# **Supporting Information**

## Blue Emissive Amidinate Based Tetra coordinate Boron Compounds:

Ramkumar Kannan,<sup>[a]</sup> Prakash Nayak,<sup>[b]</sup> Ramar Arumugam,<sup>[a]</sup> D. Krishna Rao,<sup>[a]</sup> Kaustubh R. Mote,<sup>[a]</sup> Anna Chandrasekar Murali,<sup>[b]</sup> Krishnan Venkatasubbaiah,<sup>\*[b]</sup> and Vadapalli Chandrasekhar<sup>\*[a][c]</sup>

<sup>[a]</sup> Tata Institute of Fundamental Research, Hyderabad, 500046, India.

<sup>[b]</sup> Department of Chemical Sciences, National Institute of Science, Education and Research, Bhubaneswar, Orissa-752050, India.

[c] Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, Uttar Pradesh, India.

## Contents

- 1. General Synthetic Procedures and Characterization
- 2. Variable temperature NMR and <sup>1</sup>H-<sup>19</sup>F HOESY results
- 3. Crystallographic data
- 4. Electrochemical properties
- 5. Computational Details

#### **1.** General synthetic procedure and Characterization:



**Ar lithium salts (1-6Li) synthesis (Ar = 1-phenyl, 2-napthyl, 2-anthryl, 9-anthryl, 9-phenanthrene and 1-pyrene):** A diethyl ether solution of bromo aryl (7.77 mmol) was taken in a 100ml Schleck flask and drop wise addition of n-BuLi (2.5 M in hexane, 7.77 mmol) was done at -78°C. After 4hr stirring the diethyl ether solution of carbodiimide (7.77 mmol) was added drop wise and stirred for additional 16 hr at room temperature. Diethyl ether was removed and after pentane wash (2\*40 mL) powdery lithium salts were formed. The products used as such for further reactions. Yield: (57-93.9%).



Figure S1:<sup>1</sup>H NMR spectrum ([C<sub>6</sub>D<sub>6</sub>, 300 MHz) of compound 1Li





Figure S3:<sup>1</sup>H NMR spectrum ([ $C_6D_6$ , 300 MHz) of compound 2Li



Figure S4:<sup>7</sup>Li NMR spectrum ([ $C_6D_6$ , 116.6 MHz) of compound 2Li



Figure S5:<sup>1</sup>H NMR spectrum ([ $C_6D_6$ , 300 MHz) of compound 3Li



Figure S6:<sup>7</sup>Li NMR spectrum ([ $C_6D_6$ , 116.6 MHz) of compound 3Li



Figure S7:<sup>1</sup>H NMR spectrum ([ $C_6D_6$ , 300 MHz) of compound 4Li



Figure S8:<sup>7</sup>Li NMR spectrum ([ $C_6D_6$ , 116.6 MHz) of compound 4Li



Figure S9:<sup>1</sup>H NMR spectrum ([ $C_6D_6$ , 300 MHz) of compound 5Li



Figure S10:<sup>7</sup>Li NMR spectrum ([ $C_6D_6$ , 116.6 MHz) of compound 5Li



Figure S11:<sup>1</sup>H NMR spectrum ([ $C_6D_6$ , 300 MHz) of compound 6Li



Figure S12:<sup>7</sup>Li NMR spectrum ([ $C_6D_6$ , 116.6 MHz) of compound 6Li





Figure S13:<sup>1</sup>H NMR spectrum ([C<sub>6</sub>D<sub>6</sub>, 300 MHz) of compound 4-Li.2THF



Figure S14:<sup>7</sup>Li NMR spectrum ([C<sub>6</sub>D<sub>6</sub>, 116.6 MHz) of compound 4-Li.2THF



Figure S15:<sup>13</sup>C NMR spectrum ([CDCl<sub>3</sub>], 75 MHz) of compound 4-Li.2THF.

Compound 1BF<sub>2</sub>:





Figure S16:<sup>1</sup>H NMR spectrum ([CDCI<sub>3</sub>, 300 MHz) of compound 1BF<sub>2</sub>.



Figure S17:<sup>13</sup>C NMR spectrum ([CDCl<sub>3</sub>], 75 MHz) of compound 1BF<sub>2</sub>.



Figure S18:<sup>19</sup>F NMR spectrum ([CDCl<sub>3</sub>], 282 MHz) of compound 1BF<sub>2</sub>.



Figure S19:<sup>11</sup>B NMR spectrum ([CDCl<sub>3</sub>], 96 MHz) of compound 1BF<sub>2</sub>.

Compound 2BF<sub>2</sub>:



Figure S20:<sup>1</sup>H NMR spectrum ([CDCI<sub>3</sub>, 300 MHz) of compound 2BF<sub>2</sub>.



Figure S21:<sup>13</sup>C NMR spectrum ([CDCl<sub>3</sub>], 75 MHz) of compound  $2BF_2$ .



Figure S22:<sup>19</sup>F NMR spectrum ([CDCl<sub>3</sub>], 282 MHz) of compound 2BF<sub>2</sub>.



Figure S23:<sup>11</sup>B NMR spectrum ([CDCl<sub>3</sub>], 96 MHz) of compound 2BF<sub>2</sub>.

Compound 3BF<sub>2</sub>:



Figure S24:<sup>1</sup>H NMR spectrum ([CDCI<sub>3</sub>, 300 MHz) of compound 3BF<sub>2</sub>.



Figure S25:<sup>13</sup>C NMR spectrum ([CDCl<sub>3</sub>], 75 MHz) of compound 3BF<sub>2</sub>.



Figure S26:<sup>19</sup>F NMR spectrum ([CDCI<sub>3</sub>], 282 MHz) of compound 3BF<sub>2</sub>.



Figure S27:<sup>11</sup>B NMR spectrum ([CDCl<sub>3</sub>], 96 MHz) of compound 3BF<sub>2</sub>.

Compound 4BF<sub>2</sub>:



Figure S29:<sup>13</sup>C NMR spectrum ([CDCl<sub>3</sub>], 75 MHz) of compound 4BF<sub>2</sub>.



Figure S30:<sup>19</sup>F NMR spectrum ([CDCl<sub>3</sub>], 282 MHz) of compound 4BF<sub>2</sub>.



Figure S31:<sup>11</sup>B NMR spectrum ([CDCl<sub>3</sub>], 96 MHz) of compound 4BF<sub>2</sub>.

Compound 5BF<sub>2</sub>:





Figure S32:<sup>1</sup>H NMR spectrum ([CDCI<sub>3</sub>, 300 MHz) of compound 5BF<sub>2</sub>.



Figure S33:<sup>13</sup>C NMR spectrum ([CDCl<sub>3</sub>], 75 MHz) of compound 5BF<sub>2</sub>.



Figure S34:<sup>19</sup>F NMR spectrum ([CDCl<sub>3</sub>], 282 MHz) of compound 5BF<sub>2</sub>.



Figure S35:<sup>11</sup>B NMR spectrum ([CDCl<sub>3</sub>], 96 MHz) of compound 5BF<sub>2</sub>.

Compound 6BF<sub>2</sub>:





Figure S36:<sup>1</sup>H NMR spectrum ([CDCI<sub>3</sub>, 300 MHz) of compound 6BF<sub>2</sub>.



Figure S37:<sup>13</sup>C NMR spectrum ([CDCl<sub>3</sub>], 75 MHz) of compound 6BF<sub>2</sub>.



Figure S38:<sup>19</sup>F NMR spectrum ([CDCI<sub>3</sub>], 282 MHz) of compound 6BF<sub>2</sub>.



Figure S39:<sup>11</sup>B NMR spectrum ([CDCl<sub>3</sub>], 96 MHz) of compound 6BF<sub>2</sub>.



Figure S40: <sup>19</sup>F NMR spectra of **2BF<sub>2</sub>** in CDCl<sub>3</sub> at 282 MHz and 471 MHz instrument.



Figure S41: <sup>19</sup>F NMR spectra of **3BF<sub>2</sub>** in CDCl<sub>3</sub> at 282 MHz and 471 MHz instrument.



Figure S42:<sup>19</sup>F NMR spectrum ([CDCl<sub>3</sub>], 470 MHz) of compound 1BF<sub>2</sub>.



Figure S43:<sup>19</sup>F NMR spectrum ([CDCl<sub>3</sub>], 470 MHz) of compound 4BF<sub>2</sub>.



Figure S44:<sup>19</sup>F NMR spectrum ([CDCl<sub>3</sub>], 376 MHz) of compound 5BF<sub>2</sub>.



Figure S45:<sup>19</sup>F NMR spectrum ([CDCl<sub>3</sub>], 376 MHz) of compound 6BF<sub>2</sub>.



Figure S46:<sup>19</sup>F NMR spectrum ([dmso-d6], 282 MHz) of compound 2BF<sub>2</sub>.

- 2. Variable temperature NMR and <sup>1</sup>H-<sup>19</sup>F HOESY results:
  - 2.2 Variable temperature NMR:



Figure S47: Variable temperature nmr spectra of 3BF<sub>2</sub> in C6D6.



Figure S48: Variable temperature nmr spectra of 3BF<sub>2</sub> in toluene-d3.



Figure S49: Variable temperature nmr spectra of 6BF<sub>2</sub> in dmso-d6.

### 2.2 <sup>1</sup>H–<sup>19</sup>F HOESY spectra:



Figure S50: <sup>1</sup>H–<sup>19</sup>F HOESY spectra of **1BF<sub>2</sub>**.



Figure S51: <sup>1</sup>H–<sup>19</sup>F HOESY spectra of **2BF**<sub>2</sub>.



Figure S52: <sup>1</sup>H–<sup>19</sup>F HOESY spectra of **3BF<sub>2</sub>**.



Figure S53: <sup>1</sup>H–<sup>19</sup>F HOESY spectra of **4BF**<sub>2</sub>.



Figure S54: <sup>1</sup>H–<sup>19</sup>F HOESY spectra of **4BF**<sub>2</sub>.



Figure S55: <sup>1</sup>H–<sup>19</sup>F HOESY spectra of 6BF<sub>2</sub>.



Figure S56: <sup>1</sup>H–<sup>19</sup>FHOESY spectra of **6BF<sub>2</sub>**.

# 3. Crystallography data:

Table S1: Crystal data and structure refinement for 1BF<sub>2</sub>.

| Identification code               | 1BF <sub>2</sub>                   |                |  |
|-----------------------------------|------------------------------------|----------------|--|
| Empirical formula                 | C15 H23 B F2 N2                    |                |  |
| Formula weight                    | 280.16                             |                |  |
| Temperature                       | 293(2) K                           |                |  |
| Wavelength                        | 0.71073 Å                          |                |  |
| Crystal system                    | Orthorhombic                       |                |  |
| Space group                       | Pbcn                               |                |  |
| Unit cell dimensions              | a = 10.9290(4) Å                   | <b>□=</b> 90°. |  |
|                                   | b = 10.2818(4) Å                   | <b>□=</b> 90°. |  |
|                                   | c = 13.9166(5) Å                   | □ = 90°.       |  |
| Volume                            | 1563.81(10) Å <sup>3</sup>         |                |  |
| Z                                 | 4                                  |                |  |
| Density (calculated)              | 1.190 Mg/m <sup>3</sup>            |                |  |
| Absorption coefficient            | 0.086 mm <sup>-1</sup>             |                |  |
| F(000)                            | 616                                |                |  |
| Crystal size                      | ? x ? x ? mm <sup>3</sup>          |                |  |
| Theta range for data collection   | 2.720 to 26.848°.                  |                |  |
| Index ranges                      | -13<=h<=13, -9<=k<=13, -17<=l<=17  |                |  |
| Reflections collected             | 9858                               |                |  |
| Independent reflections           | 1647 [R(int) = 0.0298]             |                |  |
| Completeness to theta = 25.242°   | 100.0 %                            |                |  |
| Absorption correction             | Semi-empirical from equivale       | ents           |  |
| Max. and min. transmission        | 1.00000 and 0.84727                |                |  |
| Refinement method                 | Full-matrix least-squares on       | F <sup>2</sup> |  |
| Data / restraints / parameters    | 1647 / 0 / 93                      |                |  |
| Goodness-of-fit on F <sup>2</sup> | 1.089                              |                |  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0392, wR2 = 0.1062          |                |  |
| R indices (all data)              | R1 = 0.0466, wR2 = 0.1103          |                |  |
| Extinction coefficient            | n/a                                |                |  |
| Largest diff. peak and hole       | 0.218 and -0.195 e.Å <sup>-3</sup> |                |  |

Table S2: Crystal data and structure refinement for 3BF<sub>2</sub>.

| Identification code             | 3BF <sub>2</sub>                            |
|---------------------------------|---------------------------------------------|
| Empirical formula               | $C_{23} H_{27} B F_2 N_2$                   |
| Formula weight                  | 380.28                                      |
| Temperature                     | 293(2) K                                    |
| Wavelength                      | 0.71073 Å                                   |
| Crystal system, space group     | Monoclinic, P 21/n                          |
| Unit cell dimensions            | a = 11.8480(9) Å □ = 90°.                   |
|                                 | b = 9.1474(6) Å □ = 102.996(7)°.            |
|                                 | c = 20.2739(13) Å □ = 90°.                  |
| Volume                          | 2141.0(3) Å <sup>3</sup>                    |
| Z, Calculated density           | 4, 1.180 Mg/m <sup>3</sup>                  |
| Absorption coefficient          | 0.080 mm <sup>-1</sup>                      |
| F(000)                          | 840                                         |
| Crystal size                    | ? x ? x ? mm <sup>3</sup>                   |
| Theta range for data collection | 2.841 to 28.911°.                           |
| Limiting indices                | -15<=h<=12, -12<=k<=11, -25<=l<=27          |
| Reflections collected / unique  | 23364 / 4887 [R(int) = 0.1958]              |
| Completeness to theta = 25.242  | 98.3 %                                      |
| Max. and min. transmission      | 1.00000 and 0.77081                         |
| Refinement method               | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters  | 4887 / 0 / 259                              |
| Goodness-of-fit on F^2          | 1.061                                       |
| Final R indices [I>2sigma(I)]   | R1 = 0.0978, wR2 = 0.2886                   |
| R indices (all data)            | R1 = 0.1472, wR2 = 0.3254                   |
| Extinction coefficient          | n/a                                         |
| Largest diff. peak and hole     | 0.483 and -0.269 e.Å <sup>-3</sup>          |

Table S3: Crystal data and structure refinement for  $4BF_{2}$ 

| Identification code | 4BF <sub>2</sub>          |
|---------------------|---------------------------|
| Empirical formula   | $C_{23} H_{27} B F_2 N_2$ |
| Formula weight      | 380.28                    |
| Temperature         | 106(2) K                  |
| Wavelength          | 0.71073 A                 |

| Crystal system, space group     | Triclinic, P1                               |
|---------------------------------|---------------------------------------------|
| Unit cell dimensions            | a = 9.0546(12) Å □ = 93.097(4)°.            |
|                                 | b = 13.3307(17) Å □ = 99.783(4)°.           |
|                                 | c = 17.309(2) Å □ = 95.911(4)°.             |
| Volume                          | 2042.5(5) Å <sup>3</sup>                    |
| Z, Calculated density           | 34, 1.571 Mg/m <sup>3</sup>                 |
| Absorption coefficient          | 0.150 mm <sup>-1</sup>                      |
| F(000)                          | 952                                         |
| Crystal size                    | 0.397 x 0.216 x 0.170 mm                    |
| Theta range for data collection | 2.297 to 33.670°.                           |
| Limiting indices                | -14<=h<=14, -20<=k<=20, -26<=l<=26          |
| Reflections collected / unique  | 118320 / 27416 [R(int) = 0.0405]            |
| Completeness to theta = 25.242  | 99.3 %                                      |
| Refinement method               | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters  | 27416 / 3 / 1009                            |
| Goodness-of-fit on F^2          | 1.636                                       |
| Final R indices [I>2sigma(I)]   | R1 = 0.1462, wR2 = 0.4158                   |
| R indices (all data)            | R1 = 0.1818, wR2 = 0.4716                   |
| Absolute structure parameter    | 0.37(17)                                    |
| Extinction coefficient          | n/a                                         |
| Largest diff. peak and hole     | 2.208 and -0.740 e. Å <sup>-3</sup>         |

## Table S4. Crystal data and structure refinement for 5BF2.

| Identification code  | 5BF2                       |                |
|----------------------|----------------------------|----------------|
| Empirical formula    | C23 H27 B F2 N2            |                |
| Formula weight       | 56.84                      |                |
| Temperature          | 293(2) K                   |                |
| Wavelength           | 0.71073 Å                  |                |
| Crystal system       | Monoclinic                 |                |
| Space group          | P 21/c                     |                |
| Unit cell dimensions | a = 12.9281(5) Å           | a= 90°.        |
|                      | b = 12.2645(4) Å           | b= 95.120(4)°. |
|                      | c = 13.2506(4) Å           | g = 90°.       |
| Volume               | 2092.59(12) Å <sup>3</sup> |                |
| Z                    | 30                         |                |
| Density (calculated) | 1.353 Mg/m <sup>3</sup>    |                |

| 0.129 mm-1                                  |
|---------------------------------------------|
| 840                                         |
| ? x ? x ? mm3                               |
| 2.842 to 30.456°.                           |
| -18<=h<=18, -16<=k<=17, -18<=l<=15          |
| 19461                                       |
| 5648 [R(int) = 0.0301]                      |
| 99.6 %                                      |
| Full-matrix least-squares on F <sup>2</sup> |
| 5648 / 0 / 253                              |
| 0.965                                       |
| R1 = 0.0636, wR2 = 0.2325                   |
| R1 = 0.0957, wR2 = 0.2641                   |
| n/a                                         |
| 0.474 and -0.295 e.Å <sup>-3</sup>          |
|                                             |

 Table S5.
 Crystal data and structure refinement for 4-Li.2THF.

| Identification code             | 4-Li.2THF                          |
|---------------------------------|------------------------------------|
| Empirical formula               | CHLINO                             |
| Formula weight                  | 49.97                              |
| Temperature                     | 108(2) K                           |
| Wavelength                      | 0.71073 A                          |
| Crystal system, space group     | Orthorhombic, P b c a              |
| Unit cell dimensions            | a = 15.8107(8) A alpha = 90 deg.   |
|                                 | b = 18.7330(8) A beta = 90 deg.    |
|                                 | c = 19.3851(9) A   gamma = 90 deg. |
| Volume                          | 5741.5(5) A^3                      |
| Z, Calculated density           | 87, 1.257 Mg/m^3                   |
| Absorption coefficient          | 0.101 mm^-1                        |
| F(000)                          | 2175                               |
| Crystal size                    | 0.347 x 0.307 x 0.299 mm           |
| Theta range for data collection | 2.415 to 31.453 deg.               |
| Limiting indices                | -22<=h<=22, -25<=k<=27, -19<=l<=28 |
| Reflections collected / unique  | 51987 / 9292 [R(int) = 0.0490]     |
| Completeness to theta = 25.24   | 2 99.6 %                           |
| Refinement method               | Full-matrix least-squares on F^2   |

| Data / restraints / parameters | 9292 / 0 / 331            |
|--------------------------------|---------------------------|
| Goodness-of-fit on F^2         | 1.038                     |
| Final R indices [I>2sigma(I)]  | R1 = 0.0937, wR2 = 0.2569 |
| R indices (all data)           | R1 = 0.1143, wR2 = 0.2765 |
| Extinction coefficient         | n/a                       |
| Largest diff. peak and hole    | 1.601 and -1.157 e.A^-3   |



Figure S57: Solid-state structure diagram for compounds 2BF<sub>2</sub> (left) and 6BF<sub>2</sub> (right).

4-Li.2THF:



4-BF<sub>2</sub>:



5-BF<sub>2</sub>:



Fig. S58: Two-and 3- dimensional layer structures in the crystals of 4-Li.2THF (top), 4-BF<sub>2</sub> and 5BF<sub>2</sub> (bottom) with a C–H··· $\pi$  interactions (black line) in the layer structures.



Fig. S59: Two-dimensional layer structure in the crystal of  $3BF_2$  with a C–H···F Hydrogen bonding interactions (black line) in the layer structures.

| Compounds | Solvent                         | $\lambda_{abs}^{a} / nm (\epsilon \times 10^{3} / M^{-1})$                                     | λ <sub>ems</sub> <sup>b</sup> (nm) | φ <sub>F</sub> °<br>(%) | T <sup>d</sup><br>(ns) |
|-----------|---------------------------------|------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|------------------------|
|           |                                 |                                                                                                |                                    | (/0)                    | (                      |
| 1BF2      | Toluene                         | -                                                                                              | 297                                | <0.1                    |                        |
|           | THF                             | 263(6.4)                                                                                       | 335, 349                           | <0.1                    |                        |
|           | CH <sub>2</sub> Cl <sub>2</sub> | 262(3.6)                                                                                       | 333, 353, 367                      | <0.1                    | 0.1                    |
|           | CH₃CN                           | 265(2.1)                                                                                       | 365, 385                           | <0.1                    |                        |
| 2BF2      | Toluene                         | 286(0.7), 321(0.1)                                                                             | 354, 370                           | 1.64                    |                        |
|           | THF                             | 278(3.6), 322(0.3)                                                                             | 334, 352                           | 0.98                    |                        |
|           | CH <sub>2</sub> Cl <sub>2</sub> | 279(4.8), 321(0.7)                                                                             | 356, 374, 414                      | 1.07                    | 0.6                    |
|           | CH₃CN                           | 279(3.5), 321(0.7)                                                                             | 370, 420                           | 0.64                    |                        |
| 3BF2      | Toluene                         | 329(3.2), 346(5.3),<br>364(7.0), 384(5.9)                                                      | 448, 472                           | 18.9                    |                        |
|           | THF                             | 329(2.7), 345(4.3), 362(5.7), 382(4.7)                                                         | 455, 477                           | 18.0                    |                        |
|           | CH <sub>2</sub> Cl <sub>2</sub> | 328(2.5), 346(3.9),<br>363(5.0), 384(4.2)                                                      | 455, 485                           | 48.1                    | 11.8                   |
|           | CH₃CN                           | $\begin{array}{c} 328(2.6), 304(4.2) \\ 328(2.6), 344(4.0), \\ 360(5.0), 381(4.1) \end{array}$ | 456, 504                           | 39.4                    |                        |
| 4-BF2     | Toluene                         | 334(2.3), 351(4.1)<br>334(2.3), 351(4.5),                                                      | 404, 418, 440, 466                 | 8.7                     |                        |
|           | THF                             | 306(6.4), 369(5.5)<br>334(3.2), 350(6.0),                                                      | 402, 418, 442, 470                 | 10.9                    |                        |
|           | CH <sub>2</sub> Cl <sub>2</sub> | 368(8.7), 388(7.5)<br>335(3.0), 350(5.5),                                                      | 420, 440, 470                      | 17.5                    | 3.5                    |
|           | CH₃CN                           | 368(7.7), 389(6.5)<br>332(2.4), 349(4.4),<br>267(6.4), 287(5.0)                                | 417, 440, 469                      | 12.2                    |                        |
| 5BF2      | Toluene                         | 291(8.0), 303(8.1)                                                                             | 360, 372                           | <0.1                    |                        |
|           | THF                             | 290(19.1), 302(8.3)                                                                            | 332, 350                           | <0.1                    |                        |
|           | CH <sub>2</sub> Cl <sub>2</sub> | 291(9.3), 302(8.9)                                                                             | 400, 422                           | <0.1                    | 0.6                    |
|           | CH₃CN                           | 290(9.4), 301(9.3)                                                                             | 370, 388                           | <0.1                    |                        |
| 6BF2      | Toluene                         | 330(11.0), 346(14.6)                                                                           | 380, 430, 468                      | 4.9                     |                        |
|           | THF                             | 265(13.9),277(17.0),<br>329(14.7), 345(19.8)                                                   | 404, 446, 470                      | 12.0                    |                        |
|           | CH <sub>2</sub> Cl <sub>2</sub> | 267(12.4),277(15.7),<br>329(12.0), 345(16.4)                                                   | 450, 472                           | 22.7                    | 2.7                    |
|           | CH₃CN                           | 268(8.0), 276(10.8),<br>327(8.0), 343(11.3)                                                    | 446, 470                           | 8.1                     |                        |

Table S6: Summary of photophysical properties of 1BF2-6BF2 in different solvents

<sup>a</sup>Absorption maximum (concentration = 10<sup>-4</sup> M), <sup>b</sup>Excited at  $\lambda_{max}$ , <sup>c</sup>Absolute fluorescence quantum yield using integrating sphere. <sup>d</sup>Fluorescence life-time.

| Electroc         | hemical                                                    | E                     | Experimenta             | al                      |            | DFT        |                           |
|------------------|------------------------------------------------------------|-----------------------|-------------------------|-------------------------|------------|------------|---------------------------|
| Compounds        | ( <i>E</i> <sup>1/2</sup> <sub>red</sub> ), V <sup>a</sup> | HOMO-<br>LUMO<br>gap⁵ | LUMO <sup>c</sup><br>eV | HOMO <sup>d</sup><br>eV | HOMO<br>eV | LUMO<br>eV | HOMO-<br>LUMO<br>gap (eV) |
| 1BF <sub>2</sub> | -2.13                                                      | 4.46                  | -2.46                   | -6.92                   | -6.133     | -1.08      | 5.05                      |
| 2BF <sub>2</sub> | -2.02                                                      | 3.91                  | -2.61                   | -6.52                   | -6.104     | -1.629     | 4.47                      |
| 3BF <sub>2</sub> | -2.58                                                      | 3.12                  | -2.01                   | -5.13                   | -5.674     | -2.158     | 3.51                      |
| 4BF <sub>2</sub> | -2.29                                                      | 3.12                  | -2.37                   | -5.49                   | -5.649     | -2.146     | 3.50                      |
| 5BF <sub>2</sub> | -2.17                                                      | 3.91                  | -2.56                   | -6.47                   | -6.087     | -1.515     | 4.44                      |
| 6BF <sub>2</sub> | -2.80                                                      | 3.47                  | -1.88                   | -5.35                   | -5.731     | -1.991     | 3.74                      |

Table S7: Reduction potentials and HOMO-LUMO gap derived from experiments and DFT studies.

<sup>a</sup>Reduction potential values ( $E^{1/2}_{red}$ ) V of compounds **1BF<sub>2</sub>-6BF<sub>2</sub>** (vs. Ferrocene/Ferrocenium) with 0.1 M Bu<sub>4</sub>NPF<sub>6</sub> in THF as the supporting electrolyte (scan rate 100 mV/s). <sup>b</sup>Absorption onset of the longest wavelength of UV band. <sup>c</sup>Calculated from E<sub>pc</sub> of the reduction wave with reference to Fc/Fc<sup>+</sup>. <sup>d</sup>Calculated from HOMO-LUMO gap and LUMO.

## 4. Computational studies

**Table S8:** Calculated electronic transitions for compound  $1BF_2-6BF_2$  from TD-DFT(B3LYP) calculations

| Compound         | Transition MO contributions |               | Energy gap | Oscillator |
|------------------|-----------------------------|---------------|------------|------------|
|                  |                             |               | eV (nm)    | strength/f |
| 1BF <sub>2</sub> | $S_0 \rightarrow S_1$       | HOMO→LUMO     | 4.38 (282) | 0.0413     |
|                  |                             | HOMO→LUMO+2   |            |            |
|                  | $S_0 \rightarrow S_2$       | HOMO→LUMO+1   | 4.79 (258) | 0.0022     |
|                  | $S_0 \rightarrow S_3$       | HOMO-2→LUMO   | 5.28 (234) | 0.0012     |
|                  |                             | HOMO-1→LUMO+1 |            |            |
| 2BF <sub>2</sub> | $S_0 \rightarrow S_1$       | HOMO→LUMO     | 3.85 (321) | 0.0122     |
|                  | $S_0 \rightarrow S_2$       | HOMO-2→LUMO   | 4.27 (290) | 0.0323     |
|                  |                             | HOMO-2→LUMO+1 |            |            |

|                  |                       | HOMO-1→LUMO   |            |        |
|------------------|-----------------------|---------------|------------|--------|
|                  |                       | HOMO-1→LUMO+1 |            |        |
|                  |                       |               |            |        |
|                  | $S_0 \rightarrow S_3$ | HOMO-2→LUMO   | 4.39 (281) | 0.0113 |
|                  |                       | HOMO-1→LUMO   |            |        |
|                  |                       | HOMO-1→LUMO+1 |            |        |
|                  |                       | HOMO→LUMO+1   |            |        |
| 3BF <sub>2</sub> | $S_0 \rightarrow S_1$ | HOMO-2→LUMO+1 | 3.18 (389) | 0.0466 |
|                  |                       | HOMO→LUMO     |            |        |
|                  | $S_0 \rightarrow S_2$ | HOMO-1→LUMO   | 3.40 (363) | 0.0060 |
|                  | $S_0 \rightarrow S_3$ | HOMO-2→LUMO   | 3.79 (326) | 0.0004 |
|                  |                       | HOMO→LUMO+1   |            |        |
| 4BF <sub>2</sub> | $S_0 \rightarrow S_1$ | HOMO-2→LUMO+1 | 3.17 (390) | 0.0942 |
|                  |                       | HOMO→LUMO     |            |        |
|                  | $S_0 \rightarrow S_2$ | HOMO-1→LUMO   | 3.21 (386) | 0.0013 |
|                  | $S_0 \rightarrow S_3$ | HOMO-2→LUMO   | 3.87 (320) | 0.0035 |
|                  |                       | HOMO→LUMO+1   |            |        |
| 5BF <sub>2</sub> | $S_0 \rightarrow S_1$ | HOMO-1→LUMO   | 3.79 (326) | 0.0100 |
|                  |                       | HOMO→LUMO     |            |        |
|                  | $S_0 \rightarrow S_2$ | HOMO-2→LUMO   | 3.95 (313) | 0.0003 |
|                  |                       | HOMO-1→LUMO+1 |            |        |
|                  |                       | HOMO→LUMO+1   |            |        |
|                  | $S_0 \rightarrow S_3$ | HOMO-2→LUMO+1 | 4.15 (298) | 0.1001 |
|                  |                       | HOMO-1→LUMO   |            |        |

| HOMO→LUMO     |                                                                                                                  |                                                                                                                                                                     |
|---------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HOMO-1→LUMO   | 3.49 (355)                                                                                                       | 0.0126                                                                                                                                                              |
| HOMO→LUMO     |                                                                                                                  |                                                                                                                                                                     |
| HOMO-2→LUMO+1 | 3.58 (345)                                                                                                       | 0.3303                                                                                                                                                              |
| HOMO-1→LUMO   |                                                                                                                  |                                                                                                                                                                     |
| HOMO→LUMO     |                                                                                                                  |                                                                                                                                                                     |
| HOMO-2→LUMO   | 3.74 (331)                                                                                                       | 0.0048                                                                                                                                                              |
| HOMO→LUMO+1   |                                                                                                                  |                                                                                                                                                                     |
|               | HOMO→LUMO<br>HOMO-1→LUMO<br>HOMO→LUMO<br>HOMO-2→LUMO+1<br>HOMO-1→LUMO<br>HOMO→LUMO<br>HOMO-2→LUMO<br>HOMO→LUMO+1 | HOMO $\rightarrow$ LUMO3.49 (355)HOMO-1 $\rightarrow$ LUMO3.58 (355)HOMO $\rightarrow$ LUMO3.58 (345)HOMO-1 $\rightarrow$ LUMO4000000000000000000000000000000000000 |

Table S9: Computed orbitals for compounds1-6BF2

| Compound | 1BF <sub>2</sub> | 2BF <sub>2</sub> | 3BF <sub>2</sub> |
|----------|------------------|------------------|------------------|
| LUMO+2   | -0.031 eV(78)    |                  |                  |
|          | 0.001 01(10)     | -0.134 eV(91)    | -0.380 eV(104)   |
| LUMO+1   | -0.641 eV(77)    |                  |                  |

|        |               | -0.953 eV(90) | -0.992 eV(103) |
|--------|---------------|---------------|----------------|
| LUMO   | -1.080 eV(76) | -1.629 eV(89) | -2.158 eV(102) |
| HOMO   | -6.133 eV(75) | -6.104 eV(88) | -5.674 eV(101) |
| HOMO-1 | -7.218 eV(74) | -6.331 eV(87) | -6.115 eV(100) |

| HOI | MO-2     |                              |                  |                  |
|-----|----------|------------------------------|------------------|------------------|
|     | Compound | <b>4BF₂</b><br>-7.384 eV(73) | 5BF <sub>2</sub> | 6BF <sub>2</sub> |
|     | LUMO+2   | -0.437 eV(104)               | -0.489 eV(104)   | - 0.549 eV(110)  |
|     | LUMO+1   | -0.724 eV(103)               | -1.237 eV(103)   | -1.079 eV(109)   |





## Compound 1BF<sub>2</sub>

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1902.8143790.305490-1.106761 2700.8466621.0196070.249890 3 6 0 0.012392 -0.000005 -0.000009 4 6 0 -1.473061 -0.000113 -0.000006 5600.7239002.471013-0.010685 6 6 0 -2.178504 0.192451 1.196090 7 1 0 -1.631389 0.345757 2.120713 8 6 0 -0.419234 3.099995 0.803656 9 1 0 -0.404087 4.187221 0.675233 10 1 0 -1.399352 2.740441 0.483094 11 1 0 -0.300889 2.882465 1.869699 12 6 0 2.062899 3.088614 0.431345 13 1 0 2.044525 4.172585 0.283687 14 1 0 2.250577 2.885277 1.489825 15 1 0 2.889756 2.672752 -0.149309 16 6 0 -3.572906 0.183754 1.194652

17 1 0 -4.112775 0.324740 2.126043 18 6 0 -4.271668 -0.000303 0.000004 19 1 0 -5.357511 -0.000378 0.000007 20 6 0 0.509481 2.714564 -1.518843 21 1 0 0.508264 3.787558 -1.738635 22 1 0 1.309039 2.241097 -2.094308 23 1 0 -0.449997 2.302990 -1.849110 24 5 0 2.061189 0.000161 -0.000006 25 9 0 2.814423 -0.305055 1.106750 26 7 0 0.846829 -1.019487 -0.249894 27 6 0 0.724322 -2.470915 0.010690 28 6 0 -2.178486 -0.192769 -1.196098 29 1 0 -1.631356 -0.345997 -2.120726 30 6 0 -0.418718 -3.100115 -0.803615 31 1 0 -0.403379 -4.187335 -0.675163 32 1 0 -1.398893 -2.740726 -0.483046 33 1 0 -0.300429 -2.882594 -1.869667 34 6 0 2.063420 -3.088274 -0.431374 35 1 0 2.045245 -4.172249 -0.283712 36 1 0 2.251034 -2.884906 -1.489858 37 1 0 2.890216 -2.672262 0.149259 38 6 0 -3.572888 -0.184264 -1.194650 39 1 0 -4.112745 -0.325323 -2.126038 40 6 0 0.509991 -2.714500 1.518856 41 1 0 0.508970 -3.787494 1.738652 42 1 0 1.309482 -2.240889 2.094296 43 1 0 -0.449550 -2.303094 1.849149

Compound 2BF<sub>2</sub>

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

190-3.497909-0.175308-1.412580 290-3.7957350.3782850.795675 370-1.6286471.050919-0.243122 4 6 0 -0.875032 -0.006008 0.093169 5 6 0 0.592249 -0.064992 0.312458 6 6 0 2.869544 0.079978 -0.547783 7 6 0 1.464708 0.146337 -0.737875 8 1 0 1.075484 0.363359 -1.728323 970-1.772541-0.9984220.189980 10 6 0 3.380538 -0.194111 0.762718 11 6 0 3.784945 0.281815 -1.615853 12 1 0 3.394243 0.489086 -2.608388 13 6 0 2.459946 -0.398178 1.825920 14 1 0 2.845558 -0.602691 2.820963 15 6 0 -1.490717 2.490495 0.072734 16 6 0 5.647394 -0.053582 -0.102985 17 1 0 6.720738 -0.102291 0.054071 18 6 0 -1.661648 -2.446589 -0.094205

19 6 0 4.786714 -0.253803 0.952368 20 1 0 5.172637 -0.461452 1.946757 21 6 0 1.103502 -0.345205 1.610879 22 1 0 0.408647 -0.511514 2.427252 23 6 0 5.142177 0.216627 -1.398729 24 1 0 5.832945 0.372592 -2.221796 25 5 0 -2.901363 0.072252 -0.200687 26 6 0 -0.266020 3.108082 -0.624296 27 1 0 -0.302491 2.924101 -1.702588 28 1 0 -0.260828 4.191284 -0.464313 29 1 0 0.673331 2.709011 -0.235932 30 6 0 -2.769562 3.159243 -0.463037 31 1 0 -2.868740 2.993708 -1.539946 32 1 0 -3.653560 2.747836 0.029442 33 1 0 -2.735849 4.237224 -0.278885 34 6 0 -1.209888 -2.661686 -1.553499 35 1 0 -0.196231 -2.279014 -1.711320 36 1 0 -1.208259 -3.728428 -1.801702 37 1 0 -1.888547 -2.145459 -2.237395 38 6 0 -1.400901 2.687493 1.599652 39 1 0 -1.390161 3.753803 1.849562 40 1 0 -2.261058 2.224159 2.090338 41 1 0 -0.485579 2.240146 2.000953 42 6 0 -0.692918 -3.141243 0.877523 43 1 0 -0.986577 -2.955525 1.915342 44 1 0 -0.715182 -4.222452 0.706570 45 1 0 0.337335 -2.804552 0.743179 46 6 0 -3.076451 -3.020548 0.101389 47 1 0 -3.428490 -2.839394 1.121288 48 1 0 -3.780391 -2.554036 -0.591780 49 1 0 -3.072518 -4.099788 -0.079051

Compound 3BF<sub>2</sub>

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

1 9 0 -4.792862 0.416747 0.546517 2 9 0 -4.302900 -0.057422 -1.646138 3 7 0 -2.749526 -0.982294 0.073172 4 7 0 -2.526443 1.079317 -0.259967 5 6 0 -0.389594 -0.109468 0.452870 6 6 0 2.346093 -0.336750 1.166159 7 6 0 4.323366 0.187795 -0.805754 8 6 0 -1.827767 -0.007336 0.101118

9 6 0 1 965585 0 042975 -0 174405 10 6 0 0.577443 0.154111 -0.488612 11 1 0 0.289689 0.448449 -1.493542 12 6 0 4.704495 -0.193122 0.535412 13 6 0 2.963937 0.295138 -1.123751 14 1 0 2.676240 0.581232 -2.132613 15 6 0 3.704656 -0.443855 1.484204 16 1 0 3.991560 -0.729947 2.493325 17 6 0 -2.639279 -2.418445 -0.269155 18 6 0 5.352621 0.441984 -1.765125 19 1 0 5.063578 0.728485 -2.772715 20 6 0 -0.008585 -0.492386 1.780234 21 1 0 -0.784887 -0.696148 2.509974 22 6 0 6.674208 0.327188 -1.425040 23 1 0 7.446143 0.522816 -2.163208 24 6 0 1.312480 -0.591631 2.121000 25 1 0 1.595912 -0.872446 3.131618 26 6 0 6.095493 -0.301184 0.847007 27 1 0 6.380473 -0.588034 1.855640 28 6 0 -2.398838 2.499148 0.141404 29 6 0 7.050273 -0.049391 -0.102170 30 1 0 8.103410 -0.135208 0.148146 31 5 0 -3.815975 0.128681 -0.375359 32 6 0 -2.048813 -2.575339 -1.685286 33 1 0 -2.644798 -2.009313 -2.405845 34 1 0 -2.045120 -3.628680 -1.985227 35 1 0 -1.016722 -2.211806 -1.721691 36 6 0 -4.077687 -2.966250 -0.241737 37 1 0 -4.526012 -2.823672 0.746070 38 1 0 -4.077049 -4.035954 -0.471940 39 1 0 -4.699570 -2.451678 -0.977927 40 6 0 -1.787072 -3.181942 0.758323 41 1 0 -0.741713 -2.865853 0.744189 42 1 0 -1.814449 -4.253099 0.533128 43 1 0 -2.179962 -3.037602 1.769559 44 6 0 -1.096243 3.124557 -0.386589 45 1 0 -0.210894 2.689042 0.081074 46 1 0 -1.093511 4.198489 -0.173515 47 1 0 -1.017368 2.993490 -1.470347 48 6 0 -2.472504 2.617387 1.677315 49 1 0 -3.388776 2.149186 2.046295 50 1 0 -2.469760 3.669202 1.982715 51 1 0 -1.614407 2.128676 2.150754 52 6 0 -3.600320 3.221491 -0.494707 53 1 0 -3.584475 3.109840 -1.582991 54 1 0 -3.567961 4.288472 -0.254594

### 55 1 0 -4.539740 2.807509 -0.121676

### Compound 4BF<sub>2</sub>

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

1 9 0 3.566865 1.065509 0.416203 2 9 0 3.565020 -1.071792 -0.419285 3 6 0 -1.425362 -1.225494 -0.120448 4 6 0 0.758449 -0.001524 0.000668 560-3.5477120.0016720.000380 6 1 0 -4.635201 0.002650 0.000864 7 6 0 -2.869616 -1.214480 -0.128094 8701.596966-0.3590990.984825 960-3.5688592.4557790.264061 10 1 0 -4.655328 2.434166 0.269495 11 6 0 -3.572550 -2.452410 -0.263734 12 1 0 -4.658999 -2.429308 -0.268862 13 6 0 1.490035 0.342676 -2.457633 14 6 0 -0.730871 -0.000414 0.000211 15 6 0 -1.423490 1.225964 0.120738 16 6 0 -0.756913 2.487573 0.243592 17 1 0 0.327023 2.514814 0.222277 18 6 0 -2.898294 -3.637013 -0.384146 19 1 0 -3.443425 -4.570334 -0.487312 20 6 0 -1.474199 -3.651337 -0.372109 21 1 0 -0.949225 -4.597444 -0.463949 22 6 0 -1.468849 3.651794 0.371814 23 1 0 -0.942404 4.597165 0.463091 24 7 0 1.597239 0.355193 -0.984250 25 6 0 -0.760611 -2.488278 -0.243604 26 1 0 0.323368 -2.517074 -0.222681 27 6 0 -2.867618 1.216942 0.128510 28 6 0 -2.892856 3.639538 0.384072 29 1 0 -3.436615 4.573664 0.487163 30 5 0 2.810656 -0.002413 -0.001724 31 6 0 1.490495 -0.342536 2.458298 32 6 0 1.512470 -1.113374 -2.970265 33 1 0 1.540337 -1.131064 -4.065146 34 1 0 2.393580 -1.634771 -2.588756 35 1 0 0.619767 -1.657477 -2.646774 36 6 0 2.737458 1.087754 -2.968325 37 1 0 2.732081 1.126832 -4.061857 38 1 0 2.762241 2.111403 -2.583363 39 1 0 3.650576 0.579399 -2.647094

```
40 6 0 0.225444 1.061998 -2.952794
41 1 0 0.250828 1.124793 -4.045307
42 1 0 -0.685967 0.529304 -2.672016
43 1 0 0.166896 2.078805 -2.554616
44 6 0 0.223963 -1.057126 2.955357
45 1 0 -0.686232 -0.525065 2.669354
46 1 0 0.165135 -2.076264 2.563402
47 1 0 0.246904 -1.113111 4.048374
48 6 0 2.735766 -1.090118 2.970474
49 1 0 2.740799 -1.108395 4.064560
50 1 0 2.746931 -2.121180 2.605004
51 1 0 3.650444 -0.596697 2.631059
52 6 0 1.517688 1.114625 2.967302
53 1 0 0.622062 1.658076 2.650852
54 1 0 1.555523 1.134813 4.061812
55 1 0 2.395416 1.634984 2.576821
```

Compound 5BF<sub>2</sub>

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

190-3.8599260.152592-1.444560 2 9 0 -3.962646 0.055343 0.846475 3 6 0 -1.109247 0.065246 -0.176169 470-1.956428-0.971864-0.287306 5 6 0 -1.830359 2.449848 0.502486 670-1.932724 1.119985 -0.134510 7 5 0 -3.157957 0.089745 -0.265932 8 6 0 -1.818713 -2.270640 -0.982728 960-1.8191282.2933782.037301 10 1 0 -1.844224 3.275446 2.521677 11 1 0 -2.690518 1.720353 2.363893 12 1 0 -0.915406 1.775012 2.372539 13 6 0 -3.095651 3.213309 0.069727 14 1 0 -3.091662 4.220750 0.496750 15 1 0 -3.143960 3.296775 -1.019911 16 1 0 -3.994928 2.695855 0.413804 17 6 0 -0.584447 3.218407 0.032916 18 1 0 -0.610495 4.234151 0.440529 19 1 0 0.341515 2.747583 0.369291 20 1 0 -0.559116 3.291364 -1.058728 21 6 0 -0.661388 -3.103540 -0.408451 22 1 0 0.309631 -2.637189 -0.590321 23 1 0 -0.777784 -3.246473 0.669489 24 1 0 -0.651113 -4.089537 -0.884232 25 6 0 -3.148179 -3.011013 -0.750869 26 1 0 -3.120082 -3.994275 -1.230114 27 1 0 -3.331740 -3.150482 0.318572 28 1 0 -3.983073 -2.444743 -1.171510 29 6 0 -1.613699 -2.034819 -2.493911 30 1 0 -0.656304 -1.539801 -2.685999 31 1 0 -1.612980 -2.988094 -3.033260 32 1 0 -2.416792 -1.408705 -2.890093 33 6 0 0.378251 0.048270 -0.134088 34 6 0 1.069363 0.480085 -1.229743 35 6 0 1.082097 -0.405796 1.047212 36 6 0 2.499864 0.486146 -1.267893 37 1 0 0.528228 0.831743 -2.103445 38 6 0 2.510358 -0.396934 1.053296 39 6 0 0.384391 -0.842425 2.199606 40 6 0 3.184245 0.926206 -2.425141 41 6 0 3.236691 0.049327 -0.129154 42 6 0 3.170621 -0.828389 2.227895 43 1 0 -0.700013 -0.860040 2.183969 44 6 0 1.062841 -1.256112 3.328965 45 6 0 4.563305 0.938666 -2.470741 46 1 0 2.601773 1.255391 -3.281415 47 6 0 4.648687 0.073446 -0.208862 48 6 0 2.468449 -1.247883 3.341660 49 1 0 4.253622 -0.831437 2.265507 50 1 0 0.510593 -1.587288 4.202967 51 6 0 5.297805 0.506970 -1.350436 52 1 0 5.079670 1.278038 -3.363348 53 1 0 5.245806 -0.253364 0.634437 54 1 0 3.006171 -1.571761 4.227623 55 1 0 6.383244 0.513220 -1.380808

### Compound 6BF<sub>2</sub>

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

1 9 0 -4.663003 0.364764 0.263338 2 9 0 -3.841836 0.021364 -1.852365 3 6 0 -1.652995 -0.036259 0.236286 4 7 0 -2.304763 1.072866 -0.153123 5 6 0 -2.418717 -2.433560 -0.326078 6 7 0 -2.554369 -1.002732 0.019188 7 5 0 -3.554484 0.135188 -0.513778 8 6 0 -2.247119 2.463398 0.350433 9 6 0 -1.749081 -2.578089 -1.708308

10 1 0 -1.739630 -3.627999 -2.020296 11 1 0 -2.297606 -1.997184 -2.454070 12 1 0 -0.713676 -2.224506 -1.682987 13 6 0 -3.856255 -2.981788 -0.387829 14 1 0 -3.842341 -4.049349 -0.627170 15 1 0 -4.363948 -2.846361 0.571678 16 1 0 -4.433788 -2.462378 -1.156849 17 6 0 -1.623321 -3.204644 0.740090 18 1 0 -1.640858 -4.273653 0.504586 19 1 0 -0.578692 -2.889340 0.782636 20 1 0 -2.067111 -3.067941 1.731076 21 6 0 -0.845973 3.074454 0.187034 22 1 0 -0.105808 2.576931 0.817619 23 1 0 -0.510016 3.014587 -0.852031 24 1 0 -0.873940 4.130054 0.476080 25 6 0 -3.254900 3.256382 -0.500666 26 1 0 -3.269884 4.304797 -0.187761 27 1 0 -2.984309 3.213591 -1.559880 28 1 0 -4.261326 2.846069 -0.386472 29 6 0 -2.676683 2.498201 1.832216 30 1 0 -1.957186 1.961463 2.459348 31 1 0 -2.729426 3.531489 2.191730 32 1 0 -3.658900 2.034789 1.952666 33 6 0 -0.277457 -0.158296 0.786530 34 6 0 0.859494 0.011339 -0.038521 35 6 0 -0.123303 -0.452455 2.147508 36 6 0 2.157997 -0.123854 0.545380 37 6 0 0.767017 0.300559 -1.445721 38 6 0 1.138651 -0.568441 2.717392 39 1 0 -1.008534 -0.588379 2.760596 40 6 0 3.325071 0.030252 -0.263041 41 6 0 2.295471 -0.411156 1.938246 42 6 0 1.883207 0.442020 -2.212599 43 1 0 -0.215220 0.415958 -1.890758 44 1 0 1.235960 -0.787939 3.776714 45 6 0 3.200278 0.314092 -1.656169 46 6 0 4.623081 -0.099372 0.318864 47 6 0 3.613882 -0.533926 2.495878 48 1 0 1.789649 0.660114 -3.272980 49 6 0 4.361350 0.460243 -2.432003 50 6 0 5.755486 0.056057 -0.496482 51 6 0 4.724283 -0.385159 1.723251 52 1 0 3.705708 -0.751276 3.556442 53 6 0 5.623492 0.332279 -1.855966 54 1 0 4.264825 0.676186 -3.492446 55 1 0 6.742819 -0.042093 -0.053566

## 56 1 0 5.714506 -0.482146 2.160154 57 1 0 6.510900 0.448831 -2.470735

\_\_\_\_\_