

Supporting information

FS1 XRD of $Y_2W_3O_{12}$ ·3H₂O, $Y_2W_3O_{12}$ samples and

 $Y_2W_3O_{12}:RE^{3+}(RE{=}0.8\% Er/0.6\% Ho/0.2\% Tm)/10\% Yb^{3+}\ sample$

 $\label{eq:FS2} \begin{array}{l} \mbox{(a-c) XRD of $Y_2W_3O_{12}$: $x\%RE^{3+}$($RE=Tm/Ho$)/10\%Yb^{3+}$ samples and $Y_2W_3O_{12}$: $x\%RE^{3+}$($XRE=Tm/Ho$)/10\%Yb^{3+}$ samples and $Y_2W_3O_{12}$: $x\%RE^{3+}$($XRE=Tm/Ho$)/10\%Yb^{3+}$ samples and $Y_2W_3O_{12}$: $x\%RE^{3+}$($XRE=Tm/Ho$)/10\%Yb^{3+}$ samples and $Y_2W_3O_{12}$: $x\%RE^{3+}$($YRE=Tm/Ho$)/10\%Yb^{3+}$ samples and $Y_2W_3O_{12}$: $x\%RE^{3+}$ samples and $Y_2W_3O_{12}$: $x\%RE^{3+}$ samples and $YRE=Tm/Ho$)/10\%Yb^{3+}$ samples and $YRE=Tm/Ho$$

FS3 (a) PL spectra of $Y_2W_3O_{12}$. (b) PLE spectra of $Y_2W_3O_{12}$. (c) $Y_2W_3O_{12}$ versus $Y_2W_3O_{12}$:Yb and (d) $Y_2W_3O_{12}$ versus $Y_2W_3O_{12}$:Er, which confirms $WO_4^{2-} \rightarrow Yb^{3+}$ and $WO_4^{2-} \rightarrow Er^{3+}$ energy transfer, respectively.

FS4 PL spectra of $Y_2W_3O_{12}$ at different temperatures.