Dy-based single ion magnet in the SrLaGaO₄ matrix: the enhanced parameters in an expanded crystal lattice

Alexander V. Vasiliev,^a Timur Z. Sharifullin,^a Elena D. Demidova,^a Reinhard Kremer,^b Pavel E. Kazin^{*a}

^aDepartment of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia. E-mail: kazin@inorg.chem.msu.ru; Tel: +7 495 9393440

^bMax Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Supporting Information

X-ray powder diffraction data

Figure S1. Powder X-ray diffraction pattern of SrLa_{0.95}Dy_{0.05}GaO₄. Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are shown as strokes underneath.

Temperature (K)	293 K
Wavelength (Å)	1.54187
Space group	I4/mmm
<i>a</i> (Å)	3.8413(1)
<i>c</i> (Å)	12.6772(3)
$V(Å^3)$	187.06(1)
Ζ	2
2θ range (deg.)	10 - 108
$R_{ m wp}$	0.048
R _{all}	0.031
$\Delta F_{\text{max}}, \Delta F_{\text{min}} (e \text{ Å}^{-3})$	2.2, -2.1

Table S1. Crystal structure refinement data for SrLa_{0.95}Dy_{0.05}GaO₄.

Table S2. Atomic parameters and thermal displacement parameters (Å²) for SrLa_{0.95}Dy_{0.05}GaO₄.

Atom	Sr	La	Dy	Ga	01	02
Site	4e	4e	4e	2a	4c	4e
SOF	0.5	0.475	0.025	1	1	1
x	0	0	0	0	0	0
У	0	0	0	0	0	0.5
Z	0.35888(16)	0.35888(16)	0.35888(16)	0	0.1674(9)	0
Uiso	0.0055(18)	0.0055(18)	0.0055(18)	0.010(2)	0.014(5)	0.008(5)

Table S3. Selected interatomic distances (Å) in the crystal structure of SrLa_{0.95}Dy_{0.05}GaO₄.

Sr,La,Dy-O1	2.427(12)	
Sr,La,Dy-O1	2.7366(15)	4x
Sr,La,Dy -O2	2.6248(14)	4x
Ga-O1	2.122(12)	4x
Ga-O2	1.92067(7)	2x

ac susceptibility data

Fig. S2. Frequency dependence of ac susceptibility per mol of Dy for $SrLa_{0.95}Dy_{0.05}GaO_4$ at temperatures 2 – 22 K under a zero dc magnetic field. (a) – in-phase susceptibility χ' , (b) – out-of-phase susceptibility χ'' . Symbols – experimental points, lines – fitting. The color codes: from blue to orange – T = 2, 3, 5, 7, 10, 14, 20, 22 K.

Fig. S3. Frequency dependence of ac susceptibility per mol of Dy for $SrLa_{0.95}Dy_{0.05}GaO_4$ at temperatures 24 – 38 K under a zero-dc magnetic field. (a) – in-phase susceptibility χ' , (b) – out-of-phase susceptibility χ'' . Symbols – experimental points, lines – fitting. The color codes: from blue to orange – T = 24 - 38 K, step 2 K.

(b)

Fig. S4. Frequency dependence of ac susceptibility per mol of Dy for $SrLa_{0.95}Dy_{0.05}GaO_4$ at temperatures 2 – 22 K under a dc magnetic field of 4 kOe. (a) – in-phase susceptibility χ' , (b) – out-of-phase susceptibility χ'' . Symbols – experimental points, lines – fitting. The color codes: from blue to orange – T = 2, 3, 5, 7, 10, 14, 20, 22 K.

Fig. S5. Frequency dependence of ac susceptibility per mol of Dy for $SrLa_{0.95}Dy_{0.05}GaO_4$ at temperatures 24 – 38 K under a magnetic field of 4 kOe. (a) – in-phase susceptibility χ' , (b) – out-of-phase susceptibility χ'' . Symbols – experimental points, lines – fitting. The color codes: from blue to orange – T = 24 - 38 K, step 2 K.

Fig. S6. Cole-Cole plots of ac susceptibility per mol of Dy for $SrLa_{0.95}Dy_{0.05}GaO_4$ under a zero dc magnetic field: (a) at temperatures 2, 3, 5, 7, 10, 14, 20, 22 K (from blue to orange); (b) at temperatures 24 – 38 K with a step of 2 K (from blue to orange). Symbols – experimental points, lines – fitting.

Fig. S7. Cole-Cole plots of ac susceptibility per mol of Dy for $SrLa_{0.95}Dy_{0.05}GaO_4$ under a dc magnetic field of 4 kOe: (a) at temperatures 2, 3, 5, 7, 10, 14, 20, 22 K (from blue to orange); (b) at temperatures 24 – 38 K with a step of 2 K (from blue to orange). Symbols – experimental points, lines – fitting.

Electronic structure data

Parameter	Value (cm ⁻¹)
B ₂₀	454.533
B ₂₂	0
\mathbf{B}_{40}	77.045
B_{42}	0
B ₄₃	0
\mathbf{B}_{44}	-96.559
\mathbf{B}_{60}	11.506
B ₆₂	0
B ₆₃	0
B ₆₄	35.837
B ₆₆	0

Table S4. Crystal field parameters in Wybourne notation derived in the program CONCORD for Dy^{3+} using experimental atomic coordinates of the coordination polyhedron (from Table S2) and a partial charge on the oxygen atom of 0.95*e*.

Table S5. Modeling of the Dy^{3+} electronic structure with the PHI program using crystal field parameters listed in Table SX1. The Kramers doublet energies of the ground term $^{6}H_{15/2}$ are shown only.

Kramer's doublet	Energy (cm ⁻¹)	<i>M</i> _J (%)
E ₀	0	15/2 (99.92)
E ₁	70.14	13/2 (99.65)
E ₂	126.8	11/2 (99.14)
E ₃	170.1	9/2 (97.89)
E ₄	201.5	+7/2 (95.35), -1/2 (4.05)
E ₅	220.8	+5/2 (79.75), -3/2 (19.60)
E ₆	243.2	+3/2 (78.93), -5/2 (19.65)
E ₇	247.3	+1/2 (94.01), -7/2 (4.35)