Supporting information

Iron doping induced formation of Ni-Co-O Nanotube as Efficient Bifunctional Electrodes

Zhaohui Liu,*a Xinjiang Zhang, Xiaona Mi, Zirun Yang and haihua Huang*b

a School of Material Science and Engineering, Yancheng Institute of Technology,

Yancheng 224051, China

b School of Material Science and Engineering, Liaocheng University, Shandong

252059, China

*Corresponding author

Email: zhliu@ycit.edu.cn (Zhaohui Liu)

huanghaihua@lcu.edu.cn (Haihua Huang)

Electrochemical measurements details

The turnover frequency (TOF, s⁻¹) for HER was calculated with the following equation:

$$TOF = (|J| \times A)/2Fn \tag{1}$$

Where |J| (A·cm⁻²) is the current density at a fixed voltage during the LSV measurement, A is the geometric area of the working electrode (1 cm²), the factor of 2 is the corresponding electron transfer numbers, F is the Faraday constant (96485 C·mol⁻¹), and n is the number of active sites (mol).

$$n = Q/2F \tag{2}$$

The number of active sites (*n*) was determined by the cyclic voltammetry (CV) with a scan rate of 10 mV s⁻¹. The number of the voltammetric charges (*Q*) could be determined by integrating.

The turnover frequency (TOF, s⁻¹) for OER was calculated with the following equation:

$$TOF = (|J| \times A)/4Fn \tag{3}$$

$$n = Q/4F \tag{4}$$

Fig. S1 (a) Fe₃-NCO with an annealing temperature at 300 °C and (b) at 500 °C.

Fig. S2 LSV curves of HER at 5 mV s⁻¹ of the Fe₃-NCO at different annealing temperature.

Fig. S3 XRD patterns of carbon textiles.

Fig. S4 Overall XPS survey spectra of as-prepared various electrocatalysts.

Fig. S5 (a) Ni 2p spectra of Fe₁-NCO and Fe₂-NCO, (b) Co 2p spectra of Fe₁-NCO and Fe₂-NCO, (c) Fe 2p spectra of Fe₁-NCO and Fe₂-NCO and (d) O 1s spectrum of Fe₁-NCO and Fe₂-NCO.

According to the Ni2p spectra of NiCo₂O₄, the Ni2p spectrum in Figure S4a was composed of two spinorbit doublets and two satellite, the peaks of Fe₁-NCO at about 854.9 and 872.9eV were corresponded to Ni²⁺, whereas those at 856.2 and 874.9 eV were fitted with Ni³⁺. For Fe₂-NCO the peaks at 854.7 and 873.1 eV was fitted with Ni²⁺, while those at 855.9 and 874.7 eV belongs to Ni³⁺, respectively.¹ The Co2p spectrum in Figure S4b was fitted into both Co 2p $_{1/2}$ and Co 2p $_{3/2}$ with a shakeup satellite for each. The peaks of Fe₁-NCO situated at 781.9 and 796.9 eV can be indexed into Co²⁺ species, while those at 779.7 and 794.8 eV correspond to Co³⁺. ² The spin-orbit located at 781.8 and 797.1 eV of Fe₂-NCO can be ascribed to Co²⁺ and the binding energies found at 779.9 and 795.8 can be attributed to Co³⁺. Compared to pristine NiCo₂O₄ (NCO), the binding energies of Ni 2p and Co 2p in Fe₁-NCO and Fe₂-NCO were shifted to lower values. As for the Fe 2p spectrum of Fe₁-NCO, the characteristic peaks of Fe³⁺ occur at 711.4 eV, while that of Fe₂-NCO at 711.6 eV, respectively.³

Fig. S6 Low (a) and high (b) magnification of SEM images of the carbon textiles,

Low (c) and high (d) magnifications of the NCO.

Fig. S7 EDS of Fe₃-NCO.

Fig. S8 The element mapping analysis of Fe₃-NCO.

Fig. S9 The EDS mapping images of Fe₃-NCO.

Fig. S10 Nyquist plots of various catalysts in 1 M KOH.

Fig. S11 CV curves of the various catalysts for the OER in 1 M KOH.

Fig. S12 ECSA of the various catalysts in 1 M KOH.

Fig. S13 LSV curves of the various electrodes for HER and OER before and after 2000

continuous cycles.

Fig. S14 SEM image of Fe₃-NCO after 2000 continuous cycles in the alkaline electrolyte.

Fig.S15 The projected density-of-states of d orbitals of Ni, Co sites with aligned Fermi level in NCO.

Sample	Ni (wt%)	Co (wt%)	Fe (wt%)	Atomic ratio of Ni, Co
NCO	22.26	46.86		1:2.11
Fe ₁ -NCO	20.20	42.90	5.63	1:2.12
Fe ₂ -NCO	10.28	22.49	7.21	1:2.18
Fe ₃ -NCO	12.99	30.15	9.36	1:2.32

 Table S1. Elemental compositions of various samples

References

- 1 Z. Liu, H. Tan, D. Liu, X. Liu, J. Xin, J. Xie, M. Zhao, L. Song and H. Liu, *Adv. Sci.* 2019, **6**, 1801829.
- 2 M. Yu, S. Zhou, Z. Wang. J. Zhao and J. Qiu, Nano Energy, 2018, 44, 181-190.
- 3 J. Zhang, X. Shang and H. Ren, Adv. Mater. 2019, **31**, 1905107.