Supporting Information:

Construction of Core-Shell CoSe₂/ZnIn₂S₄ Heterostructures for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution

Yuhan Xie^a, Boyu Dong^a, Xuemin Wang^a, Siyuan Wang^b, Jinxi Chen^a and Yongbing

Lou^{a*}

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing,

211189, P. R. China.

^b Nanjing Foreign Language School, Nanjing, 210008, China.

Materials

Cobalt chloride hexahydrate (CoCl₂·6H₂O, \geq 99%), chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O, \geq 99%), zinc chloride (ZnCl₂, \geq 98%), ethylenediamine (\geq 99%), triethanolamine (TEOA, \geq 99%), and anhydrous ethanol (\geq 98%) and ethylene glycol (\geq 99.5%) were purchased from Sinopharm Chemical Reagent Co. Lot. (China). Indium chloride tetrahydrate (InCl₃·4H₂O, \geq 99%) and selenium dioxide (SeO₂, \geq 99%) were obtained from Shanghai Macklin Biochemical Technology Co. Ltd. Thioacetamide (TAA, \geq 98%) was purchased from Aladdin Industrial Corporation. The above materials were used directly without further purification.

Characterizations

The composition of the synthesized catalysts was determined by using X-ray diffraction (XRD) with incident radiation Cu K α ($\lambda = 0.15406$ nm) in the range of 10° - 80° at a scan speed of 15°/min. UV-vis spectrometer (UV2700) was used to observe the diffuse reflectance spectra of monomers and compounds with BaSO₄ as a reference. The morphology of the samples was characterized by scanning electron microscope

(SEM, FEI Inspect F50). Transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) images were obtained by FEIG220 microscope under 200 kV acceleration voltage, and energy dispersive X-ray spectroscopy (EDX) was also measured. To determine the elemental composition and the surface valence states, X-ray photoelectron spectroscopy (XPS) data were obtained by using a Thermo Scientific K-Alpha with Al Kα radiation as the X-ray source. Photoluminescence (PL) spectra were measured by Fluoromax-Plus fluorescence spectrometers (Horiba) and time-resolved photoluminescence (TRPL) spectra were measured by FLS1000 fluorescence spectrometer (Edinburgh).

Photoelectrochemical measurements

The photoelectrochemical properties were tested on the CHI660E electrochemical workstation by a standard three-electrode system, including an Ag/AgCl (3 M KCl) electrode, a platinum plate electrode, and a working electrode. The electrolyte was 0.5 M Na₂SO₄ aqueous solution. The electrical impedance spectroscopy (EIS), transient photocurrent, and the Mott-Schottky plots of the materials were characterized. The working electrode was prepared as follows. A small spoon of sample and a drop of terpineol were added into a mortar. It was ground into a paste and evenly smeared to the square area in the center of the conductive surface of the ITO conductive glass (the coating size is 5×5 mm). Then it was dried at 60 °C for 6 h. In the transient photocurrent test, the light source was still a 300 W xenon lamp with a UV-CUT filter ($\lambda \ge 420$ nm).

Additional Data

Fig. S1 SEM image of (a) $CoSe_2/ZnIn_2S_4$ -20 core-shell heterostructure and (b) the corresponding EDS and elemental mapping images of (c) Co, (d) Se, (e) Zn, (f) In, and (g) S.

Fig. S2 EDS element analysis of $CoSe_2/ZnIn_2S_4$ -20.

Fig. S3 TEM image of (a) $CoSe_2@ZnIn_2S_4$ physical mixture heterostructure and (b) the corresponding EDS and elemental mapping images of (c) Co, (d) Se, (e) Zn, (f) In, and (g) S.

Fig. S4 the pictures of (a) $ZnIn_2S_4$ and (b) $CoSe_2/ZnIn_2S_4$ -20 sample.

Fig. S5 XRD patterns comparison of $CoSe_2/ZnIn_2S_4$ -20 before and after cycle.

Fig. S6 Mott-Schottky plots of (a) $ZnIn_2S_4$, (b) $CoSe_2$ and (c) $CoSe_2/ZnIn_2S_4$ -20.

Photocatalysts	Sacrificial agent	Light source	H ₂ evolution rate (μmol g ⁻¹ h ⁻¹)	Ref.
CoSe ₂ /ZnIn ₂ S ₄	TEOA (10 vol%)	$300 \text{ W Xe lamp} \\ (\lambda \ge 420 \text{ nm})$	2199 µmol g ⁻¹ h ⁻¹	this work
ZnIn ₂ S ₄ /ZnSe	0.25 M Na ₂ S and 0.35 M Na ₂ SO ₃	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	1296.9 μmol g ⁻¹ h ⁻¹	1
ZnIn ₂ S ₄ /MoSe ₂	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	2228 µmol g ⁻¹ h ⁻¹	2
NiSe ₂ /ZnIn ₂ S ₄	TEOA (10 vol%)	visible light $(\lambda \ge 420 \text{ nm})$	$1487 \ \mu mol \ g^{-1} \ h^{-1}$	3
MoSe ₂ /ZnIn ₂ S ₄	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	$1226 \ \mu mol \ g^{-1} \ h^{-1}$	4
Co ₃ O ₄ /ZnIn ₂ S ₄	TEOA	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	$3844.12 \ \mu mol \ g^{-1} \ h^{-1}$	5
ZnIn ₂ S ₄ @CoS ₂	TEOA	300 W Xe lamp (λ≥350 nm)	2768 μ mol g ⁻¹ h ⁻¹	6
Co ₉ S ₈ @ZnIn ₂ S ₄ /CdS	Acetonitrile, sodium sulfite	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	1419.14 μ mol g ⁻¹ h ⁻¹	7
$Sb_2S_3/ZnIn_2S_4$	TEOA	250 W Xe lamp $(\lambda \ge 420 \text{ nm})$	$1685.14 \ \mu mol \ g^{-1} \ h^{-1}$	8
ZnIn ₂ S ₄ / WS ₂	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	150 W Xe lamp	293.3 μ mol g ⁻¹ h ⁻¹	9
CoSe ₂ /g-C ₃ N ₄	0.15 M Na ₂ S and 0.35 M Na ₂ SO ₃	300 W Xe lamp	1386.8 μ mol g ⁻¹ h ⁻¹	10

Table S1 Comparison of photocatalytic H_2 evolution performance for different photocatalysts.

Table S2 Comparison of the fluorescence decay time (τ) and the average lifetime (τ_{ave}) of the ZnIn₂S₄ and CoSe₂/ZnIn₂S₄-20 samples.

Materials	$\tau_1(ns)$	B ₁ (%)	$\tau_2(ns)$	B ₂ (%)	$\tau_{ave}(ns)$
ZnIn ₂ S ₄	1.28	69.9	8.6	30.1	3.48
CoSe ₂ /ZnIn ₂ S ₄ -20	1.09	62.6	6.09	37.4	2.96

References

- 1. Y. Zhong, M. Li, X. Luan, F. Gao, H. Wu, J. Zi and Z. Lian, *Appl. Catal. B: Environ.*, 2023, **335**, 122859.
- 2. D. Zeng, L. Xiao, W. J. Ong, P. Wu, H. Zheng, Y. Chen and D. L. Peng, *ChemSusChem*, 2017, **10**, 4624-4631.
- 3. L. Lai, F. Xing, C. Cheng and C. Huang, Adv. Mater. Interfaces, 2021, 8,

2100052.

- T. Feng, K. Zhao, H. Li, W. Wang, B. Dong and L. Cao, *CrystEngComm*, 2021, 23, 2547-2555.
- 5. Y. Zhang, D. Chen, N. Li, Q. Xu, H. Li and J. Lu, *Appl. Surf. Sci.*, 2023, **610**, 155272.
- 6. X. Xi, Q. Dang, G. Wang, W. Chen and L. Tang, New J. Chem., 2021, 45, 20289-20295.
- Y. Zhang, Y. Wu, L. Wan, H. Ding, H. Li, X. Wang and W. Zhang, *Appl. Catal.* B: Environ., 2022, **311**, 121255.
- 8. Y. Xiao, H. Wang, Y. Jiang, W. Zhang, J. Zhang, X. Wu, Z. Liu and W. Deng, J. Colloid Interface Sci., 2022, 623, 109-123.
- 9. W. Pudkon, S. Kaowphong, S. Pattisson, P. J. Miedziak, H. Bahruji, T. E. Davies, D. J. Morgan and G. J. Hutchings, *Catal. Sci. Technol.*, 2019, **9**, 5698-5711.
- 10. J. Jia, T. Zhang, K. Li, J. Zhang, J. Wan and Y. Zhang, *Inter. J. Hydrogen Energy*, 2023, **48**, 3901-3915.