# **Electronic Supplementary Information**

# Tin-doped NiFe<sub>2</sub>O<sub>4</sub> Nanoblock Grown on Iron Foil for Efficient and Stable Water Splitting at Large-Current-Density

Juan Jian,<sup>a</sup> Meiting Wang,<sup>a</sup> Zhuo Wang,<sup>a</sup> Jingwen Meng,<sup>a</sup> Yuqin Yang<sup>a</sup> and Limin Chang<sup>a,\*</sup>

<sup>*a*</sup> Key Laboratory of Preparation and Applications of Environmental Friendly Material of the

Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R.

China

\* Corresponding authors' E-mails: changlimin2139@163.com

#### 1. Material and Experimental Instruments

# 1.1 Materials used in the experiment

RuO<sub>2</sub> was synthesized from ruthenium chloride hydrate (RuCl<sub>3</sub>·xH<sub>2</sub>O) purchased from Aladdin Ltd. (Shanghai, China).<sup>[1]</sup> Pt/C (20 wt%) was obtained from Macklin Ltd. (Shanghai, China), Nickel foam (NF) and iron foil (IF) were provided by the Li Yuan Technology Co. Ltd. (Shanxi, China). KOH, Na<sub>2</sub>SnO<sub>3</sub>·3H<sub>2</sub>O, HCl and other chemicals are supplied by the Beijing Chemical Reagents Company. Apart from the NF and IF, all the chemicals are analytical pure and do not needed further purification.

# **1.2 Experimental Section**

# **Detailed Synthesis Information**

Firstly, weighing 1.0 mmol thiourea and 0.19 mmol sodium stannate; then, mix them into 50 mL deionized water under continuous magnetic stirring; later, transferred the mixture solution into the polytetrafluoroethylene hydrothermal reactor; after that, place the acid treated NF (2 cm \* 5 cm) and sanded IF (1 cm \* 5 cm) into the autoclave; at last, reacted at 220 ° oven for 5 hours. The finally gained IF based material is the Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF and the doped mass percentage of Sn is 1.92 %. In addition, the synthesis path of NiFe<sub>2</sub>O<sub>4</sub>/IF was similar with the Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF, just without the participation of sodium stannate.

# **Basic Phase Characterizations**

X-ray diffraction (XRD) experiment was tested on a Rigaku D-Max 2550 diffractometer with Cu-K $\alpha$  radiation ( $\lambda$  = 1.5418 Å). Scanning electron microscope (SEM) and energy dispersion X-ray spectroscopy (EDX) images were obtained on a JEOL-6700 scanning electron microscope. Transmission electron microscope (TEM), high resolution TEM (HRTEM) images were obtained with microscopy of Philips-FEI Tecnai G2S-Twin, equipped with a field emission gun operating at 200 kV. X-ray photoelectron spectra (XPS) analysis was performed on a VG Scienta R3000 spectrometer with Al K $\alpha$  (1486.6 eV) as the X-ray source. Contact angle (CA) experiment was analyzed by the machine of Dataphysics OCA20 at room temperature.

# **Electrochemical Measurements**

The electrochemical measurements were conducted using the three-electrode system with the electrochemical workstation (CHI 760e). The as-prepared electrodes were directly used as the working electrodes; meanwhile, graphite rod and Hg/HgO electrode were served as counter and reference electrodes, respectively. 1.0 M KOH solution was used as

electrolyte for HER, OER and OWS devices. Potentials were normalized versus the standard hydrogen electrode (RHE) according to formula below:

 $E_{(RHE)} = E_{(Hg/HgO)} + 0.098 V + 0.0591 pH$ 

(1)

(2)

(3)

Here, " $E_{(Hg/HgO)}$ " is the potential we directly measured during the experiment.

Polarization curves were performed via sweeping potentials at a scan rate of 2.0 mV s<sup>-1</sup>. The measured potentials were calibrated with *iR* compensation. Corresponding stability data were examined through current-time curves at the constant potentials.

# Tafel slope:

The data of Tafel slope can be plotted by the gained linear sweep voltammetry (LSV) curves, which is obtained from the follow equation:

η = a + b log j

Where, " $\eta$ " refers to the overpotential; "j" is the current density; "a" relates to the j<sub>0</sub> (exchange current density) and can be reflected by the intercept; "b" is the Tafel slope.

#### Electrochemical impedance spectroscopy (EIS):

We operated the ESI testing using the CHI 760e, frequency ranged from 1.0 to 100000 Hz, amplitude is 0.005 V.

# Electrochemical active surface area (EASA):

The EASA was gained follow the formula below:

$$EASA = A * C_{dl} / C_{s}$$

Where "A" refers to the area of the working electrode, and we set the electrode area to 0.25 cm<sup>2</sup> throughout the electrocatalytic water splitting testing; "C<sub>s</sub>" relates to the electrolyte, here  $C_s = 0.04 \text{ mF cm}^{-2}$ ; "C<sub>dl</sub>" is the abbreviation of double layer capacitance and calculated from series of CV curves that tested within the non-Faraday potential range (0.9254-1.0254 V vs. RHE), scan rate changed from 10 to 100 mV s<sup>-1</sup>, increased with 10 mV s<sup>-1</sup> each time.

# Faraday efficiency (FE):

Faraday efficiency (FE) of Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF for OER/HER can be calculated by the ratio of the amount of  $O_2/H_2$  collected by drainage method and the theoretical  $O_2/H_2$ . Take OER for example, the actual amount  $O_2$  production (labeled as  $n_{o-experimental}$ ) can be calculated using the equation of  $n_{o-experimental} = V/V_m$ , where V is the volume of  $O_2$  collected from the chronoamperometry testing; V<sub>m</sub> is molar volume of ideal gas, and V<sub>m</sub> = 22.4 L mol<sup>-1</sup>. For the theoretical  $O_2$  (marked as  $n_{o-theoretical}$ ) accumulated during the OER. According the OER

equation of  $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ , where, the electrolytic efficiency ( $\eta$ ) can be measured by the equation of  $\eta = z^*n^*F/Q$ . Here, "n" is the mole of  $O_2$  generated during the OER, and can be marked as  $n_{o-theoretical}$ ; "z" is the number of transferred electrons generated per mole of  $O_2$  during the OER, here, z = 4; "F" is the Faraday constant, F = 96485 C mol<sup>-1</sup>; "Q" refers to the actual quantity of electric charge, and can be calculated by the flume of  $Q = \Sigma$  i\*t. In the chronoamperometry experiment, the Q can be directly calculated. To evaluate the FE of a catalyst for OER, we assume that 100 % current efficiency occurs during the whole reaction. Hence,  $1 = 4^*F^*n_{o-theoretical}/Q$ , therefore,  $n_{o-theoretical} = Q/(4^*F)$ . The calculation of FE for HER is similar with the OER, merely the the number of transferred electrons generated per mole of H<sub>2</sub> during the HER is 2.<sup>[2-4]</sup> 3. Supplementary Figures and Tables



Fig. S1. Enlarged XRD image of NiFe<sub>2</sub>O<sub>4</sub>/IF and Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF.



Fig. S2. SEM image of the pure NiFe<sub>2</sub>O<sub>4</sub>/IF.



Fig. S3. EDX-Mapping (SEM) results of Ni, Fe, Sn in Sn-NiFe<sub>2</sub>O<sub>4</sub>.



**Fig. S4**. The bar graph reflecting the relationship between current density and given potential of NiFe<sub>2</sub>O<sub>4</sub>/IF and Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF for the OER course.



Fig. S5. The electrochemical impedance spectroscopy (EIS) curves of NiFe<sub>2</sub>O<sub>4</sub>/IF and Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF at overpotential of 275 mV, insert is the equivalent circuit for fitting the Nyquist plots.

As illustrated in the equivalent circuit, R represents resistance. Here, R<sub>s</sub> and R<sub>ct</sub> refers to the resistance of solution and charge transfer, respectively. It is generally accepted that small R<sub>ct</sub> values give rise to rapid charge transfer kinetics. Obviously, the Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF (11.2  $\Omega$ ) has much lower charge transfer resistance than the pure NiFe<sub>2</sub>O<sub>4</sub>/IF (19.4  $\Omega$ ). Thus, the doped-Sn shortened the charge transfer path and accelerated the electrocatalytic reactions of Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF.



**Fig. S6**. The basic characterization results of (a) XRD, (b) SEM and (c, d) XPS data of Ni 2p, Fe 2p that post-OER for Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF.

The slightly high binding energy shift of Ni 2p and Fe 2p after the OER, which maybe due to the accumulation of oxyhydroxide species.<sup>[5,6]</sup>



**Fig. S7**. Faraday efficiency image of Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF during the OER course, the insert graph is the corresponding i-t test.



**Fig. S8**. The bar graph reflecting the relationship between current density and given potential of NiFe<sub>2</sub>O<sub>4</sub>/IF and Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF for the HER process.



Fig. S9. The basic characterization results of (a) XRD, (b) SEM and (c, d) XPS data of Ni 2p, Fe  $_{2p}$  that post-HER for Sn-NiFe $_{2}O_{4}/IF$ .



**Fig. S10**. Faraday efficiency result of Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF for HER, wherein the insert image is the corresponding i-t curves.



Fig. S11. Contract angle experiment of (a) NiFe<sub>2</sub>O<sub>4</sub>/IF and (b) Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF at measure time of 0, 40 and 80 ms.

**Table S1**. A properties comparison of various electrocatalysts for overall water splitting(OWS).

| Catalys                                                   | Voltage at 10 mA     | Voltage at 100 mA    | Reference |
|-----------------------------------------------------------|----------------------|----------------------|-----------|
| (OWS)                                                     | cm <sup>-2</sup> (V) | cm <sup>-2</sup> (V) |           |
| Sn-NiFe <sub>2</sub> O <sub>4</sub> /IF                   | 1.56                 | 1.80                 | This work |
| NiFe <sub>2</sub> O <sub>4</sub> /IF                      | 1.68                 | 1.94                 | This work |
| Pt/C  RuO <sub>2</sub>                                    | 1.56                 | 1.81                 | This work |
| $Fe_2O_3/Ni_3S_2$                                         | 1.54                 | ≈1.81                | [7]       |
| СоМоР                                                     | 1.56                 | 1.70                 | [8]       |
| S-NiFe <sub>2</sub> O <sub>4</sub> /Ni <sub>3</sub> Fe/NW | 1.52                 | 1.79                 | [9]       |
| Co/CNFs                                                   | 1.60                 |                      | [10]      |
|                                                           |                      |                      |           |

| Co <sub>9</sub> S <sub>8</sub> /Ni <sub>3</sub> S <sub>2</sub> /NF | 1.64 |       | [11] |
|--------------------------------------------------------------------|------|-------|------|
| CoMoO nanosheet arrays@NF                                          | 1.68 | ≈1.88 | [12] |
| Ni₃FeN/r-GO                                                        | 1.60 | ≈1.96 | [13] |
| P-Co <sub>3</sub> O <sub>4</sub> /NF                               | 1.63 |       | [14] |
| CoP@3D Ti <sub>3</sub> C <sub>2</sub> -Mxene                       | 1.57 | ≈1.70 | [15] |
| P-doped Co-Ni-S/NF                                                 | 1.60 |       | [16] |
| RuO <sub>2</sub> /NiO/NF                                           | 1.50 |       | [17] |
| Fe-Ni <sub>2</sub> P                                               | 1.49 | ≈1.73 | [18] |
| Ni <sub>3</sub> S <sub>2</sub> -NGQDs/NF                           | 1.58 |       | [19] |
| NiFe/Ni(OH) <sub>2</sub> /NiAl                                     | 1.59 |       | [20] |
| MoP/Ni <sub>2</sub> P/NF                                           | 1.55 |       | [21] |
| N(P)-doped 304-type stainless                                      | 1.74 |       | [22] |
| steel mesh                                                         |      |       |      |
| Cu@CoS <sub>x</sub> /Cu Foam                                       | 1.50 | 1.80  | [23] |
| CoFePO/NF                                                          | 1.56 | ≈1.95 | [24] |
| N-Ni <sub>3</sub> S <sub>2</sub> / NF                              | 1.48 | ≈1.83 | [25] |
| NiCo <sub>2</sub> S <sub>4</sub> nanowire arrays                   | 1.63 |       | [26] |
| NiFeOOH                                                            |      | 1.49  | [27] |
| CP/CTs/Co-S                                                        | 1.74 |       | [28] |
| NiCoP                                                              | 1.58 | ≈1.81 | [29] |
| CoFeZr oxides/NF                                                   | 1.63 | ≈1.80 | [30] |
| MoS <sub>2</sub> -NiS <sub>2</sub> /NGF                            | 1.64 |       | [31] |
| Ni-graphitic carbon (NGC)                                          | 1.64 |       | [32] |
| MoO <sub>3</sub> /Ni-NiO                                           | 1.55 |       | [33] |
| Ni@NC800/NF                                                        | 1.60 |       | [34] |
| Ni <sub>1-x</sub> Fe <sub>x</sub> /NC/NF                           | 1.58 |       | [35] |



**Fig. S12**. CV curves at different scan rates of (a) IF, (b) NiFe<sub>2</sub>O<sub>4</sub>/IF, (c) Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF and their (d) relationship curves between  $\Delta j$  and scan rates.

|                                                                            | IF                    | NiFe <sub>2</sub> O <sub>4</sub> /IF | Sn-NiFe <sub>2</sub> O <sub>4</sub> /IF |
|----------------------------------------------------------------------------|-----------------------|--------------------------------------|-----------------------------------------|
| Fitted slope (mF cm <sup>-2</sup> )                                        | 0.0016                | 0.0041                               | 0.0048                                  |
| Standard error for<br>slope                                                | 8.64*10 <sup>-6</sup> | 1.75*10 <sup>-5</sup>                | 4.75*10 <sup>-5</sup>                   |
| Double-layer-<br>capacitance (C <sub>dl</sub> , mF<br>cm <sup>-2</sup> )   | 0.80                  | 2.05                                 | 2.40                                    |
| General specific<br>capacitance (C <sub>s</sub> , mF<br>cm <sup>-2</sup> ) | 0.04                  | 0.04                                 | 0.04                                    |
| Electrochemical<br>active surface area<br>(EASA, cm <sup>2</sup> )         | 5.00                  | 12.8                                 | 15.0                                    |

Table S2. Information of C<sub>dl</sub>, C<sub>s</sub> and EASA of the IF, NiFe<sub>2</sub>O<sub>4</sub>/IF and Sn-NiFe<sub>2</sub>O<sub>4</sub>/IF.

# 4. Reference

- [1] Jian, J.; Yuan, H. M.; Feng, S. H. et al. ACS Appl. Mater. Inter., 2018, 10, 40568.
- [2] Liu, Y. P.; Zou, X. X. et al, *Nat. Commun.*, **2018**, 9, 2609.
- [3] Suryanto, B. H. R.; Zhao, C. et al, *Nat. Commun.*, **2019**, 10, 5599.
- [4] Zou, X. X.; Zhang Y. *Chem. Soc. Rev.*, **2015**, 44, 5148-5180.

- [5] Liu, J. L.; et al. *Chem. Commun.*, **2019**, 55, 10860-10863.
- [6] Liu, Z.; et al. *Chem. Eng. J.*, **2020**, 395, 125170.
- [7] Shao, Z. Y.; Wang, Q. Chem. Eng. J., **2021**, 416, 129098.
- [8] Wang, X.; Cabot, A. *Nanomaterials*, **2022**, 12, 1098.
- [9] Gao, M. Y.; Xu, C. Y. J. Mater. Chem. A, **2018**, 6, 1551-1560.
- [10] Yang, Z. K.; Li, Y. D. et al. *Adv. Mater.*, **2019**, 31, 1808043.
- [11] Du, Feng.; Shi, L.; Zou, Z. G. et al. *Appl. Catal., B* **2019**, 253, 246.
- [12] Zhang, Y.; Shao, Q.; Huang, X. Q. et al. *Nano Energy*, **2018**, 45, 448.
- [13] Gu, Y.; Chen, S.; Yao, X. D. et al. ACS Nano, 2018, 12, 245.
- [14] Wang, Z. C.; Liu, H. L.; Sun, X. P. et al. ACS Catal., **2018**, 8, 2236.
- [15] Xiu, L. Y.; Wang, Z. Y.; Qiu, J. S. et al. ACS Nano, **2018**, 12, 8017.
- [16] Zhang, F. F.; Ge, Y. C.; Shen, J. F. et al. ACS Appl. Mater. Inter., **2018**, 10, 7087.
- [17] Liu, J. S.; Zheng, Y.; Qiao, S. -Z. et al. *Small*, **2018**, 14, 1704073.
- [18] Li, Y. J.; Zhang, H. C.; Sun, X. M. et al. *Adv. Funct. Mater.*, **2017**, 27, 1702513.
- [19] Lv, J. J.; Zhao, J.; Zhu, J. J. et al. *Small*, **2017**, 13,1700264.
- [20] Niu, S.; Jiang, W. -J.; Hu, J. -S. et al. *Adv. Sci.*, **2017**, 4, 1700084.
- [21] Du, C. C.; Shang, M. X.; Song W. B. et al. J. Mater. Chem. A, **2017**, 5, 15940.
- [22] Balogun, M. -S.; Qiu, W. T.; Tong, Y. X. et al. *Adv. Mater.*, **2017**, 1702095.
- [23] Liu, Y. P.; Li, Q. J.; Zou, X. X. et al. *Adv.Mater.*, **2017**, 29, 1606200.
- [24] Duan, J. J.; Chen, S.; Qiao, S. Z. et al. ACS Nano, 2016, 10, 8738.
- [25] Chen, P. Z.; Zhou, T. P.; Xie, Y. et al. Adv. Mater., 2017, 29, 1701584.
- [26] Sivanantham, A.; Ganesan, P.; Shanmugam, S. Adv. Funct. Mater., 2016, 26, 4661.
- [27] Zhou, H. Q.; Yu, F.; Ren, Z. F. et al. *Energy Environ. Sci.*, **2018**, 11, 2858.
- [28] Wang, J.; Zhong, H. -X.; Zhang, X. -B. et al. ACS Nano, **2016**, 10, 2342.

- [29] Liang, H. F.; Gandi, A. N.; Alshareef, H. N. et al. *Nano Lett.*, **2016**, 16, 7718.
- [30] Huang, L. L.; Chen, D. W.; Wang, S. Y. et al. *Adv. Mater.*, **2019**, 1901439.
- [31] Kuang, P. Y.; He, M.; Fan, K. et al. *Appl. Catal., B*, **2019**, 254, 15.
- [32] Zhou, B. H.; Zhang, M. C.; Zhang, Y. Y. et al. *Carbon*, **2019**, 150, 21.
- [33] Li, X. P.; Wang, Y.; Hu, W. B. et al. *Adv. Mater.*, **2020**, 32, 2003414.
- [34] Xu, Y.; Tu, W. G.; Xu, R. et al. *Adv. Mater.*, **2017**, 29, 1605957.
- [35] Zhang, X.; Xu, H. M.; Liang, Y. Y. et al. ACS Catal., **2016**, 6, 580.