Supporting Information

Ultrathin Fe-MOF modified by Fe9S¹⁰ for highly efficient oxygen evolution reaction

Wenjing Shang, Binghao Wang, Xin Deng, Yiqin Tian, Yongbing Lou, Jinxi Chen *

School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Southeast University, Nanjing 211189, PR China

**Corresponding author*

**E-mail address: chenjinxi@seu.edu.cn (J. Chen)*

1. Calculation formulas

The calculation formulas used in this paper were showed as follows:

Overpotential: $\eta = E_{RHE} - 1.23 \text{ V}$, $E_{RHE} = E_{A\alpha/A\alpha CI} + 0.059 \cdot pH + 0.197 \text{ V}$

where E_{RHE} referred to reversible hydrogen electrode potential.

Tafel slope: $\eta = b \log i + a$,

where b was the Tafel slope. It was derived from the LSV curve, log j (j was the current density) as the abscissa and η as the ordinate, and the resulting slope was called the Tafel slope.

 $2C_{d}$ is estimated by plotting $\Delta J=(Ja-Jc)$ at 0.94 V against the scan rates.

Faradic efficiency: $FE=(V/V_m)/n$,

Where V represents the actual volume of O_2 collected, V_m represents the molar volume of gas at the corresponding temperature at the time of the test. n represents the number of molars of gas theoretically released.

Turnover Number: TON = n_{O_2}/n_{cat} , where n_{O_2} is the number of molars of generated O_2 , n_{cat} is the number of molars of catalyst.

Turnover Frequency: TOF=TON/t, where t is time

2. Chemical

Urea (CH₄N₂O, ≥99.0%), ammonium fluoride (NH₄F, ≥98.0%), iron nitrate nonahydrate $(Fe(NO₃)₃·9H₂O, \geq 99.9\%)$, sodium sulfide nonahydrate $(Na₂S·9H₂O, \geq 98.0\%)$, 1,4benzenedicarboxylic acid (C₈H₆O₄, ≥99.0%), sodium hydroxide (NaOH, ≥97.0%), and N,Ndimethylformamide (DMF, ≥99.5%) were purchased from Aladdin (Shanghai). Hydrochloric acid (HCl, $36\%~38\%$) and ethanol (C₂H₅OH, \geq 99.5%) were bought from Sinopharm Chemical Reagent Co., Ltd (Shanghai). Ultrapure water and nickel foam (NF) were bought from Crystal chemical (Nanjing). The above chemical was used directly without further treatment.

3. The preparation of NF

Due to the presence of dirt and oxidation layers on the surface of NF, it was necessary to clean before using. The NF purchased was cut to the size of $1*1.5$ cm², and then it was immersed in the3 M HCl solution prepared in advance. Cleaning with an ultrasonic cleaner for 20 minutes was employed. Then deionized water and ethanol were used for ultrasonic cleaning for 10min respectively, and then the NF was dried under vacuum at 60 °C for 12 h.

Fig. S1. XRD patterns of a) precursor, b) $Fe₉S₁₀/NF$ and c) $Fe-MOF/NF$

Fig. S2. SEM images of a,) Fe-MOF/NF, b) Fe₉S₁₀/NF

Fig. S3. TEM images of a, b) $Fe₉S₁₀/NF, c, d) Fe-MOF/NF$

Fig. S4. XPS spectra of C1s, O1s, Fe2p, S2p in Fe₉S₁₀/Fe-MOF/NF-2 before OER

Fig. S5. CV curves of a) Fe-MOF, b) $Fe₉S₁₀/NF, c) Fe₉S₁₀/Fe-MOF/NF-1, d) Fe₉S₁₀/Fe-MOF/NF-1, d)$ 2, e) $Fe₉S₁₀/Fe-MOF/NF-3$ at different scan rates

Fig. S6 a) Faradic efficiency, b) the device of drainage gas collection method, c-h) the volume of oxygen collected over time in 1 M KOH

Fig. S7. SEM images of $Fe₉S₁₀/Fe-MOF/NF-2$ after OER

Fig S8 a) Faradic efficiency, b) the device of drainage gas collection method, c-h) the volume of oxygen collected over time in 1 M KOH+0.5M NaCl

Fig. S9. Photos of $Fe₉S₁₀/Fe-MOF/NF-2$ when folded and unfolded

Fig. S10. XPS spectra of C1s, O1s in Fe₉S₁₀/Fe-MOF/NF-2 before OER

Fig. S11. a, b) TEM images, c) HRTEM images, d, e, f, g) elemental mapping of $Fe₉S₁₀/Fe-$ MOF/NF after OER

Fig. S12. XRD patterns of a) Fe-MOF/NF, b) Fe₉S₁₀/NF before and after reaction

Fig. S13. survey spectrum of a) Fe-MOF/NF, c) Fe₉S₁₀/NF, and the changes in the content of elements of b) Fe-MOF/NF, d) Fe₉S₁₀/NF before and after OER test

Fig. S14. TEM images of a) Fe-MOF/NF, c) Fe₉S₁₀/NF and HRTTM images of b) Fe-MOF/NF, d) $Fe₉S₁₀/NF$ after reaction

Table S1. Comparison of OER performance in this work with recently reported materials introduced into S by the postprocessing of precursors electrocatalysts

	Overpotential	Tafel		
Catalysts	$(mV)/$ current	slope	Stability	Support Reference
	density (mA cm ⁻²) (mV/dec)		time (h)	

NF: Ni Foam

CC: Carbon Cloth

GC: Glassy Carbon

TF: Ti Foil

RD: Rotating Disk

Table S2 The TON and TOF of catalysts

Catalysts	TON	$TOF(S-1)$
$Fe9S10/Fe-MOF/NF-2$	122.4	0.034
Fe-MOF/NF	3.6	0.0011
Fe ₉ S ₁₀ /NF	25.2	0.0072

Reference

- 1. F. Wu, X. X. Guo, Q. H. Wang, S. W. Lu, J. L. Wang, Y. B. Hu, G. Z. Hao, Q. L. Li, M. Q. Yang and W. Jiang, *J. Mater. Chem. A*, 2020, **8**, 14574-14582.
- 2. Q. L. Li, X. Li, K. Zhang, J. Q. He, Y. B. Lou and J. X. Chen, *Inorg. Chem. Commun.*, 2023, **153**, 110835.
- 3. Q. L. Li, K. Zhang, X. Li, J. Q. He, Y. B. Lou and J. X. Chen, *J. Alloys Compd.*, 2022, **920**, 165941.
- 4. S. S. Zheng, X. T. Guo, H. G. Xue, K. M. Pan, C. S. Liu and H. Pang, *Chem Commun (Camb)*, 2019, **55**, 10904-10907.
- 5. K. Wan, J. S. Luo, C. Zhou, T. Zhang, J. Arbiol, X. H. Lu, B. W. Mao, X. Zhang and J. Fransaer, *Adv. Funct. Mater.*, 2019, **29**, 1900315.
- 6. Y. Zhang, X. P. Shen, C. S. Song, Z. Y. Ji and F. H. Du, *J. Mater. Chem. A*, 2023, **11**, 8904-8911.
- 7. W. X. Lv, L. Zhu, L. Z. Cheng, Z. Wang, R. Zhang and W. Wang, *J. Appl. Electrochem.*, 2022, **52**, 1481-1489.
- 8. W. J. Song, M. Z. Xu, X. Teng, Y. Niu, S. Q. Gong, X. Liu, X. M. He and Z. F. Chen, *Nanoscale*, 2021, **13**, 1680-1688.
- 9. Y. J. Li, W. Y. Wang, B. J. Huang, Z. F. Mao, R. Wang, B. B. He, Y. S. Gong and H. W. Wang, *J.*

Energy Chem., 2021, **57**, 99-108.

- 10. D. X. Yang, Z. Su, Y. F. Chen, K. Srinivas, X. J. Zhang, W. L. Zhang and H. P. Lin, *Chem. Eng. J.*, 2022, **430**, 133046.
- 11. J. Liu, S. T. Wei, N. B. Li, L. Zhang and X. Q. Cui, *Electrochim. Acta*, 2019, **299**, 575-581.
- 12. C. Gan, Q. Jiang, X. Wu and J. Tang, *Mater. Today Chem.*, 2023, **27**, 101330.
- 13. Z. L. Chen, M. Liu and R. B. Wu, *J. Catal.*, 2018, **361**, 322-330.
- 14. X. Li, Z. K. Kou, S. B. Xi, W. J. Zang, T. Yang, L. Zhang and J. Wang, *Nano Energy*, 2020, **78**, 105230.