Supporting Information for:

Complexation of drug amifampridine with Cu(II), Zn(II) and Cd(II)

ions, and its dimerization with the magic of Mn(II) salts. Potential

anti-COVID-19 and anticancer activities

Farshid Hajibabaei^a, Samaneh Sanei Movafagh^a, Sadegh Salehzadeh^{a*}, Robert William Gable^b

^a Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran

^b School of Chemistry, University of Melbourne, Victoria 3010, Australia

*Corresponding authors. E-mail addresses: saleh@basu.ac.ir (S. Salehzadeh)

CONTENTS:

Figure S1. Mass spectrum of [AmpDimer]Cl (3)4
Figure S2. ORTEP diagram of $[Zn(AMP)_2Cl_2]$ (1) showing the hydrogen bonds (Zn: dark blue;
Cl: green; N: blue; C: grey). Ellipsoids are drawn at the 50% level. Only H-atoms (open circles)
on donor atoms are shown
Figure S3. ORTEP diagram of [AmpDimer]Cl (3) showing the hydrogen bonds (Cl: green; N:
blue; C: grey). Ellipsoids are drawn at the 50% level. Only H-atoms (open circles) on donor
atoms are shown
Figure S4. ORTEP diagram of [AmpDimer]NO ₃ (4) showing the hydrogen bonds (O: Red; N:
blue; C: grey). Ellipsoids are drawn at the 25% level. Only H-atoms (open circles) on donor
atoms are shown

Figure S5. ORTEP diagram of $[AmpDimer]ClO_4$ (5) showing the hydrogen bonds (Cl: green; O: Red; N: blue; C: grey). Ellipsoids are drawn at the 50% level. Only H-atoms (open circles) on Figure S6. ORTEP diagram of [Cd(AmpDimer)Cl₃] (7) showing the hydrogen bonds (Cd: Dark blue; Cl: green; N: blue; C: grey). Ellipsoids are drawn at the 50% level. Only H-atoms (open Figure S7. ORTEP diagram of $[Cu(tren)(AMP)](ClO_4)_2$ (8) showing the hydrogen bonds (Cu: Dark blue; Cl: green; O: red; N: blue; C: grey). Ellipsoids are drawn at the 10% level. Only Hatoms (open circles) on donor atoms are shown. [Cd(tren)(AMP)](ClO₄)₂ (10) is isomorphous......10 Figure S11. ¹H NMR spectrum of [Zn(AmpDimer)Cl₃] (6) in DMSO-*d6*.....14 Figure S12. ¹H NMR spectrum of [Cd(AmpDimer)Cl₃] (7) in DMSO-d6.....15 Figure S13. Figure S13. Molecular docking 3D visualization of AMP (a), [AmpDimer]⁺ cation (b), [Zn(AMP)₂Cl₂] (c) and 5-FU (d) in the interaction with DNA (PDB ID: 1BNA), which Figure S14. Comparison of binding affinity (kcal/mol) of AMP, [AmpDimer]⁺ cation, [Zn(AMP)₂Cl₂], [Cu(tren)(AMP)]²⁺ cation, FAV, HCQ and RDV in the interaction with essential proteins of SARS-CoV-2.....17 Figure S16. FT-IR (KBr) spectrum of [AmpDimer]Cl (3).....18 Figure S17. FT-IR (KBr) spectrum of [AmpDimer]NO₃ (4).....19

Figure S18. FT-IR (KBr) spectrum of [AmpDimer]ClO ₄ (5)	19
Table S1. Hydrogen Bonds for [Zn(AMP) ₂ Cl ₂] (1)	20
Table S2. Hydrogen Bonds for [AmpDimer]Cl (3)	20
Table S3. Hydrogen Bonds for [AmpDimer]NO3 (4)	21
Table S4. Hydrogen Bonds for for [AmpDimer]ClO ₄ (5)	.21
Table S5. Hydrogen Bonds for [Cd(AmpDimer)Cl ₃] (7)	.22
Table S6.Selected Torsion Angles (°) for $[Cu(tren)(AMP)](ClO_4)_2$ (8)	and
[Cd(tren)(AMP)](ClO ₄) ₂ (10)	.22
Table S7. Hydrogen Bonds for [Cu(tren)(AMP)](ClO ₄) ₂ (8)	23
TableS8.SelectedBondLengths(Å),AnglesandTorsionAngles(°)	for
[Cd(tren)(AMP)](ClO ₄) ₂ (10)	24
Table S9. Hydrogen Bonds for $[Cd(tren)(AMP)](ClO_4)_2$ (10)	25

Figure S1. Mass spectrum of [AmpDimer]Cl (3).

Figure S2. ORTEP diagram of $[Zn(AMP)_2Cl_2]$ (1) showing the hydrogen bonds (Zn: dark blue; Cl: green; N: blue; C: grey). Ellipsoids are drawn at the 50% level. Only H-atoms (open circles) on donor atoms are shown.

Figure S3. ORTEP diagram of [AmpDimer]Cl (**3**) showing the hydrogen bonds (Cl: green; N: blue; C: grey). Ellipsoids are drawn at the 50% level. Only H-atoms (open circles) on donor atoms are shown.

Figure S4. ORTEP diagram of [AmpDimer]NO₃ (**4**) showing the hydrogen bonds (O: Red; N: blue; C: grey). Ellipsoids are drawn at the 25% level. Only H-atoms (open circles) on donor atoms are shown.

Figure S5. ORTEP diagram of [AmpDimer]ClO₄ (5) showing the hydrogen bonds (Cl: green; O: Red; N: blue; C: grey). Ellipsoids are drawn at the 50% level. Only H-atoms (open circles) on donor atoms are shown.

Figure S6. ORTEP diagram of [Cd(AmpDimer)Cl₃] (7) showing the hydrogen bonds (Cd: Dark blue; Cl: green; N: blue; C: grey). Ellipsoids are drawn at the 50% level. Only H-atoms (open circles) on donor atoms are shown.

Figure S7. ORTEP diagram of $[Cu(tren)(AMP)](ClO_4)_2(8)$ showing the hydrogen bonds (Cu: Dark blue; Cl: green; O: red; N: blue; C: grey). Ellipsoids are drawn at the 10% level. Only H-atoms (open circles) on donor atoms are shown. $[Cd(tren)(AMP)](ClO_4)_2(10)$ is isomorphous.

Figure S8. ¹H NMR spectrum of [Zn(AMP)₂Cl₂] (1) in DMSO-d₆.

Figure S9. ¹H NMR spectrum of $[Cd_2(AMP)_2(\mu-Cl)_2Cl_2]$ (2) in DMSO- d_6 .

Figure S10. ¹H NMR spectrum of [AmpDimer]Cl (3) in DMSO-d₆.

Figure S11. ¹H NMR spectrum of [Zn(AmpDimer)Cl₃] (6) in DMSO-d₆.

Figure S12. ¹H NMR spectrum of [Cd(AmpDimer)Cl₃] (7) in DMSO-d₆.

Figure S13. Molecular docking 3D visualization of AMP (a), $[AmpDimer]^+$ cation (b), $[Zn(AMP)_2Cl_2]$ (c) and 5-FU (d) in the interaction with DNA (PDB ID: 1BNA), which shows the bond lengths between atoms of above compounds and 1BNA nucleotides.

Figure S14. Comparison of binding affinity (kcal/mol) of AMP, $[AmpDimer]^+$ cation, $[Zn(AMP)_2Cl_2]$, $[Cu(tren)(AMP)]^{2+}$ cation, FAV, HCQ and RDV in the interaction with essential proteins of SARS-CoV-2.

Figure S15. FT-IR (KBr disc) spectrum of AMP.

Figure S16. FT-IR (KBr disc) spectrum of [AmpDimer]Cl (3).

Figure S17. FT-IR (KBr disc) spectrum of [AmpDimer]NO₃ (4).

Figure S18. FT-IR (KBr disc) spectrum of [AmpDimer]ClO₄ (5).

D-HA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2-H2A C12 ⁱ	0.96(3)	2 43(3)	3 368(2)	166(2)
N2-H2BCl2 ⁱⁱ	0.90(3)	2.55(3)	3.403(3)	166(3)
N3-H3AN5 ⁱⁱⁱ	0.87(3)	2.31(3)	3.170(3)	169(3)
N5-H5ACl1 ^{iv}	0.85(3)	2.54(3)	3.388(2)	171(3)
N5-H5BCl1 ^v	0.82(3)	2.71(3)	3.527(2)	171(3)
N6-H6ACl1 ^{vi}	0.84(4)	2.91(3)	3.459(2)	125(3)
N6-H6BCl2vii	0.78(3)	2.95(3)	3.484(3)	128(3)
C1-H1Cl1	0.95	2.84	3.463(3)	123.9
C6-H6Cl2	0.95	2.89	3.482(3)	121.5
C10-H10N5 ⁱⁱ	0.95	2.55	3.481(3)	165.6

 Table S1. Hydrogen Bonds for [Zn(AMP)₂Cl₂] (1)

Symm. Code: i: -x,2-y,1-z; ii: -1+x,+y,+z; iii: 1-x,1-y,1-z; iv: 1-x,1-y,2-z; v: 1+x,+y,+z; vi: 1+x,-1+y,+z; vii: +x,-1+y,+z.

Table S2. Hydrogen Bond	s for [AmpDimer]Cl (3)
-------------------------	-----------------------	---

D-HA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2-H2ACl1 ⁱ	0.88(2)	2.44(2)	3.3074(12)	168.4(16)
N2-H2BCl1	0.86(2)	2.42(2)	3.2615(12)	168.7(17)
N3-H3ACl1 ⁱⁱ	0.90(2)	2.72(2)	3.5103(13)	146.7(16)
N3-H3BCl1 ⁱ	0.93(2)	2.44(2)	3.3475(12)	164.8(16)
N5-H5ACl1 ⁱⁱⁱ	0.88(2)	2.49(2)	3.3462(13)	165.2(17)
N5-H5BN4 ⁱⁱ	0.88(2)	2.30(2)	3.1007(16)	151.2(19)
N6-H6ACl1 ^{iv}	0.92(2)	2.64(2)	3.5331(12)	166.0(16)
C5-H5N2 ⁱⁱ	0.947(18)	2.514(18)	3.4259(17)	161.6(14)

Symm Code: i: -x,1/2+y,3/2-z; ii: +x,3/2-y,-1/2+z; iii: +x,+y,-1+z; iv: +x,1/2-y,-1/2+z

D-HA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2-H2AO3 ⁱ	0.90(5)	2.17(6)	3.034(12)	162(4)
N2-H2AN7 ⁱ	0.90(5)	2.59(5)	3.424(10)	154(4)
N2-H2AO3A ⁱ	0.90(5)	2.07(8)	2.95(6)	165(5)
N2-H2BO2	0.90(5)	2.06(5)	2.920(11)	158(4)
N2-H2BO1A	0.90(5)	2.40(5)	3.22(2)	152(4)
N2-H2BO2A	0.90(5)	2.01(7)	2.82(5)	149(4)
N2-H2BN7A	0.90(5)	2.55(6)	3.45(4)	175(5)
N5-H5AN4 ⁱⁱ	0.90(5)	2.41(5)	3.184(6)	144(4)
N5-H5BO3 ⁱⁱⁱ	0.80(5)	2.30(5)	3.017(11)	149(5)
N5-H5BO3A ⁱⁱⁱ	0.80(5)	2.36(8)	3.12(5)	158(5)
N6-H6A01 ⁱⁱⁱ	0.74(6)	2.36(6)	3.102(6)	177(6)
N6-H6AO1A ⁱⁱⁱ	0.74(6)	2.33(6)	3.04(2)	161(6)
N6-H6BO2 ^{iv}	0.92(6)	2.29(6)	3.179(10)	162(4)
N6-H6BO2A ^{iv}	0.92(6)	2.19(7)	3.07(5)	161(5)
N3-H3A01	0.90(7)	2.13(7)	2.954(7)	152(5)
N3-H3BO2 ⁱⁱ	0.89(7)	2.36(6)	3.011(13)	130(5)
N3A-H3AAO3A ⁱ	0.8907(11)	2.40(4)	3.19(4)	148(2)

Table S3. Hydrogen Bonds for $[AmpDimer]NO_3(4)$

Symm Code: i: 1-x,1/2+y,3/2-z; ii: +x,1/2-y,-1/2+z; iii: 1-x,1/2+y,1/2-z; iv: 1-x,1-y,1-z

D-H...A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° N2-H2A...01i 3.011(4) 0.869(5) 2.183(13) 159(3) N2-H2B...O4 0.869(5)2.27(3) 2.947(3) 135(3) N3-H3A...O2 0.91(4) 2.42(4)3.178(4) 142(3) $N3\text{-}H3B\dots O2^{ii}$ 0.91(4) 2.46(4) 3.316(4) 158(3) N5-H5A...N4ⁱⁱⁱ 0.85(3) 2.26(4) 3.103(3) 169(3) $N6\text{-}H6A\dots O4^{iv}$ 2.39(4) 0.83(4) 3.171(3) 157(3) N6-H6B...O3^v 0.80(4) 2.45(4) 3.219(3) 161(3) C1-H1...N5vi 0.95 2.61 3.380(4) 138.6

Table S4. Hydrogen Bonds for for [AmpDimer]ClO₄ (5)

Symm Code: i: 1-x,1/2+y,3/2-z; ii: 1-x,-y,1-z; iii: +x,1/2-y,-1/2+z; iv: 1-x,1-y,1-z; v: 1-x,1/2+y, 1/2-z; vi: -x,1-y,-z

D-НА	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2-H2ACl2 ⁱ	0.88	2.63	3.458(4)	156.9
N2-H2BCl3 ⁱⁱ	0.88	2.64	3.444(5)	152.8
N3-H3ACl1 ⁱⁱⁱ	0.88	2.75	3.481(5)	141.0
N3-H3BCl3 ⁱⁱ	0.88	2.58	3.416(5)	159.8
N6-H6ACl1 ^{iv}	0.88	2.57	3.197(6)	129.2
N6-H6BCl3 ^{iv}	0.88	2.47	3.336(7)	169.2
N5-H5ACl1 ^v	0.88	2.54	3.204(8)	133.0
N5-H5BCl3 ^{iv}	0.88	2.54	3.400(7)	167.0
N5A-H5AAN2 ^{vi}	0.88	2.29	3.047(13)	144.4
N5A-H5AAN3 ^{vi}	0.88	2.62	3.094(12)	114.6
N5A-H5ABN6	0.88	1.99	2.462(14)	111.8

 Table S5. Hydrogen Bonds for [Cd(AmpDimer)Cl₃] (7)

Symm Code: i: 1-x,1-y,-z; ii: 1+x,-1+y,+z; iii: 1+x,+y,+z; iv: 1-x,2-y,1-z; v: 1-x,1-y,1-z; vi: +x,1+y,+z

Table S6. Selected Torsion Angles (°) for [Cu(tren)(AMP)](ClO₄)₂ (8) and [Cd(tren)(AMP)](ClO₄)₂ (10)

(8, cati	(8, cation 1) (8,		(8, cation 2)		1)
Torsion Angles					
N1-C1-C2-N2	-53.7(4)	N8-C12-C13-N9	-50.8(4)	N1-C1-C2-N2	-57.5(4)
N1-C3-C4-N3	-51.9(3)	N8-C14-C15-N10	-51.4(4)	N1-C3-C4-N3	-56.1(3)
N1-C5-C6-N4	-50.0(3)	N8-C16-C17-N11	-49.5(4)	N1-C5-C6-N4	-57.2(3)
N2-Cu1-N5-C7	21.2(3)	N9-Cu2-N12-C18	85.4(3)	N2-Cd1-N5-C7	22.9(3)
N2-Cu1-N5-C11	-167.7(2)	N9-Cu2-N12-C22	-87.6(2)	N2-Cd1-N5-C11	-164.5(2)
N3-Cu1-N5-C7	142.7(3)	N10-Cu2-N12-C18	-157.2(3)	N3-Cd1-N5-C7	146.0(2)
N3-Cu1-N5-C11	-46.2(3)	N10-Cu2-N12-C22	29.9(3)	N3-Cd1-N5-C11	-41.4(2)
N4-Cu1-N5-C7	-94.5(3)	N11-Cu2-N12-C18	-48.5(3)	N4-Cd1-N5-C7	-99.5(3)
N4-Cu1-N5-C11	76.6(2)	N11-Cu2-N12-C22	138.5(2)	N4-Cd1-N5-C11	73.1(2)

D-HA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2-H2A 08 ⁱ	0.91	2 47	3 241(4)	142.1
N2-H2A O3A ⁱⁱ	0.91	2.55	3.074(9)	116.8
N2-H2B 011 ⁱⁱⁱ	0.91	2.21	3 105(9)	166.7
N2-H2B O9A ⁱⁱⁱ	0.91	2.21	3.279(4)	145.9
N2-H2B O11A ⁱⁱⁱ	0.91	2.53	3 395(4)	158.3
N3-H3A N6 ⁱⁱ	0.91	2.32	3.222(4)	171.9
N3-H3B O10 ^{iv}	0.91	2 39	2.966(11)	121.3
N3-H3B O10A ^{iv}	0.91	2.42	3.061(3)	121.9
N3-H3B 013	0.91	2.48	3 267(6)	145.2
N3-H3B 013A	0.91	2.10	2 989(6)	173.2
N4-H4A 016	0.91	2.40	2.909(0)	147.6
N4-H4A 016A	0.91	2.12	3.147(6)	170.0
N4-H4B 06 ⁱ	0.91	2.23	3.147(0) 3.119(4)	147.3
N6-H6A O11AV	0.88	2.31	3.117(4) 3.122(4)	147.3
N6-H6B O9 ^{vi}	0.88	2.59	3.389(15)	162.7
N6-H6B O10Avi	0.88	2.54	3.079(4)	168.7
N7-H7A 015A	0.80	2.21 2.40	3.062(6)	131.8
N7-H7B 011Av	0.89	2.40	3.002(0) 3.091(4)	144.0
$C3-H3D$ $O14A^{iv}$	0.00	2.55	3.091(4) 3.408(6)	144.0
$C_{4}H_{4}C_{13}A$	0.99	2.52	3.120(5)	149.1
C6-H6D 015V	0.99	2.77	3.5/3(6)	163.9
C6-H6D 016Av	0.99	2.50	3.345(0) 3.486(7)	1/0 0
C8-H8 OQvi	0.99	2.59	3.460(7)	149.9
C8-H8 09Avi	0.95	2.55	3.300(13)	140.7
C11-H11 013	0.95	2.45	3.5/3(6)	173.3
	0.93	2.00	3.343(0) 3.176(5)	173.3
	0.91	2.54	3.170(3) 3.156(10)	132.5
NO HOP Odviii	0.91	2.40	3.130(10) 3.200(5)	133.3
NO-HOR O/Aviii	0.91	2.31	3.209(3) 3.380(13)	1/1./
N10 $H10A = O2Aviii$	0.91	2.49	2.837(11)	100.0
N10-1110A02A	0.91	2.03	2.037(11) 2.238(4)	144.5
N11-H11A O4ii	0.91	2.43	3.008(5)	140.0
N11 H11A 04Aii	0.91	2.28	3.098(3)	150.0
N11 H11P 07ix	0.91	2.20	3.070(8) 3.101(4)	100.2
N12 H12A 015v	0.91	2.33	3.191(4) 3.237(6)	130.8
N13 H12P 012iv	0.89	2.40	3.237(0)	147.4
N13-1113D013	0.88	2.31	3.180(0) 3.144(4)	109.0
$N14-\Pi14A07^{4}$ $N14 \Pi14D 014y$	0.89	2.52	3.144(4)	133.9
N14-H14D014	0.88	2.44	3.033(0) 3.407(7)	127.0
N14-H14D015Av	0.88	2.34	3.407(7)	142.2
$C_{12} = 12 A$ $C_{12} = 02 A vii$	0.88	2.20	2.931(0) 2.260(12)	142.5
$C12$ - $H12A$ $O3A^{H}$	0.99	2.32	3.209(13) 2.414(4)	152.4
C13 - C13	0.99	∠. 4 9 2.41	3.414(4) 2.170(16)	104.9
С14-П14СО12 ⁴	0.99	2.41	3.1/9(10) 3.404(16)	154.4
C17 H17A 02 Avii	0.99	2.39	3.494(10) 3.462(12)	131./
$C_{1} = \frac{1}{12} - \frac$	0.99	2.47 2.49	3.402(12) 2.252(6)	107.0
С10-П10О2'"	0.93	∠.4ð 2.22	5.555(0) 2.122(0)	152.0
Сто-птоОТА	0.95	2.33	2.133(7) 2.248(6)	141.3
C22-H22O2	0.95	2.34	3.340(0)	142.3

Table S7. Hydrogen Bonds for [Cu(tren)(AMP)](ClO₄)₂ (8)

 Symm Code: i: 1/2+x,3/2-y,-1/2+z; ii: -1+x,+y,+z; iii: +x,+y,-1+z; iv: -x,1-y,1-z; v: 1-x,1-y,1-z; vi: 1+x,+y,-1+z; vii: -3/2+x,3/2-y,1/2+z; viii: -1/2+x,3/2-y,1/2+z; ix: -1/2+x,3/2-y,-1/2+z

		Component:	1	2(A)	3(B)
		Occupancy:	0.368(2)	0.345(2)	0.2871(11)
Bond Lengths					
Cd1-N1	2.384(2)	Cd2-N8	2.409(5)	2.395(6)	2.427(6)
Cd1-N2	2.278(3)	Cd2-N9	2.244(7)	2.286(7)	2.328(7)
Cd1-N3	2.312(3)	Cd2-N10	2.295(7)	2.261(7)	2.231(8)
Cd1-N4	2.279(3)	Cd2-N11	2.312(6)	2.297(6)	2.305(7)
Cd1-N5	2.246(2)	Cd2-N12	2.238(5)	2.248(5)	2.242(6)
Angles					
N2 Cd1 N1	77 21(0)	NO CA2 NR	76.0(3)	76 1(2)	73 A(3)
N2 Cd1 N2	117 20(10)	N9-Cd2-N10	108 4(4)	106 8(4)	104 7(4)
N2 Cd1 N4	117.20(10)	N9-Cd2-N11	110.1(5)	110.0(4)	104.7(4)
N2-Cd1-N4	7(7(0)	N9-Cd2-N11	119.1(5)	118.8(5)	117.1(5)
N3-Cd1-N1	/6./6(9)	N10-Cd2-N8	76.0(3)	78.2(3)	77.8(3)
N4-Cd1-N1	77.89(9)	N11-Cd2-N8	75.8(3)	76.5(3)	75.2(3)
N4-Cd1-N3	112.52(10)	N10-Cd2-N11	116.0(5)	119.4(5)	119.8(5)
N5-Cd1-N1	172.19(9)	N12-Cd2-N8	166.8(4)	169.6(4)	158.4(4)
N5-Cd1-N2	110.44(10)	N12-Cd2-N9	115.0(3)	107.3(3)	97.3(3)
N5-Cd1-N3	98.20(9)	N12-Cd2-N10	104.1(4)	109.4(3)	123.7(4)
N5-Cd1-N4	98.90(9)	N12-Cd2-N11	92.6(4)	93.4(4)	92.8(4)
Torsion Angles					
N1-C1-C2-N2	-57.5(4)	N8-C12-C13-N9	52.9(14)	49.2(16	-57.1(12)
N1-C3-C4-N3	-56.1(3)	N8-C14-C15-N10	55.8(15)	40(2)	-61(2)
N1-C5-C6-N4	-57.2(3)	N8-C16-C17-N11	53(2)	48(2)	-52(3
N2-Cd1-N5-C7	22.9(3)	N9-Cd2-N12-C18	155(2)	160(3)	134(2)

Table S8. Selected Bond Lengths (Å), Angles and Torsion Angles (°) for [Cd(tren)(AMP)](ClO₄)₂ (10)

N2-Cd1-N5-C11	-164.5(2)	N9-Cd2-N12-C22	-24.8(17)	-33.6	-39.9(16)
N3-Cd1-N5-C7	146.0(2)	N10-Cd2-N12-C18	37(3)	44(3)	21(2)
N3-Cd1-N5-C11	-41.4(2)	N10-Cd2-N12-C22	-143.3(15)	-149.1(15)	-153.0(15)
N4-Cd1-N5-C7	-99.5(3)	N11-Cd2-N12-C18	-81(3)	-78(3)	-108(2)
N4-Cd1-N5-C11	73.1(2)	N11-Cd2-N12-C22	99.1(16)	88.1(16)	77.9(17)
N4-Cd1-N5-C11	73.1(2)	N11-Cd2-N12-C22	99.1(16)	88.1(16)	77.9(17)

D-HA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2-H2AO9A ⁱ	0.91	2.56	3.085(8)	117.4
N2-H2AO15 ⁱⁱ	0.91	2.38	3.174(4)	146.1
N2-H2AO15A ⁱⁱ	0.91	2.19	3.089(19)	172.2
N2-H2BO7 ¹	0.91	2.29	3.130(4)	153.1
N3-H3AN6 ^m	0.91	2.33	3.232(4)	172.2
N3-H3D01	0.91	2.20	2.890(4)	120.4
N3-H3B03A N4-H4A 04	0.91	2.39	3.423(9)	153.0
N4-H4A 01A	0.91	2.03	2.856(10)	150.5
N4-H4AO1B	0.91	2.16	2.933(12)	142.6
N4-H4BO2B ^{iv}	0.91	2.56	3.099(16)	118.6
V4-H4BO16 ⁱⁱ	0.91	2.56	3.201(4)	127.9
N4-H4BO16A ⁱⁱ	0.91	2.37	3.04(2)	130.2
N6-H6AO5 ^v	0.878(5)	2.229(8)	3.105(5)	176(4)
N6-H6BO6 ^{vi}	0.878(5)	2.235(11)	3.085(5)	163(3)
N7-H7AO3	0.878(5)	2.33(2)	3.009(5)	135(3)
N7-H7BO5 ^v	0.878(5)	2.289(14)	3.128(4)	160(3)
C2-H2DO14A ^{iv}	0.99	2.49	3.20(2)	128.4
C4-H4CO1	0.99	2.54	3.152(4)	120.2
C4-H4CO1B	0.99	2.58	3.315(11)	131.1
C4-H4DO4A ^m	0.99	2.59	3.368(8)	135.3
C4-H4DO4B ^m	0.99	2.48	3.192(10)	128.9
C6-H6D04A ^W	0.99	2.40	3.340(11)	147.8
	0.99	2.49	3.338(10)	143.7
C11 H11 O3A	0.95	2.38	3.200(4)	155.8
C11-H11_O3B	0.95	2.30	3 365(12)	153.3
N9-H9A 015 ⁱⁱⁱ	0.91	2.53	3.263(12)	138.0
N9-H9BO10	0.91	2.57	3.303(14)	138.5
N10-H10AO13	0.91	2.59	3.459(9)	159.7
N10-H10AO14	0.91	2.54	3.012(7)	112.6
N10-H10BO11 ^{vii}	0.91	2.31	3.150(11)	152.7
N11-H11AO11	0.91	2.38	3.201(18)	150.1
N11-H11B09 ^{viii}	0.91	2.22	3.096(19)	161.0
N13-H13BO8 ^v	0.879(5)	2.38(7)	2.886(10)	116(5)
N14-H14AO3	0.879(5)	1.98(4)	2.474(9)	114(4)
N9A-H9AAO15A ⁱⁱⁱ	0.91	2.51	3.33(2)	149.9
N9A-H9ABO10A	0.91	2.30	3.000(15)	133.2
N10A-H10DO11A ^{vn}	0.91	2.54	3.356(15)	149.7
NIOA-HIODOI4A	0.91	2.27	2.83(2)	119.4
	0.91	2.44	3.31(2)	158.7
	0.91	2.43	3.20(2)	149.2
13 A H13H 012 A ^{vii}	0.91	2.31	3.22(2)	133.7
214A-H14G 08 ^{viii}	0.99	2.51	3.293(17) 3.331(11)	140.0
C17A-H17C 07	0.99	2.57	3 38(2)	1393
C18A-H18AO12A ^{viii}	0.95	2.44	3.30(2)	151.0
C22A-H22AO13A ⁱⁱⁱ	0.95	2.39	2.90(2)	112.9
N14A-H14EO12A	0.880(5)	2.60(4)	3.39(2)	150(6)
N14A-H14FO2A	0.880(5)	2.31(2)	3.16(2)	160(4)
V9B-H9BAO11B ^{vii}	0.91	1.81	2.716(14)	170.7
N10B-H10ECl3Bviii	0.91	2.65	3.463(13)	148.9
V10B-H10EO10B ^{viii}	0.91	2.13	3.005(15)	162.4
V11B-H11EO10B	0.91	2.49	3.27(2)	144.0
C13B-H13KO10B	0.99	2.33	3.256(14)	155.3
C13B-H13LO12B ^{vii}	0.99	2.59	3.285(16)	126.8
C14B-H14KO8viii	0.99	2.49	3.026(10)	114.0
U16B-H16F07	0.99	2.59	3.189(9)	118.7
CT/B-HT/FO9B ^{vm}	0.99	2.57	3.40(4)	141.1
$C19B-H19B = O3B^{vm}$	0.95	2.49	3.37(2)	154.0

Table S9. Hydrogen Bonds for $[Cd(tren)(AMP)](ClO_4)_2$ (10)

Symm Code: i: 1/2-x, 1/2+y, 1/2-z; ii: 2-x, 1-y, 1-z; iii: -1+x, +y, +z; iv: 1-x, 1-y, 1-z; v: 1/2+x, 1/2-y, -1/2+z; vi: 3/2-x, 1/2+y, 1/2-z; vii: 1/2+x, 1/2-y, 1/2+z; viii: 1+x, +y, +z; ix: -1/2+x, 1/2-y, -1/2+z