Supporting information for

Two pairs of chiral Yb^{III} enantiomers presenting distinct NIR luminescence and circularly polarized luminescence performances with giant differences in second-harmonic generation responses

Xiaodi Du,*a Zhiqiang Zhang,^b Congli Gao,^b Fengcai Li,^b and Xi-Li Li*^b

^aCollege of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China. E-mail: duxiaodi2000@163.com ^bHenan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China. E-mail: lixl@zzuli.edu.cn

Table of Contents

CPL measurement details.	S3
Characterization technique for nonlinear optical (NLO) response.	S3
Scheme S1. Chemical structures of enantiomerically pure bidentate N-donor li	igands
${}^{1}L_{R}$ and ${}^{1}L_{S}$.	S4
Fig. S1. Coordination geometries of Yb1 in D-1 and L-1.	S4
Fig. S2. Coordination geometries of Yb1 in D-2 and L-2.	S4
Fig. S3. Coordination geometries of Yb2 in D-2 and L-2.	S4
Fig. S4. Simulative and experimental PXRD patterns for D-1/L-1 and D-2/L-2.	S5
Fig. S5. Energy levels corresponding to the Yb ^{III} emissions in D-1 and D-2.	S5
Fig. S6. Solid-state decay curves of D-1 (a) and D-2 (b) with fitted curves (red).	S5
Fig. S7. Solid-state decay curve of D-2, fitted by a double-exponential function.	S6
Fig. S8. Plots of g_{lum} versus wavelength for D-1/L-1 (a) and D-2/L-2 (b).	S6
Fig. S9. SHG spectra of D-1/L-1 and Yb(btfa) ₃ (H ₂ O) ₂ under excitation at λ =	1550
nm ($T_{int} = 0.5s$) at room temperature.	S6
Fig. S10. SHG spectra of D-2/L-2 and Yb(dbm) ₃ (H ₂ O) under excitation at λ =	1550
$nm(T_{int} = 0.5 s)$ at room temperature.	S 7
Table S1. Crystallographic data and structure refinement parameters for D-1/L-	-1 and
D-2/L-2 enantiomeric pairs.	S 8
Table S2. Selected bond lengths (Å) and angles (°) for D-1 and L-1.	S9
Table S3. Selected bond lengths (Å) and angles (°) for D-2 and L-2.	S10
Table S4. Continuous shape measures calculation for Yb1 in D-1.	S11
Table S5. Continuous shape measures calculation for Yb1 in D-2.	S12
Table S6. Continuous shape measures calculation for Yb2 in D-2.	S13
Table S7. Calculated dipole moments of D-1 and D-2.	S13

Measurement details:

1. CPL measurement:

Solid-state CPL spectra of **D-1/L-1** and **D-2/L-2** were record on an OLIS NIR-CPL SOLO based on their crystalline samples which were ground and then wellsandwiched by using two quartz slides. In addition, to eliminate the potential contributions of linear dichroism and birefringence, different spectra were recorded by rotating each sample by $\pm 45^{\circ}$ and $\pm 90^{\circ}$ around the optical axis, and by flipping each sample by 180° around the axis perpendicular to the light beam. The average spectra were adopted and reported.

2. Characterization technique for nonlinear optical (NLO) response:

Schematic diagram of the device for testing NLO responses of crystalline materials has been reported elsewhere.¹ Excitation light ($\lambda_{ex} = 1550$ nm) is generated by using an ultrafast fiber laser (100 mW, NPI Lasers, Rainbow 1550 OEM), whose pulse width is 100 fs and the repetition rate is 80 MHz. Then the light beam is focused by using an aspheric lens (N.A. = 0.8) to form a laser spot on the crystalline sample with the beam waist radius being 2 µm. The measurements of SHG responses for **D-1/L-1**, **D-2/L-2**, Yb(btfa)₃(H₂O)₂, Yb(dbm)₃(H₂O) and KDP were conducted using their crystalline samples with the identical particle size range (< 30 µm). Their SHG signals were obtained under the identical integration time ($T_{int} = 0.5$ s), and their SHG spectra are recorded on a cooled fiber optic spectrometer (Ideaoptics, NOVA).

Reference:

 M. Cui, L. Yang, F. Li, L. Zhou, Y. Song, S.-M. Fang, C.-M. Liu and X.-L. Li, *Inorg. Chem.*, 2021, 60, 13366–13375.

Scheme S1. Chemical structures of enantiomerically pure bidentate *N*-donor ligands ${}^{1}L_{R}/{}^{1}L_{S}$.

Fig. S1. Coordination geometries of Yb1 in D-1 and L-1.

Fig. S2. Coordination geometries of Yb1 in D-2 and L-2.

Fig. S3. Coordination geometries of Yb2 in D-2 and L-2.

Fig. S4. Simulative and experimental PXRD patterns for **D-1/L-1** (a/b) and **D-2/L-2** (c/d).

Fig. S5. Energy levels corresponding to the Yb^{III} emissions in D-1 and D-2.

Fig. S6. Solid-state decay curves of D-1 (a) and D-2 (b) with fitted curves (red).

Fig. S7. Solid-state decay curve of D-2, fitted by a double-exponential function.

Fig. S8. Plots of g_{lum} versus wavelength for D-1/L-1 (a) and D-2/L-2 (b).

Fig. S9. SHG spectra of D-1/L-1 and Yb(btfa)₃(H₂O)₂ under excitation at $\lambda = 1550$ nm ($T_{int} = 0.5$ s) at room temperature.

Fig. S10. SHG spectra of **D-2/L-2** and Yb(dbm)₃(H₂O) under excitation at $\lambda = 1550$ nm ($T_{int} = 0.5$ s) at room temperature.

Complexes	D-1	L-1	D-2	L-2
Chemical formula	$C_{46}H_{35}F_9N_3O_6Yb$	$C_{46}H_{35}F_9N_3O_6Yb$	$C_{108}H_{89}N_{3}O_{13}Yb_{2} \\$	$C_{108}H_{89}N_3O_{13}Yb_2$
Formula weight	1069.81	1069.81	1982.90	1982.90
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁
<i>a</i> (Å)	10.1341(9)	10.1213(6)	10.3289(6)	10.3498(7)
<i>b</i> (Å)	19.8579(13)	19.8331(10)	20.9947(12)	21.0293(11)
<i>c</i> (Å)	11.3131(8)	11.3132(8)	21.4061(12)	21.4472(14)
$\alpha = \gamma (\mathrm{deg})$	90	90	90	90
β (deg)	95.212(7)	95.262(6)	98.852(6)	98.962(6)
$V(Å^3)$	2267.3(3)	2261.4(2)	4586.7(5)	4611.0(5)
Ζ	2	2	2	2
$D_{\rm c}~({\rm g~cm^{-3}}~)$	1.567	1.571	1.436	1.428
μ (mm $^{-1}$)	2.150	2.155	2.092	2.081
F(000)	1062	1062	2004	2004
Reflections collected	10216	19253	19918	21763
Independent reflections	6678	9890	14260	15146
Data/restraints/parameters	6678/1/588	9890/971/588	14260/2/1142	15146/2/1142
GOF	0.982	1.035	0.999	0.928
$R_1[I > = 2\sigma(I)]^a$	0.0468	0.0660	0.0543	0.0572
$wR_2[I > = 2\sigma(I)]^b$	0.0625	0.1300	0.0828	0.0782
Flack parameter	0.017(9)	0.026(15)	0.017(8)	0.015(7)
CCDC	2290257	2290258	2290259	2290260

Table S1. Crystallographic data and structure refinement parameters for D-1/L-1 andD-2/L-2 enantiomeric pairs.

 ${}^{a}R_{1} = \sum ||Fo| - |Fc|| / \sum |Fo|$. ${}^{b}wR_{2} = [\sum w(Fo^{2} - Fc^{2})^{2} / \sum w(Fo^{2})^{2}]^{1/2}$

Bond lengths for D-1					
Yb(1)-O(1)	2.255(10)	Yb(1)-O(2)	2.262(7)	Yb(1)-O(3)	2.277(6)
Yb(1)-O(4)	2.260(7)	Yb(1)-O(5)	2.276(9)	Yb(1)-O(6)	2.295(7)
Yb(1)-N(1)	2.489(8)	Yb(1)-N(2)	2.531(7)		
Bond lengths for I	L-1				
Yb(1)-O(1)	2.273(9)	Yb(1)-O(2)	2.313(12)	Yb(1)-O(3)	2.291(9)
Yb(1)-O(4)	2.282(8)	Yb(1)-O(5)	2.286(10)	Yb(1)-O(6)	2.275(11)
Yb(1)-N(1)	2.476(10)	Yb(1)-N(2)	2.532(10)		
Bond angles for D	-1				
O(3)-Yb(1)-O(2)	139.0(3)	O(3)-Yb(1)-O(5)	79.4(4)	O(6)-Yb(1)-O(5)	73.1(3)
O(1)-Yb(1)-O(3)	76.8(4)	O(6)-Yb(1)-N(1)	80.0(3)	O(3)-Yb(1)-N(2)	78.7(2)
Bond angles for L-1					
O(3)-Yb(1)-O(2)	78.7(5)	O(3)-Yb(1)-O(5)	139.1(4)	O(6)-Yb(1)-O(5)	72.6(4)
O(1)-Yb(1)-O(3)	122.1(4)	O(6)-Yb(1)-N(1)	103.1(4)	O(3)-Yb(1)-N(2)	77.9(3)

 Table S2. Selected bond lengths (Å) and angles (°) for D-1 and L-1.

Table S3. Selected bond lengths (Å) and angles (°) for D-2 and L-2. $$_{\rm S9}$$

Bond lengths for D -	-2				
Yb(1)-O(1)	2.278(9)	Yb(1)-O(2)	2.240(8)	Yb(1)-O(3)	2.248(8)
Yb(1)-O(4)	2.278(7)	Yb(1)-O(5)	2.267(8)	Yb(1)-O(6)	2.266(8)
Yb(1)-N(1)	2.558(9)	Yb(1)-N(2)	2.546(9)	Yb(2)-O(13)	2.359(9)
Yb(2)—O(7)	2.230(8)	Yb(2)—O(8)	2.247(9)	Yb(2)—O(9)	2.221(8)
Yb(2)-O(10)	2.258(9)	Yb(2)-O(11)	2.249(8)	Yb(2)-O(12)	2.230(9)
Bond lengths for L-	-2				
Yb(1)-O(1)	2.300(7)	Yb(1)-O(2)	2.282(7)	Yb(1)-O(3)	2.249(8)
Yb(1)-O(4)	2.293(7)	Yb(1)-O(5)	2.290(8)	Yb(1)-O(6)	2.263(8)
Yb(1)-N(1)	2.577(9)	Yb(1)-N(2)	2.531(9)	Yb(2)-O(13)	2.364(9)
Yb(2)—O(7)	2.260(8)	Yb(2)—O(8)	2.257(8)	Yb(2)—O(9)	2.253(8)
Yb(2)-O(10)	2.224(8)	Yb(2)-O(11)	2.255(8)	Yb(2)-O(12)	2.240(8)
Bond angles for D-2	2				
O(3)-Yb(1)-O(2)	115.4(3)	O(3)-Yb(1)-O(5)	79.3(3)	O(6)-Yb(1)-O(5)	75.0(3)
O(1)-Yb(1)-O(3)	73.4(3)	O(6)-Yb(1)-N(1)	115.5(3)	O(3)-Yb(1)-N(2)	135.9(3)
O(5)-Yb(1)-N(2)	103.8(3)	O(2)-Yb(1)-N(1)	134.9(3)	N(1)-Yb(1)-N(2)	62.8(3)
O(9)-Yb(2)-O(12)	150.1(3)	O(7)-Yb(2)-O(8)	75.5(3)	O(7)-Yb(2)-O(10)	106.0(3)
O(8)-Yb(2)-O(11)	90.7(3)	O(9)-Yb(2)-O(10)	75.8(3)	O(8)-Yb(2)-O(10)	154.2(3)
Bond angles for L-2	2				
O(3)-Yb(1)-O(2)	143.7(2)	O(3)-Yb(1)-O(5)	73.8(3)	O(6)-Yb(1)-O(5)	73.0(3)
O(1)-Yb(1)-O(3)	79.6(3)	O(6)-Yb(1)-N(1)	134.9(3)	O(3)-Yb(1)-N(2)	136.6(3)
O(5)-Yb(1)-N(2)	74.6(3)	O(2)-Yb(1)-N(1)	115.1(3)	N(1)-Yb(1)-N(2)	63.2(3)
O(9)-Yb(2)-O(12)	80.3(3)	O(7)-Yb(2)-O(8)	75.9(3)	O(7)-Yb(2)-O(10)	79.2(3)
O(8)-Yb(2)-O(11)	82.8(3)	O(9)-Yb(2)-O(10)	76.2(3)	O(8)-Yb(2)-O(10)	79.1(3)

 Table S4. Continuous shape measures calculation for Yb1 in D-1.

OP-8	$1 D_{8h}$	Octagon			
HPY-8	$2 C_{7v}$	Heptagonal pyramid			
HBPY-8	3 D _{6h}	Hexagonal bipyramid			
CU-8	$4 O_h$	Cube			
SAPR-8	5 D _{4d}	Square antiprism			
TDD-8	6 <i>D</i> _{2<i>d</i>}	Triangular dodecahedron			
JGBF-8	$7 D_{2d}$	Johnson gyrobifastigium J26			
JETBPY-8	8 D _{3h}	Johnson elongated triangular bipyramid J14			
JBTPR-8	9 <i>C</i> _{2v}	Biaugmented trigonal prism J50			
BTPR-8	$10 C_{2v}$	Biaugmented trigonal prism			
JSD-8	11 D _{2d}	Snub diphenoid J84			
TT-8	12 <i>T</i> _d	Triakis tetrahedron			
ETBPY-8	13 <i>D</i> _{3<i>h</i>}	Elongated trigonal bipyrami			
Structure [ML8] OP-8	HPY-8 HBPY-8 CU-8	SAPR-8 TDD-8 JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8 TT-8 ETBPY-8			
ABOXIY 28.888	22.973 16.427 9.791	0.652 1.639 15.122 27.158 2.172 1.638 4.221 10.467 23.489			

Table S5. Continuous shape measures calculation for Yb1 in D-2.

OP-8	$1 D_{8h}$	Octagon			
HPY-8	$2 C_{7v}$	Heptagonal pyramid			
HBPY-8	3 D _{6h}	Hexagonal bipyramid			
CU-8	$4 O_h$	Cube			
SAPR-8	$5 D_{4d}$	Square antiprism			
TDD-8	$6 D_{2d}$	Triangular dodecahedron			
JGBF-8	7 D _{2d}	Johnson gyrobifastigium J26			
JETBPY-8	8 D _{3h}	Johnson elongated triangular bipyramid J14			
JBTPR-8	9 <i>C</i> _{2<i>v</i>}	Biaugmented trigonal prism J50			
BTPR-8	$10 C_{2v}$	Biaugmented trigonal prism			
JSD-8	$11 D_{2d}$	Snub diphenoid J84			
TT-8	12 <i>T</i> _d	Triakis tetrahedron			
ETBPY-8	$13 D_{3h}$	Elongated trigonal bipyrami			
Structure [ML8] OP-8 HI	PY-8 HBPY-8 CU-8	SAPR-8 TDD-8 JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8 TT-8 ETBPY-8			
ABOXIY 29.472 23	267 15.925 10.470	0.606 2.040 14.932 26.907 2.394 1.933 4.385 11.221 23.388			

Table S6. Continuous shape measures calculation for Yb2 in D-2.

HP-7	$1 D_{7}$	h Hep	tagon				
HPY-7	2 <i>C</i>	_{6v} Hex	agonal py	ramid			
PBPY-7	3 D	5h Pen	tagonal bi	pyramid			
COC-7	4 <i>C</i>	_{3v} Cap	ped octah	edron			
CTPR-7	5 C	_{2v} Cap	ped trigon	al prism			
JPBPY-7	6 D	5h Johr	nson penta	igonal bip	yramid J13		
JETPY-7	7 C	_{sv} Johr	ison elong	ated triang	gular pyran	nid J7	
Structure [ML7]	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7
ABOXIY	35.069	19.607	7.231	0.514	1.060	10.831	18.518

Table S7. Calculated dipole moments of D-1 and D-2.

Compound	D-1	D-2
$\mu_{ ext{total}}\left(\mathrm{D} ight)$	7.1437	2.7289
X	-4.0079	-0.1079
Y	2.0216	1.9393
Z	5.5198	-1.9169