolved
along with a stark change of colour to clear violet. An aliquot was dissolved in CDCl_{3} and taken for NMR analysis.

NMR Conversion with respect to $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}: 10 \%$ (benzene)

Reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with limonene

A reaction vial was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}(\mathrm{OTf})_{2}(22 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. To this solution, limonene ($6.5 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was added while stirring. The clear mixture turned violet immediately. The sample was analysed by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR Conversion with respect to $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}: 32 \%$ (p-cymene)

Reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with α-pinene

A reaction vial was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}(\mathrm{OTf})_{2}(22 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. To this solution, α-pinene ($6.4 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) was added while stirring. The clear mixture turned dark red immediately. The sample was analysed by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR Conversion with respect to $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}: 10 \%$ (p-cymene), $13 \%\left(\left[\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}-(\mathrm{p}-\right.\right.$ cymene)][OTf])

Optimised reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-(\mathrm{OTf})_{2}$ with α-pinene

A Schlenk flask was charged with $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}(20 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $3 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and cooled to $-94{ }^{\circ} \mathrm{C}$. A solution of α-pinene ($7.0 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in $3 \mathrm{mLCH} \mathrm{Cl}_{2}$ was transferred via cannula into this mixture while stirring. The solution turned pale yellow. Subsequently, the reaction was gradually warmed to room temperature and the colour changed to clear brown. The excess solvent was removed in vacuo to obtain brown solid. The solid was dissolved in CDCl_{3} and taken for NMR analysis.

NMR Conversion with respect to $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}: 20 \%$ (p-cymene)

Reactions of $\mathrm{Phl}(\mathrm{OAc})(\mathrm{OTf})$ with substrates

A reaction vial was charged with $\mathrm{Phl}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.04 \mathrm{mmol})$ and TMSOTf ($6.8 \mu \mathrm{~L}, 0.04$ mmol) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$. To this solution, respective substrate (0.04 mmol) was added while stirring. The reaction samples were analysed by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

NMR conversions with respect to $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$ and residual I(III):
$\mathrm{Et}_{3} \mathrm{SiH}(1.24 \mathrm{eq}) \rightarrow \mathrm{Et}_{3} \mathrm{SiOAc}(51 \%)+\mathrm{Et}_{3} \mathrm{SiOTf}\left(64 \%^{*}\right)$. ${ }^{*}$ Excess $\mathrm{Et}_{3} \mathrm{SiOTf}$ is from the reaction of HOTf with $\mathrm{Et}_{3} \mathrm{SiH}$.

```
Ph}\mp@subsup{3}{3}{}\textrm{CH}->\mathrm{ No reaction (17 h).
Cycloheptatriene }->\mathrm{ Tropylium (2%) + Benzaldehyde (3%) + Benzene (3%).
Adamantane }->\mathrm{ No reaction (17 h).
1-fluoro adamantane }->\mathrm{ No reaction (17 h).
Cyclohexene }->\mathrm{ Benzene (0.3%).
Limonene }->\mathrm{ p-cymene (19%).
\alpha-pinene }->p\mathrm{ -cymene (37%).
```


Synthesis of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{IF}_{2}$

A reaction vial was charged with $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(10.6 \mu \mathrm{~L}, 0.074 \mathrm{mmol})$ in $2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. To this solution, XeF_{2} ($12.5 \mathrm{mg}, 0.074 \mathrm{mmol}$) was added and then spiked with TMSOTf. The reaction slightly turned yellow and was left to stir for 30 minutes. The solvent was reduced in vacuo to yield a white solid. The solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed in vacuo to ensure removal of any remaining $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$. This process was repeated to yield $3-\mathrm{CF}_{3}-$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{IF}_{2}$ (20.3 mg, 89\% yield), with subsequent NMR analysis matching a previous report. ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 2 \mathrm{H})$
${ }^{19} \mathrm{~F}$ NMR ($472 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):$-62.79, -176.89

Synthesis of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{IF}$ (OTf)

A reaction vial was charged with $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}(10.6 \mu \mathrm{~L}, 0.074 \mathrm{mmol})$ in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. To this solution, $\mathrm{XeF}_{2}(12.5 \mathrm{mg}, 0.074 \mathrm{mmol})$ was added and then spiked with TMSOTf. The reaction slightly turned yellow, and then TMSOTf ($13.5 \mu \mathrm{~L}, 0.074 \mathrm{mmol}$) was added two minutes later which turned darker yellow.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.58 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.10$ $\mathrm{Hz}), 7.85(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.10 \mathrm{~Hz})$
${ }^{19} \mathrm{~F}$ NMR ($472 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):-62.99,-76.74,-192.90$

In situ synthesis of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{II}(\mathrm{OTf})_{2}$

A reaction vial was charged with $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(10.6 \mu \mathrm{~L}, 0.074 \mathrm{mmol})$ in $2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. To this solution, XeF_{2} ($12.5 \mathrm{mg}, 0.074 \mathrm{mmol}$) was added and then spiked with TMSOTf. The reaction slightly turned yellow. Then TMSOTf ($27 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was added two minutes later and the solution immediately turned a darker yellow. The reaction was left to stir for 5 minutes, and then the solvent was removed in vacuo to yield a beige solid. The solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed in vacuo to ensure removal of any remaining $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$ I. This process was repeated to yield $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ as a beige solid ($26.4 \mathrm{mg}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.34 \mathrm{~Hz}), 8.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.10$ $\mathrm{Hz}), 7.93(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz})$
${ }^{19} \mathrm{~F}$ NMR ($472 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):-63.03,-75.56$
${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 132.42,135.37,135.09,133.58,133.36,132.69,126.10$, 123.20, 119.06, 116.54

Synthesis of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ from $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{IF}_{2}$

A reaction vial was charged with $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{IF}_{2}(20 \mathrm{mg}, 0.065 \mathrm{mmol})$ in $2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. To this solution, TMSOTf ($23.5 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) was added and the solution turned dark yellow. The reaction was left to stir for 5 minutes. The solvent was removed in vacuo to yield a beige solid. The solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent removed in vacuo. This process was repeated to yield $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ as a beige solid ($24.8 \mathrm{mg}, 67 \%$ yield). The acquired ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the isolated product was identical to $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ made using the in situ method reported above.

Reaction of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with adamantane

A reaction vial was charged with $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(10.6 \mu \mathrm{~L}, 0.074 \mathrm{mmol})$ in $2 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. To this solution, XeF_{2} ($12.5 \mathrm{mg}, 0.074 \mathrm{mmol}$) was added and then spiked with TMSOTf. The reaction slightly turned yellow, and then TMSOTf ($27 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was added two minutes later which turned darker yellow. After 5 minutes, adamantane ($10 \mathrm{mg}, 0.074 \mathrm{mmol}$) was added and the solution became lighter yellow. The reaction was left to stir for 5 minutes, and then
the solvent was removed in vacuo to produce a dark brown solid. The solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed in vacuo to ensure removal of any remaining $3-\mathrm{CF}_{3}-$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$. This process was repeated, and the remaining dark brown solid was dried to yield adamantyl triflate ($15.2 \mathrm{mg}, 72 \%$ yield).

NMR Spectra

Figure S 1: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with $\mathrm{Et}_{3} \mathrm{SiH}$ in CDCl_{3}

Figure S 2: ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-(\mathrm{OTf})_{2}$ with $\mathrm{Et}_{3} \mathrm{SiH}^{2} \mathrm{CDCl}_{3}$

Figure $\mathrm{S} 3:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathrm{Phl}(\mathrm{TFA})_{2}$ with $\mathrm{Et}_{3} \mathrm{SiH}$ in CDCl_{3} monitored over time
A: $\operatorname{PhI}(\mathrm{TFA})_{2}$
B: $\mathrm{Et}_{3} \mathrm{Si-TFA}$
C: TFA

B: $\mathrm{Et}_{3} \mathrm{Si}-\mathrm{TFA}$
C: TFA

Figure S 4: ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{of} \mathrm{PhI}(\mathrm{TFA})_{2}$ with $\mathrm{Et}_{3} \mathrm{SiH}$ in CDCl_{3} monitored over time

Figure $\mathrm{S} 5:{ }^{1} \mathrm{H} N M R$ of $\mathrm{Phl}(\mathrm{OAc})_{2}$ with $\mathrm{Et}_{3} \mathrm{SiH}$ in CDCl_{3} monitored over time

Figure S 6: ${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathrm{PhI}(\mathrm{OAc})(\mathrm{OTf})$ with $\mathrm{Et}_{3} \mathrm{SiH}$ in CDCl_{3} (reaction time $\left.\sim 15 \mathrm{~min}\right)$

Figure S 7: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\left((\mathrm{OTf})_{2}\right.$ with $\mathrm{Ph}_{3} \mathrm{CH}$ in CDCl_{3}

Figure S 8: ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with $\mathrm{Ph}_{3} \mathrm{CH}$ in CDCl_{3}

Figure S 9: HRMS of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with $\mathrm{Ph}_{3} \mathrm{CH}$

A: $\mathrm{Phl}(\mathrm{OAc})(\mathrm{OTf})$
B: $\mathrm{Ph}_{3} \mathrm{CH}$
C: TMSOAc
D: TMSOH
E: HOAc

$\underset{\mathrm{C}}{\mathrm{TMSOAc}} \xrightarrow[24 \mathrm{~h}]{\mathrm{H}_{2} \mathrm{O}} \underset{\mathrm{D}}{\mathrm{TMSOH}}+\mathrm{HOAc}$

Figure S 10: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Phl}(\mathrm{OAc})(O T f)$ with $\mathrm{Ph}_{3} \mathrm{CH}$ in CDCl_{3} (reaction time $\sim 17 \mathrm{~h}$)

Figure $\mathrm{S} 11:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with cycloheptatriene in CDCl_{3}

Figure $\mathrm{S} 12:{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with cycloheptatriene in CDCl_{3}

Figure $\mathrm{S} 13:{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with cycloheptatriene in CDCl_{3}

Figure S 14: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PhI}(\mathrm{OAc})(O T f)$ with cycloheptatriene in CDCl_{3} (reaction time $\sim 15 \mathrm{~min}$)

Figure $\mathrm{S} 15:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-1(\mathrm{OTf})_{2}$ with adamantane in CDCl_{3}

Figure S 16: ${ }^{19} \mathrm{~F} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with adamantane in CDCl_{3}

Figure S 17: ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with adamantane in CDCl_{3}

Figure $\mathrm{S} 18:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-1(\mathrm{OTf})_{2}$ with adamantane at $60^{\circ} \mathrm{C}$ in CDCl_{3}

Figure S 19: ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-(\mathrm{OTf})_{2}$ with adamantane at $60^{\circ} \mathrm{C}$ in CDCl_{3}
A: $p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$
B : adamantyl triflate
C: adamantane

$\stackrel{\sim}{\sim}$

Figure $\mathrm{S} 20:{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-1(\text { OTf })_{2}$ with adamantane at $60{ }^{\circ} \mathrm{C}$ in CDCl_{3}

Figure S 21: ${ }^{1} \mathrm{H} N \mathrm{NR}$ of $\mathrm{Phl}(\mathrm{TFA})_{2}$ with adamantane in CDCl_{3} (reaction time $\sim 17 \mathrm{~h}$)

Figure S 22: ${ }^{19} \mathrm{~F}$ NMR of $\mathrm{Phl}(\mathrm{TFA})_{2}$ with adamantane in CDCl_{3} (reaction time $\sim 17 \mathrm{~h}$)

Figure S 23: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Phl}(\mathrm{OAc})(O T f)$ with adamantane in CDCl_{3} (reaction time $\sim 17 \mathrm{~h}$)

A: $p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}-(\mathrm{OTf})_{2}$ B: $p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}-(\mathrm{F})(\mathrm{OTf})$ C: $p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$
D: adamantyl triflate
E: 1-fluoro adamantane
 \circ
i
i
i

M.

Figure S 24: ${ }^{1} \mathrm{H} N \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with 1-fluoro adamantane in CDCl_{3}

Figure S $25:{ }^{19} \mathrm{~F} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with 1-fluoro adamantane in CDCl_{3}

Figure $\mathrm{S} 26:{ }^{13} \mathrm{C} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-1(\mathrm{OTf})_{2}$ with 1-fluoro adamantane in CDCl_{3}

Figure S 27: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PhI}(\mathrm{OAc})(O T f)$ with 1-fluoro adamantane in CDCl_{3} (reaction time ~ 17 h)

A: $\mathrm{p}-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$
B: Benzene
C: Cyclohexene
D: $\mathrm{p}-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}-(\mathrm{OTf})_{2}$

Figure S 28: ${ }^{1} \mathrm{H}$ NMR spectrum stack of reaction of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with cyclohexene at different temperatures in CDCl_{3}

Figure S 29: ${ }^{19} \mathrm{~F} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\left(\mathrm{O}(\mathrm{OTf})_{2}\right.$ with cyclohexene in CDCl_{3}

Figure $\mathrm{S} 30:{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-1(\mathrm{OTf})_{2}$ with cyclohexene in CDCl_{3}

Figure $\mathrm{S} 31:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathrm{Phl}(\mathrm{OAc})(O T f)$ with cyclohexene in CDCl_{3} (reaction time $\left.\sim 15 \mathrm{~min}\right)$

Figure $\mathrm{S} 32:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-1(\mathrm{OTf})_{2}$ with limonene in CDCl_{3}

Figure $\mathrm{S} 33:{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{of} \mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with limonene in CDCl_{3}

Figure S 34: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Phl}(\mathrm{OAc})(O T f)$ with limonene in CDCl_{3} (reaction time $\left.\sim 15 \mathrm{~min}\right)$

Figure $\mathrm{S} 35:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-(\mathrm{OTf})_{2}$ with α-pinene in CDCl_{3}

Figure $\mathrm{S} 36:{ }^{19} \mathrm{~F}$ NMR of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ with α-pinene in CDCl_{3}

Figure S 37: HRMS of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with α-pinene

Figure S 38: ${ }^{1} \mathrm{H}$ NMR of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with α-pinene at $-94{ }^{\circ} \mathrm{C}$ in CDCl_{3}

Figure S 39: ${ }^{19} \mathrm{~F} \mathrm{NMR}$ of $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with α - pinene at $-94{ }^{\circ} \mathrm{C}$ in CDCl_{3}

Figure S 40: ${ }^{1} \mathrm{H} N M R$ of $\mathrm{Phl}(\mathrm{OAc})(O T f)$ with α-pinene in CDCl_{3} (reaction time $\sim 17 \mathrm{~h}$)

Figure S 41: ${ }^{1} \mathrm{H} N M R$ of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{IF}_{2}$ synthesised via XeF_{2} in CDCl_{3}

$$
\mathrm{A}: 3-\mathrm{CF}_{3} \mathrm{PhIF}_{2}
$$

Figure S 42 : ${ }^{19} \mathrm{~F} \mathrm{NMR}$ of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{IF}_{2}$ via XeF_{2} in CDCl_{3}

Figure S 43: ${ }^{1} \mathrm{H}$ NMR of crude reaction of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$ with XeF_{2} with TMSOTf spike and then added 1 equivalent of TMSOTf in CDCl_{3}. Spectrum shows the formation of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{l}(\mathrm{OTf})_{2}$ even with 1 equivalent of TMSOTf

Figure S 44: ${ }^{19} \mathrm{~F}$ NMR of crude reaction of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$-I with XeF_{2} with TMSOTf spike and then added 1 equivalent of TMSOTf in CDCl_{3}. Spectrum shows the formation of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(O T f)_{2}$ with 1 equivalent of TMSOTf

Figure S 45: ${ }^{1} \mathrm{H} N M R$ of crude reaction of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$ with XeF_{2} and two equivalents TMS-OTf in CDCl_{3}

Figure S 46: ${ }^{19} \mathrm{~F} N M R$ of crude reaction of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-1$ with XeF_{2} and two eq. of TMS-OTf in CDCl_{3}

Figure $\mathrm{S} 47:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\left(\mathrm{O}(\mathrm{OTf})_{2}\right.$ in CDCl_{3}

A: $3-\mathrm{CF}_{3} \mathrm{Phl}(\mathrm{OTf})_{2}$

Figure S 48: ${ }^{19} \mathrm{~F}$ NMR of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\left(\mathrm{O}(\mathrm{OT})_{2}\right.$ in CDCl_{3}

Figure S 49: ${ }^{13} \mathrm{C}$ NMR of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ in CDCl_{3}

```
        ~
        B: HOTf
        O
```


Figure $S 50:{ }^{1} \mathrm{H}$ NMR of adamantyl triflate generated via reaction of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{II}(\mathrm{OTf})_{2}$ with adamantane in CDCl_{3}

Figure S 51: ${ }^{19} \mathrm{~F}$ NMR of adamantyl triflate generated via reaction of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})_{2}$ with adamantane in CDCl_{3}

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

Figure S 52: ${ }^{13} \mathrm{C}$ NMR of adamantyl triflate generated via reaction of $3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-(\mathrm{OTf})_{2}$ with adamantane in CDCl_{3} Structural Data

Figure S 53: Crystal structure of $\left[\mathrm{Ph}_{2} \mathrm{CHPhl}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}\right][\mathrm{OTf}]$

Reference chemical shifts for NMR Spectra

$\mathrm{Et}_{3} \mathrm{SiOTf}$ (from the reaction of $\mathrm{Et}_{3} \mathrm{SiH}$ with 1 eq HOTf in CDCl_{3})
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.06(\mathrm{t}, 9 \mathrm{H}), 0.93(\mathrm{q}, 6 \mathrm{H})$
${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-79.57(\mathrm{~s}, 3 \mathrm{~F})$
$\mathrm{Et}_{3} \mathrm{SiTFA}$ (from the reaction of $\mathrm{Phl}(\mathrm{TFA})_{2}$ with 1 eq $\mathrm{Et}_{3} \mathrm{SiH}$ in CDCl_{3})
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.01(\mathrm{t}, 9 \mathrm{H}), 0.87(\mathrm{q}, 6 \mathrm{H})$

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-76.04(\mathrm{~s}, 3 \mathrm{~F})$

$\mathrm{Et}_{3} \mathrm{SiOAc}^{3}$

${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta(\mathrm{ppm}): 2.05(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, 9 \mathrm{H}), 0.72(\mathrm{q}, 6 \mathrm{H})$

Cycloheptatriene (commercially available sample)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 6.58(\mathrm{t}, 2 \mathrm{H}), 6.18(\mathrm{t}$ of $\mathrm{d}, 2 \mathrm{H}), 5.35(\mathrm{t}$ of d, 2 H$), 2.42(\mathrm{t}, 2 \mathrm{H})$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 130.92,126.55,120.88,27.97$

Tropylium (from the reaction of cycloheptatriene with 1 eq TMSOTf in CDCl_{3})
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.33(\mathrm{~s}, 7 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 155.58$

Adamantane (commercially available sample)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.87$ (br. s, 4 H$), 1.75(\mathrm{t}, 12 \mathrm{H})$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 37.85,28.46$

Adamantyl triflate ${ }^{4}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.27(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 118.3,103.7,43.3,35.4,32.5$
p-cymene ${ }^{5}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.14-7.10(\mathrm{~m}, 4 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, 1.24 (d, 6H)

Computational Details

All geometry optimisation, vibrational frequency and molecular orbital calculations were performed using ω PBE/def2-TZVP within Gaussian 16 using the WebMO platform. ${ }^{6-8}$ The structures obtained are minima with no negative frequencies. Cartesian coordinates are in \AA and energies are given in Hartree. The free energy is calculated at 1 atm and 298 K .

Cartesian Coordinates for optimised compound geometries

$\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} . \mathrm{I}(\mathrm{OTf})_{2}$

Electronic Energy: -2656.30893914 Hartree

S 0.000000000 .000000000 .00000000

C - $1.13600600-0.743881001 .23589400$

F -2.09799600-1.38300800 0.58996200

F -0.47194600-1.60180200 1.99828500

F -1.66627000 0.199273001 .99807800

O 1.000631000 .654901000 .96539800

I 3.059317000 .475973000 .65324800

C 3.059611002 .559114000 .65336800

C $2.095298003 .21431900-0.08375500$

C $2.098278004 .59484000-0.07920100$

C 3.059969005 .252903000 .65350500

C 4.021490004 .594510001 .38613300

C 4.024104003 .213985001 .39054600
H 4.779476002 .679987001 .95218300

H 4.753961005 .157879001 .94734600

N 3.060152006 .730141000 .65359600

O $2.216542007 .28121400-0.00681700$

O 3.903873007 .280924001 .31410600

H $1.365962005 .15846500-0.64035900$

H $1.339803002 .68055700-0.64545000$
O 5.118040000 .654197000 .34104900

S 6.118605000 .000010001 .30699800
C $7.25448900-0.745093000 .07173000$

F 8.21639200-1.38380700 0.71820200

F 6.59029500-1.60356900-0.68991700

F $7.784891000 .19733000-0.69127400$

O 6.857923000 .988590002 .00564000

O 5.49128600-1.07196200 2.00344100

O $0.62722900-1.07265900-0.69547600$
O -0.73919500 0.98804200-0.69952400

HSiEt_{3}

Electronic Energy: -527.64961327 Hartree

Si 0.000000000 .000000000 .00000000
C $1.35088000-1.08996300-0.72015700$

C 2.65615500-1.12078100 0.06906700
H $3.10892400-0.131407000 .14678600$

H 2.49056400-1.47764400 1.08703200

H 3.39126500-1.78057500-0.39592200

H $0.94660000-2.10421000-0.79479900$

H 1.53881500-0.77247000-1.75094600
C $-1.67998700-0.64588200-0.52670300$

C -2.865031000 .148985000 .01036000
H -3.81695100-0.29576400-0.28558000

H -2.85069000 0.195500001 .10132900

H -2.85836300 1.17622500-0.35828100

H -1.71086900 -0.67496300-1.62076300

H -1.75061000-1.68801100-0.20039100

C $0.179310001 .79648300-0.51084900$

H -0.61600600 $2.35919800-0.01287500$

C $1.529597002 .43615800-0.20769700$

H $1.538689003 .49670400-0.46619300$
H 1.781949002 .355656000 .85169200

H 2.33297600 1.95917600-0.77145200
H -0.03489400 1.86612100-1.58254000

H 0.08971700-0.07165700 1.49007300

$\mathrm{NO}_{2}-\mathrm{C} 6 \mathrm{H} 4-\mathrm{I}$

Electronic Energy: -733.753165289 Hartree

C 0.000000000 .000000000 .00000000
C $0.68406100-1.20389400-0.00085400$

C 2.06383000-1.20639200-0.00067100

C $2.72849500-0.000103000 .00015100$

C 2.063895001 .206188000 .00084400

C 0.684065001 .203773000 .00080400

H 0.142660002 .140811000 .00149400

H 2.626927002 .129234000 .00141700
N $4.20031100-0.000056000 .00025800$

O 4.75794300-1.07017500 0.00199600

O $4.757621001 .07018200-0.00207300$

H 2.62686700-2.12942900-0.00108800

H $0.14249700-2.14084400-0.00156800$

I -2.06699400-0.00005300 0.00006400

HOTf

Electronic Energy: -961.91585154 Hartree

S 0.000000000 .000000000 .00000000

C $1.82881000-0.14063700-0.07717700$

F 2.360303000 .754471000 .73820600

F $2.19421500-1.359848000 .30789800$

F 2.25609700 0.07174000-1.30998400

O -0.39210700-1.16908700-0.97099000

H -0.53854500-1.98218600-0.46570200

O -0.34822000 $1.21454700-0.62446400$

O -0.38056200-0.34594600 1.32045600

$\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})(\mathrm{H})$

Electronic Energy: -1695.59888025 Hartree

S 0.000000000 .000000000 .00000000
O -1.47820500 0.051471000 .11489000

I -2.19967600 2.315409000 .71975500
H -3.00994500 3.692315001 .10023500
C -4.033021001 .324402000 .74037900
C -4.903410001 .570943001 .78346800

C -6.124854000 .928739001 .79172400

C -6.420370000 .064145000 .76187100

C $-5.54795400-0.19026500-0.27188700$

C $-4.325861000 .45316500-0.28726200$

H -3.60961200 0.25459200-1.07218200

H -5.82544100-0.88499100-1.05252400

N -7.72848800-0.62067900 0.77079200

O -8.46786400-0.38477500 1.69328000

O -7.96809500-1.36548100 -0.14494800

H -6.84120500 1.086071002 .58601200
H -4.64319000 2.244458002 .59002900

O $0.47317600-0.85675500-1.03018100$

C $0.45779400-0.823886001 .57199000$

F $1.77702300-0.908145001 .68757400$

F - $0.01211500-0.118872002 .61000100$

F -0.05743000-2.04714000 1.63580000

O 0.559661001 .322759000 .11646300

$\mathrm{Et}_{3} \mathrm{SiOTf}$

Electronic Energy: -1488.42469982 Hartree

Si 0.000000000 .000000000 .00000000

C $1.07940000-1.26185300-0.83604700$
C 0.61729400-2.71449000-0.76033000

H $0.49184100-3.051951000 .26849900$

H -0.33778400-2.85444200-1.26840400
H 1.33823700-3.37794000-1.23970600

H 1.18421800-0.95975400-1.88236700
H 2.07875100-1.15894800-0.39850200

C $0.242375001 .69202900-0.72629800$

C - $0.627055002 .78722800-0.11722000$

H -0.42974300 $3.75421600-0.58166000$
H -1.68820400 $2.57163800-0.25007600$

H -0.44672000 2.896529000 .95359800
H $1.302831001 .94229400-0.61240500$

H 0.06715300 1.62324600-1.80373000

C 0.129171000 .041864001 .85707700

C 0.54938000-1.23477900 2.57768500

H $0.67633300-1.051825003 .64566100$

H -0.19815200-2.01814000 2.46419100

H 1.49935000-1.61621900 2.19886500
H -0.81984600 0.408297002 .25828000

H 0.856346000 .835920002 .06506500

O -1.62816700-0.35188800 -0.48266600

S -2.72798400-1.31400000-0.03711400

C $-4.01815500-0.083158000 .39171100$

F -4.32927200 $0.65397200-0.66550600$

F -5.09855400-0.72218400 0.81304300
F -3.58197100 0.718438001 .36004300

O -3.22131800-2.03955500-1.14792500
O -2.37779100-1.96751800 1.17479400

Cyclohexene

Electronic Energy: -234.576600754 Hartree

C 0.000000000 .000000000 .00000000
C $-0.796336001 .22033000-0.43406100$

C $0.028780002 .46998600-0.38146600$

C $1.346487002 .46996300-0.26455900$

C $2.171526001 .22025500-0.21184100$

C $1.375157000 .00000800-0.64606000$

H $1.91900200-0.91407600-0.39886500$

H 1.25811500 0.01511900-1.73421000

H 2.550319001 .081297000 .80705500

H $3.055963001 .34078200-0.84301400$
H $1.874730003 .41722100-0.20710000$

H -0.49942600 3.41726000-0.43904000

H -1.17534200 1.08143900-1.45288600

H -1.68064800 1.340918000 .19728100

H 0.117046000 .014950001 .08815200

H -0.54388500-0.91403000-0.24731300

Benzene

Electronic Energy: -232.150999992 Hartree

C 0.000000000 .000000000 .00000000

C $1.31312500-0.434576000 .00000100$

C 1.59330000-1.78891500-0.00000200

C 0.56037600-2.70881100-0.00000300

C -0.75259700-2.27427500 0.00000200
C $-1.03281300-0.91978600-0.00000300$

H -2.06182400-0.57933000 -0.00001100

H -1.56206200-2.99506900 0.00000500

H 0.77997300-3.77020400 0.00000300

H 2.62225200-2.12956100-0.00000700

H 2.122468000 .286350000 .00000300

H -0.21940800 1.061436000 .00000100

Phl(TFA) ${ }_{2}$

Electronic Energy: -1581.47924091 Hartree

C 0.000000000 .000000000 .00000000

C $1.458655000 .31253900-0.41008700$
O 2.256613000 .245612000 .61765000

I 4.304382000 .528434000 .26194900

C 3.932030002 .550303000 .12633500

C 3.961724003 .304238001 .28335700

C 3.717545004 .660201001 .18960000
C $3.452503005 .23283500-0.04114200$

C 3.42699600 4.45831500-1.18601700

C 3.66786600 3.09959200-1.11230300

H 3.63246000 2.48050200-1.99868400

H 3.21515900 4.91059200-2.14692500

H $3.261456006 .29722800-0.10816900$
H 3.735710005 .270409002 .08410200

H 4.171840002 .847411002 .24205400

O 6.309797001 .149744000 .00453100

C 7.099560000 .122731000 .03090200

O 6.76336400-1.02446800 0.17814500

C 8.58152000 0.52181400-0.14931300

F 9.36691000-0.54359600-0.12332000

F 8.75448000 1.14799900-1.31577300

F 8.958426001 .349995000 .82873800
O $1.748689000 .58004500-1.54263400$

F -0.42234100 0.880011000 .91253700
F - $0.08386600-1.222704000 .52960700$

F -0.81085800 0.06058300-1.04569900

$\mathrm{Et}_{3} \mathrm{SiTFA}$

Electronic Energy: -1053.23514592 Hartree

Si 0.000000000 .000000000 .00000000
C 0.50615200-1.24625900-1.28870500

C - $0.27416200-2.55657500-1.33489700$

H -0.24211500-3.08618100-0.38320100

H -1.32449400-2.38355200-1.57270300

H 0.12583400 -3.22267900 -2.10082000

H $0.44721000-0.74626800-2.26035200$
H 1.57129600-1.44726300-1.12809800

C $0.514086001 .71450600-0.50446400$
C 0.121140002 .812913000 .47833800

H 0.442009003 .794933000 .12794300

H -0.96065000 2.851195000 .61555200

H 0.571311002 .654424001 .46005300

H $1.599664001 .70532400-0.64964700$
H 0.08308300 1.91736200-1.48919000

C $0.58747100-0.380001001 .72941300$
H -0.10926200 0.083253002 .43443200

C $0.81718500-1.841031002 .10015900$
H 1.22465000-1.92748300 3.10866700

H -0.11264000-2.40669400 2.06722200

H 1.52650400-2.31946300 1.42218400

H 1.523922000 .178913001 .84158700

O -1.71832600 $0.12950100-0.04434500$

C - $2.59581300-0.641018000 .54431300$

O -2.38664100-1.60888200 1.21172900
C -4.03058300-0.13709600 0.26982100

F -4.28089700-0.14389300-1.04320800

F -4.92767900 - 0.902721000 .87123000

F -4.17771900 1.115043000 .71387200

Trifluoroacetic acid

Electronic Energy: -526.733471294 Hartree

C 0.000000000 .000000000 .00000000

C -1.53441600-0.16077000-0.00001100

O -2.08450100-1.21496200-0.00002600

O -2.11973400 1.029745000 .00000300

H -3.07807800 0.891052000 .00001200

F 0.39385200 0.67374200-1.08187700

F 0.393896000 .673808001 .08176600

F $\quad 0.58694900-1.184774000 .00002500$

$\mathrm{Et}_{3} \mathrm{SiOAc}$

Electronic Energy: -755.542608854 Hartree

Si 0.000000000 .000000000 .00000000

C -0.30030900-1.33952100-1.26476400

C -1.68519900 -1.97479900 -1.32708500

H -1.97292900-2.41927400-0.37526200

H -2.44865900-1.23692700 -1.57536300

H -1.72336100-2.75566600-2.08889700

H -0.04643800-0.91197900-2.24016600

H 0.45785300 -2.10962600-1.08120400

C $1.488466000 .99945000-0.51491600$
C 1.852075002 .136887000 .43348900

H 2.724568002 .690406000 .08220000
H 1.029019002 .846964000 .52909500

H 2.082619001 .767345001 .43457700

H 2.33289700 0.30971500-0.61900100
H 1.29898500 1.39297200-1.51796500

C $0.23515300-0.622317001 .74722200$

H -0.08535200 0.169317002 .43104800

C -0.42919900-1.94054400 2.12759500
H -0.17387200-2.22756100 3.14933800

H -1.51323500-1.86419200 2.06072600

H -0.10823700-2.75373600 1.47348500

H 1.31947600-0.70439300 1.88558800

O -1.24527000 $1.16550200-0.09496700$

C -2.454609001 .037786000 .44677400

O -2.80578400 0.053151001 .04247600
C -3.312783002 .246581000 .23159000

H -3.41614000 $2.43408900-0.83698900$
H -4.28876000 2.092909000 .68238000

H -2.82883200 3.119061000 .67018300

Acetic Acid

Electronic Energy: -229.045788093 Hartree

C 0.000000000 .000000000 .00000000
C -1.057609001 .055765000 .00000000

O -2.29454700 0.525507000 .00000000
H -2.91358700 1.269029000 .00000000

O -0.87208300 2.240135000 .00000000
H 0.980343000 .466144000 .00000000

H -0.11577500-0.63330600 0.87915800
H -0.11577500-0.63330600-0.87915800

$\mathrm{Phl}(\mathrm{OAc})_{2}$

Electronic Energy: -986.095129962 Hartree

C 0.000000000 .000000000 .00000000
C - $1.233237000 .79977300-0.29440700$

O -2.33932000 $0.09594900-0.30900500$
I -3.96486900 1.37599900-0.71896200

C $-5.01511400-0.39621300-0.58156500$
C $-5.07713500-1.21623500-1.69147100$

C -5.77183100-2.40669900-1.60014700
C $-6.38886500-2.75896900-0.41355400$

C -6.31644800-1.92478300 0.68621100
C $-5.62456200-0.729975000 .61111700$

H -5.57946300-0.05840000 1.45784300

H -6.80318900-2.20132900 1.61358700
H -6.93341500-3.69346900-0.34645300

H -5.83004600-3.06094500-2.46155700
H -4.58924600-0.93420200-2.61595500

O -5.76244200 2.30897300-1.23561000

C -6.59068600 $2.61268500-0.25235700$

C -7.78726200 $3.38836000-0.72210300$

H -7.45945000 4.30349700-1.21414700
H -8.429156003 .624190000 .12193400

H -8.33490300 $2.79920800-1.45730400$
O -6.40720300 2.295524000 .90037200

O -1.22897200 1.99810000-0.50269600
H 0.87307500 0.64576500-0.02494400

H -0.09548300-0.46377800 0.98141400

H $0.10083700-0.79957300-0.73315000$

Adamantane

Electronic Energy: -390.625386723 Hartree

C 0.000000000 .000000000 .00000000

C $0.702318001 .35350400-0.06148700$

C $1.137498001 .63276600-1.49734400$

C 2.09383100 0.53998300-1.96681100

C $1.38847300-0.81171000-1.90138500$

C $0.95376000-1.09631300-0.46637300$

C 2.18185900-1.11713300 0.43941200

C 2.889058000 .233885000 .37879300

C 1.931173001 .327495000 .84310700

H 2.433446002 .299496000 .82052500

H 1.629532001 .145986001 .87926300

C $3.319611000 .51539300-1.05800700$

H 4.02122500-0.25335400-1.39616000

H 3.84412000 1.47438100-1.11070600

H 3.768729000 .216841001 .02847900
H 1.88407100-1.33794900 1.46903700

H 2.86533600-1.91197300 0.12535400

H $0.44854700-2.06531400-0.42153400$

H $0.51726000-0.81188600-2.56361000$

H 2.05926300-1.60160800-2.25305200

H 2.40444400 0.74185700-2.99587400

H 0.26223800 1.67145500-2.15307700

H 1.62692500 2.60972400-1.55707500

H 0.017235002 .137693000 .27306600

H -0.33261300-0.20306400 1.02259300

H -0.89348200 0.01267900-0.63172800

Adamantyl triflate

Electronic Energy: -1351.33549852 Hartree

C 0.000000000 .000000000 .00000000

C - $0.465897001 .43914500-0.12853100$

C -0.16321300 1.98618400-1.51068200
C 1.35040000 1.94705900-1.72176600

C $1.838676000 .50609000-1.60568100$
C $1.51330700-0.03362900-0.21609800$

C 2.199936000 .825707000 .84024100

C 1.707907002 .264640000 .72213500
C 0.196172002 .297895000 .93194700

H -0.183936003 .319421000 .85649900
H -0.06763900 1.916210001 .92086900

C $2.037749002 .80587100-0.66534200$
H 3.11988200 2.79708500-0.82187300

H 1.70796900 $3.84509000-0.75229500$
H 2.184837002 .883778001 .48548900

H 1.987192000 .435558001 .83958600

H 3.284140000 .789040000 .70384000
H 1.85506600-1.06765400-0.13153300

H 1.36358700-0.11432500-2.37057200
H 2.91745700 0.46237700-1.77848100

H 1.57620800 2.33413900-2.71801800

H -0.67180700 1.38973800-2.26845000

H -0.53680600 3.01069800-1.58207700
O -1.90838000 1.565343000 .16046300

S -3.00406700 0.60660500-0.36028900

O -3.32367000-0.37617100 0.60965600

O -2.79455900 $0.24413300-1.71817000$

C $-4.365989001 .83834700-0.33574600$
F -5.47321500 1.23112900-0.73989700
F -4.09657700 2.84378400-1.15745400
F -4.54954200 2.312702000 .88724200

H -0.25915100-0.38334000 0.98968700
H - $0.49622700-0.62617400-0.74476000$

1-Fluoroadmantane

Electronic Energy: -489.864019142 Hartree

C 0.000000000 .000000000 .00000000
C -0.485472000 .956028001 .07059600

C -0.00021100 2.361348000 .77832500

C 1.527538002 .366071000 .77739600
C $2.034739001 .40639800-0.29543800$

C $1.52776900-0.00316400-0.00338600$

C $2.03452500-0.452530001 .36418100$

C 1.527199000 .505243002 .43863700

C -0.00049300 0.506666002 .43392800

H -0.39182600 1.184821003 .19647000

H -0.39173200-0.49201300 2.64388000

C 2.034387001 .914221002 .14409600

H 3.127956001 .928604002 .16037600

H 1.691445002 .605984002 .91892400

H 1.884922000 .181992003 .41934700

H 1.69150200-1.46942600 1.57583700

H 3.12808900-0.47385400 1.36884600

H $1.88570500-0.69082500-0.77360600$

H 1.69189000 1.73155900-1.28197000
H 3.12830700 1.41321100-0.31599200

H 1.885414003 .376957000 .56696900

H -0.39120500 2.68288100-0.19028400

H -0.39139600 3.042480001 .53828300

F -1.88447200 0.956004001 .07052100
H -0.39112600-0.99954100 0.20596200

H -0.39096700 $0.31746800-0.96995300$

$\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(\mathrm{OTf})(\mathrm{F})$

Electronic Energy: -1794.83916486 Hartree

S 0.000000000 .000000000 .00000000

O -1.06648200 0.532632000 .94945800

I -2.01917000 2.410193000 .60554000

F -3.11494500 3.996817000 .39936200

C -3.784048001 .303473000 .64183300

C -4.896656001 .918677001 .17893400
C -6.088384001 .222589001 .19707400

C -6.11762600-0.05256300 0.67970800

C - $5.00728000-0.662352000 .14127400$

C -3.811023000 .027281000 .11889400

H -2.92866200-0.44202300-0.29477400
H -5.08163800-1.66406300 -0.25868500

N -7.39313200-0.79497000 0.70193500
O -8.34735700-0.23869500 1.18494500

O -7.39404900-1.90615600 0.23606700

H -6.98759700 1.658062001 .60999100

H -4.84844100 2.927582001 .56459800
O - $0.45376200-1.16601200-0.67295800$

C $1.23774400-0.556839001 .23466300$

F 2.28234300-1.06100400 0.59523500
F 1.634469000 .471774001 .97531200
F 0.71826000 -1.48454400 2.02548900

O $0.598570001 .06834000-0.72917600$

References

1. Sharp-Bucknall, L.; Tania; Dutton, J. L., Angew. Chem. Int. Ed. 2022, 61, e202212380.
2. Winterson, B.; Rennigholtz, T.; Wirth, T., Chem. Sci. 2021, 12, 9053-9059.
3. Liu, G.-B., Synlett 2006, 2006, 1431-1433.
4. Takeuchi, K.; Moriyama, T.; Kinoshita, T.; Tachino, H.; Okamoto, K., Chem. Lett. 1980, 9, 1395-1398.
5. Rickert, A.; Krombach, V.; Hamers, O.; Zorn, H.; Maison, W., Green Chem. 2012, 14, 639644.
6. Heyd, J.; Scuseria, G. E.; Ernzerhof, M., J. Chem. Phys. 2003, 118, 8207-8215.
7. Heyd, J.; Scuseria, G. E., J. Chem. Phys. 2004, 120, 7274-7280.
8. Weigend, F.; Ahlrichs, R., Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
