## **Supporting Information**

## Electron-deficient Fe<sub>3</sub>O<sub>4</sub>@AC-NH<sub>2</sub>@Cu-MOF Nanoparticles for Enhanced Degradation of Electron-rich Benzene Derivatives via Synergistic Adsorption and Catalytic Oxidation

Qingpeng Cao<sup>a†</sup>, Mengjia Huang<sup>a†</sup>, Libin Qian<sup>a</sup>, Jin Wang<sup>a</sup>, Di Wang<sup>a\*</sup>,

Xubin Zheng<sup>a\*</sup>

<sup>a</sup> Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China

*+Authors have contributed equally to this work.* 

\*Corresponding Auther at: Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China (Xubin Zheng and Di Wang). E-mail address: <u>zhengxb@zhejianglab.com</u> (Xubin Zheng), <u>diwang@zhejianglab.com</u> (Di Wang).

## Characterizations

All reagents and solvents were purchased from commercial sources and were used without further purification. Elemental analyses were carried out on a Perkin– Elmer 2400 automatic analyzer. FT–IR spectra data (4000–400 cm<sup>-1</sup>) were collected by a Nicolet impact 410 FT–IR spectrometer. Scan electron microscope (SEM) images were recorded by Rili SU 8000HSD Series Hitachi New Generation Cold Field Emission SEM. The emission properties were recorded with Edinburgh FLS 920 fluorescence spectrometer equipped with a Peltier-cooled Hamamatsu R928 photomultiplier tube. An Edinburgh Xe900 450 W xenon arc lamp was used as an exciting light source. Thermal analysis was performed on a ZRY-2P thermogravimetric analysis from 30 to 700 °C with a heating rate of 10 °C·min<sup>-1</sup> under a flow of air. Powder X-ray diffraction (PXRD) patterns were recorded in the 2 $\theta$  range of 5 – 50° using Cu K $\alpha$  radiation with a Shimadzu XRD-6000 X-ray diffractometer. XPS experiments were carried out on a RBD upgraded PHI-5000C ESCA system (Perkin Elmer) with Mg K $\alpha$  radiation (hv = 1253.6 eV).

## Single-Crystal X-Ray Crystal Structure Determination

The X-ray diffraction data taken at room temperature for Cu-opa was collected on a Rigaku R-AXIS RAPID IP diffractometer equipped with graphitemonochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å). The structure of Cu-opa was solved by direct methods and refined on  $F^2$  by the full-matrix least squares using the SHELXTL-97 crystallographic software. Anisotropic thermal parameters are refined to all of the non-hydrogen atoms. The hydrogen atoms were held in calculated ideal positions on carbon atoms and nitrogen atoms in ligands and that were directly included in the molecular formula on water molecules. The chemical formulas were determined by the combination of single crystal data, TGA results and elemental analysis. The CCDC 1974699 contains the crystallographic data Cu-opa of this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/ deposit. Crystal structure data and details of the data collection and the structure refinement are listed as Table S1, selected bond lengths and bond angles of Cu-opa are listed as Table S2.

| Identification code                     | Cu-opa                 |
|-----------------------------------------|------------------------|
| Empirical formula                       | $C_{18}H_{13}CuN_2O_6$ |
| CCDC                                    | 1974699                |
| Formula mass                            | 416.85                 |
| Crystal system                          | Triclinic              |
| Space group                             | <i>P</i> -1            |
| <i>a</i> (Å)                            | 8.7600(14)             |
| b (Å)                                   | 9.7857(15)             |
| c (Å)                                   | 10.6019(17)            |
| α (°)                                   | 93.472(2)              |
| $\beta$ (°)                             | 106.982(2)             |
| γ (°)                                   | 107.340(2)             |
| V (Å <sup>3</sup> )                     | 818.8(2)               |
| Z                                       | 2                      |
| $D_{\rm c}/({\rm g \ cm^{-3}})$         | 1.691                  |
| $\mu$ (Mo K $\alpha$ )/mm <sup>-1</sup> | 1.375                  |
| <i>F</i> (000)                          | 424                    |
| $\theta$ range (°)                      | 2.58 - 25.00           |
| Limiting indices                        | $-10 \le h \le 10$     |
|                                         | $-11 \le k \le 11$     |
|                                         | $-11 \le l \le 12$     |
| Data/Restraints/Parameters              | 2870 / 0 / 244         |
| GOF on $F^2$                            | 1.070                  |
| $R_1^{a}$                               | 0.0307                 |
| $wR_2^{b}$                              | 0.1143                 |
| $R_1$                                   | 0.0331                 |
| $wR_2$                                  | 0.1178                 |
|                                         |                        |

Table S1. Crystal data and structure refinement parameters of Cu-opa

 ${}^{a}\overline{R_{1}} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o};$ 

<sup>b</sup>  $wR_2 = \left[\sum \left[w \left(F_o^2 - F_c^2\right)^2\right] / \sum \left[w \left(F_o^2\right)^2\right]\right]^{1/2}$ .

| Cu-opa            |            |                     |            |
|-------------------|------------|---------------------|------------|
| Cu(1)-O(6)        | 1.9450(19) | Cu(1)-N(2)          | 2.007(2)   |
| Cu(1)-O(2)        | 1.9851(16) | Cu(1)-O(5)#2        | 2.1755(17) |
| Cu(1)-O(4)#1      | 1.9912(16) |                     |            |
|                   |            |                     |            |
| O(6)-Cu(1)-O(2)   | 96.91(8)   | O(4)#1-Cu(1)-N(2)   | 87.34(7)   |
| O(6)-Cu(1)-O(4)#  | 188.43(7)  | O(6)-Cu(1)-O(5)#2   | 96.37(8)   |
| O(2)-Cu(1)-O(4)#1 | 143.00(8)  | O(2)-Cu(1)-O(5)#2   | 102.93(8)  |
| O(6)-Cu(1)-N(2)   | 174.58(7)  | O(4)#1-Cu(1)-O(5)#2 | 112.85(7)  |
| O(2)-Cu(1)-N(2)   | 84.47(8)   | N(2)-Cu(1)-O(5)#2   | 88.41(8)   |

Table S2. Selected bond lengths (Å) and bond angles (°) for Cu-opa



Fig. S1 The structural unit of Cu-opa with labeling scheme and 50% thermal ellipsoids (hydrogen atoms are omitted for clarity)



**Fig. S2** The  $\pi \cdots \pi$  stacking  $(d_{\pi \cdots \pi} = 3.6971 \text{ Å})$  to form 3D framework of compound Cu-opa.



Fig. S3 Thermal gravimetric curves of Cu-opa



Fig. S4 Zeta potential analysis for Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>@AC-NH<sub>2</sub>@Cu-opa.



Fig. S5 Possible pathway for phenol mineralization.



Fig. S6. Kinetic study of Cu-opa toward MO and MB.



Fig. S7. The impact of leaching Fe on phenol degradation.



Fig. S8 PXRD patterns of fresh Fe<sub>3</sub>O<sub>4</sub>@AC-NH<sub>2</sub>@Cu-opa after five cycle.



**Fig. S9** (a) XPS Fe 2p spectra after recycle; (b) XPS Cu 2p spectra after recycle; (c) XPS O 1s spectra after recycle; (d) XPS N 1s spectra after recycle.



Fig. S10 The impact of organics and anions in terms of the catalytic degradation of phenol by Fe<sub>3</sub>O<sub>4</sub>@AC-NH<sub>2</sub>@Cu-opa.

| Catalyst                             | Process       | Operating Conditions                                                               | Wastewater      | Removal (%)   | Reference            |
|--------------------------------------|---------------|------------------------------------------------------------------------------------|-----------------|---------------|----------------------|
|                                      |               |                                                                                    | source          |               |                      |
| Co-SAM-SCS                           | Catalytic     | Catalyst loading = 0.7 g/L; SMZ                                                    | River water     | 95%           | Water Research,      |
|                                      |               | concentration = 50 mg/L; $H_2O_2$                                                  |                 | (180min)      | 2018,138:7-18        |
|                                      |               | dosage = 4%;                                                                       |                 |               |                      |
|                                      |               | Temperature = 25 °C                                                                |                 |               |                      |
| 20%ZnO-                              | Catalytic     | Catalyst dosage 0.4 g/L, Phenol                                                    | Hong River;     | 94.7%, 69.6%, | RSC Adv., 2023,13,   |
| AgBr/SBA-15                          |               | red concentration of 20 mg/L, pH                                                   | Hoan Kiem       | 89.8%         | 12402-12410          |
|                                      |               | = 5                                                                                | Lake; West Lake | (150min)      |                      |
| magnetic CFA                         | Catalytic     | Catalyst dose: 2 g/L, T: 20 °C,                                                    | Tap water       | 90%           | Chemical             |
|                                      |               | initial pH: 5.0, [H <sub>2</sub> O <sub>2</sub> ] <sub>0</sub> : 22 mM             |                 | (60min)       | Engineering Journal, |
|                                      |               |                                                                                    |                 |               | 2019, 369: 470–479   |
| δ-FeOOH/γ-                           | Catalytic     | Conditions: 10 g δ-FeOOH/γ-                                                        | Industrial      | 50.8%         | Journal of           |
| Al <sub>2</sub> O <sub>3</sub>       |               | Al <sub>2</sub> O <sub>3</sub> , 40 mM H <sub>2</sub> O <sub>2</sub> , 100 mL real | wastewater      | (240min)      | Environmental        |
|                                      |               | industrial wastewater, pH = 4,                                                     |                 |               | Chemical             |
|                                      |               | t = 25 °C, pump speed 50 rpm.                                                      |                 |               | Engineering,         |
|                                      |               |                                                                                    |                 |               | 2021,9(6):106796     |
| Cu–NiO                               | Catalytic     | Catalyst (50 mg)                                                                   | Leather         | 86.15%        | Materials Chemistry  |
|                                      |               |                                                                                    | industries real | (150 min)     | and                  |
|                                      |               |                                                                                    | effluents       |               | Physics,2020,242:12  |
|                                      |               |                                                                                    |                 |               | 2520                 |
| tyrosinase-                          | Catalytic     | Catalyst dosage 15mg, Phenol                                                       | Well water      | 90%           | 3 Biotech, 2018, 8:  |
| MNPs                                 |               | concentration of 250 mg/L, pH =                                                    |                 | (60min)       | 419                  |
|                                      |               | 7.0                                                                                |                 | 100%          |                      |
|                                      |               |                                                                                    |                 | (240min)      |                      |
| NC-700                               | Catalytic and | [MB]0 = 50  mg/L,                                                                  | Ultrapure water | 100%          | Science of the Total |
|                                      | adsorption    | catalyst = $0.3 \text{ g/L}$ , PMS = $0.4 \text{ g/L}$                             |                 | (10min)       | Environment, 2019,   |
|                                      |               | and temperature = $25 ^{\circ}C$                                                   |                 |               | 680: 51–60           |
| Fe <sub>3</sub> O <sub>4</sub> @GO@M | Catalytic and | Fe <sub>3</sub> O <sub>4</sub> @GO@                                                | Ultrapure water | 100%          | Journal of           |
| IL-100(Fe)                           | adsorption    | MIL-100(Fe): 0.2 g/L, H <sub>2</sub> O <sub>2</sub> : 3                            |                 | (20min)       | Hazardous            |
|                                      |               | mmol/L, 2,4-DCP: 50 mg/L, pH =                                                     |                 |               | Materials, 2019,     |
|                                      |               | 3.0; Vis 500 W                                                                     |                 |               | 371: 677–686         |
| Fe <sub>3</sub> O <sub>4</sub> @AC-  | Catalytic and | ([Fe <sub>3</sub> O <sub>4</sub> @AC-NH <sub>2</sub> @Cu-opa] =                    | Tap water;      | 97.2%         | This work            |
| NH2@Cu-opa                           | adsorption    | $0.5 \text{ g/L}, [H_2O_2] = 40 \text{ mmol/L},$                                   | Ultrapure water | (60min)       |                      |
|                                      |               | [phenol] = 100  mg/L, pH = 4                                                       |                 | 99.4%         |                      |
|                                      |               |                                                                                    |                 | (~30min)      |                      |

| Table S3. | The summary | of relevant | article. |
|-----------|-------------|-------------|----------|