Supporting Information

The broadband emission of Cr³⁺ doped CaY₂Mg₂Ge₃O₁₂ and

its applications for NIR detector

Yuyan Li, ¹ Ye Jin, ^{1*} Fei Fang, ¹Huayan Lin, ¹Hongtao Chen, ¹ Yanbin Xiong, ² Yongfu Liu, ³ Li Ma, ⁴ Xiao-jun Wang⁴

College of Science, Chongqing University of Technology, Chongqing 400054, China;
College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China;
4 Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA

Figure S1. Emission spectra of Cr^{3+} in CYMG and YGO.

Figure S2. XRD patterns of different Ca sources.

FigureS3. Luminescence spectra of CaCO₃ and CaO as Ca sources at two different temperatures.

Figure S4. Emission spectra of CYMG: 7% Cr^{3+} with different fluxes.

Figure S5. (a) PL of CYMG: xCr^{3+} excited at 450 nm; (b) Relationship between log(I/x) and log(x) of

CYMG:xCr³⁺

Figure S6. The internal quantum efficiency of CYMG:xCr³⁺

different hosts						
phosphor	$\lambda_{\rm em}$ (nm)	FWHM	I _{150°C} (%)	IQE (%)	Ref.	
Na ₃ ScF ₆ :Cr ³⁺	774	108	30	91.5	S 1	
ScBO ₃ :Cr ³⁺	800	120	50	65	S 2	
$Ca_2LuZr_2Al_3O_{12}{:}Cr^{3+}$	754	117	60	69	S 3	
BaMgAl ₁₀ O ₁₇ :Cr ³⁺	696	92.6	63	94	S 4	
LiScSi ₂ O ₆ :Cr ³⁺	845	156	75	64.4	S 5	
LiInSi ₂ O ₆ :Cr ³⁺	840	143	77	75	S 6	
$CaLu_2Mg_2Si_3O_{12}:Cr^{3+}$	750	/		85.7	S 7	
$CaY_2Mg_2Ge_3O_{12}:Cr^{3+}$	758	115	81	81.1	This work	

Table S1. Emission peak, FWHM, temperature stability and IQE of Cr^{3+} phosphors doped with

Current	Input power	Output power (mW)	Output power (mW)	
(mA)	(mW)	(74.525%)	(100%)	Conversion efficiency
		Measurement data	Complete data	
20	51	4	5.367	10.524
50	133	10	13.418	10.089
100	276	19	25.495	9.237
150	426	25	33.546	7.875
200	580	31	41.597	7.172
250	740	34	45.223	6.111
300	907	35	46.964	5.178
350	1078	36	48.306	4.481
400	1256	37	49.648	3.953

Table S2. Photoelectric characteristics of NIR pc-LED devices under the different driving current

Reference

- 1 F. He, E. Song, Y. Zhou, H. Ming, Z. Chen, J. Wu, P. Shao, X. Yang, Z. Xia, Q. Zhang, *Adv. Funct. Mater.* 2021, **31** (36), 2103743.
- 2 M.-H. Fang, P.-Y. Huang, Z. Bao, N. Majewska, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S. M. Kaczmarek, C.-W. Yang, K.-M. Lu, H.-S. Sheu, R.-S. Liu, *Chem. Mater.* 2020, **32** (5), 2166-2171.
- 3 L. Zhang, S. Zhang, Z. Hao, X. Zhang, G.-H. Pan, Y. Luo, H. Wu, Zhang, J, *J. Mater. Chem. C* 2018, **6** (18), 4967-4976.
- 4 L. You, R. Tian, T. Zhou, R.-J. Xie, Chem. Eng. J. 2021, 417, 129224.
- 5 Y. Yan, M. Shang, S. Huang, Y. Wang, Y. Sun, P. Dang, J. Lin, *ACS Appl. Mater. Interfaces* 2022, **14** (6), 8179-8190.
- 6 X. Xu, Q. Shao, L. Yao, Y. Dong, J. Jiang, Chem. Eng. J. 2020, 383, 123108.
- 7 H. Xiao, J. Zhang, L. Zhang, H. Wu, H. Wu, G. Pan, F. Liu, J. Zhang, *Adv. Optical Mater.* 2021, 9, 2101134.