Supporting Information

A Heterogeneous Cobalt Cubane Polymer Co-catalyst for Cooperative

Water Oxidation

Siyuan Li,^{a,c,†} Wenchao Jiang,^{b,†} Qi Sui,^a Yujie Gao,^a and Yi Jiang^{a,*}

^aCollege of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China.

^bSchool of Chemistry and Materials Science, University of Science and Technology of China, Hefei

230026, China.

^cGuandong Cawolo Hydrogen Technology Co., LTD, Foshan 528226, Guangdong, China.

[†]These authors contributed equally to this work

Experimental Section

Synthesis of Co₄O₄ molecules water oxidation co-catalyst.

Cobalt cubane (Co₄O₄) molecules was synthesized by reported work. Co(NO₃)₂·6H₂O (10 mmol) and CH₃COONa·3H₂O (10 mmol) were initially dissolved in a 250 mL two-necked flask containing 30 mL of methanol and then heated to reflux temperature. Subsequently, 10 mmol of pyridine and 5 mL of hydrogen peroxide (30%) were added separately to the reaction mixture. The mixture was stirred for 4 hours at reflux temperature. Following this, the cooled reaction mixture underwent concentration using a rotary evaporator, and the aqueous layer was separated by the addition of CH₂Cl₂. Anhydrous sulfuric acid was subsequently introduced to the CH₂Cl₂ solution to eliminate residual water, followed by further concentration to approximately 5 ml. Chromatographic separation was carried out employing a silica gel column with elution using CH₃OH and CH₂Cl₂ (V : V, 1:15). The resulting separated solution was further concentrated to yield a yellow-green powder with a 31% yield, which was then subjected to vacuum-drying for subsequent use.

Synthesis of Co₄O₄-ploy water oxidation co-catalyst.

 $Co(NO_3)_2 \cdot 6H_2O$ (10 mmol) and $CH_3COONa \cdot 3H_2O$ (10 mmol) were first dissolved in a 250 mL twonecked flask containing 30 mL of methanol, and the mixture was then heated to reflux temperature. Subsequently, 10 mmol of 4,4'-bipyridine and 5 mL of hydrogen peroxide (30%) were added separately to the reaction mixture. The stirring persisted for 4 hours at reflux temperature, resulting in the formation of a distinct brown-yellow precipitate in the solution. This turbid suspension underwent suction filtration to eliminate CH_3OH and the aqueous solution, ultimately yielding a brown-yellow precipitate. Subsequent washing with water, CH_2Cl_2 and CH_3OH was carried out sequentially to remove any remaining $Co(NO_3)_2$, CH_3COONa , and 4,4'-bipyridine ligand. The final precipitate, obtained with a yield of 45%, underwent vacuum drying for subsequent use.

Fabrication of BiVO₄ photoanode.

In brief, 2.91 g of $Bi(NO_3)_3 \cdot 5H_2O$ was dissolved in 150 mL of deionized water containing 9.96 g of KI. The pH of the solution was adjusted to 1.7 by the addition of HNO₃. Subsequently, 60 mL of absolute ethanol containing 1.49 g of p-benzoquinone was introduced into the solution with vigorous stirring. Electrodeposition was performed using a CHI660 with a three-electrode setup, maintaining

the process at -0.1 V vs. Ag/AgCl for 5 minutes to create a layer of BiOI. Following this, 100 μ L of a DMSO solution containing 0.23 M vanadium acetone oxide was applied onto the BiOI surface, and the sample was annealed at 450 °C (ramping rate = 2 °C/min) for 2 hours. After annealing, the resulting photoanodes were immersed in 1 M NaOH solution under stirring for 30 minutes to dissolve V₂O₅. The BiVO₄ photoanode obtained was rinsed with deionized water and subsequently dried using nitrogen.

Fabrication of Co₄O₄/BiVO₄ and Co₄O₄-poly/BiVO₄ photoanode.

Weigh equal amounts of substances Co_4O_4 and Co_4O_4 -ploy, dispersing them individually in methanol using ultrasonication to achieve even distribution. Next, apply equal volumes of the catalyst solutions separately onto a BiVO₄ electrode. Allow them to naturally air dry, rinse with water prior to use, and then dry them using nitrogen gas.

Photocatalytic performance measurement

The photocatalytic O_2 evolution reactions was carried out in a Labsolar-6A reactor (Beijing Perpectlight) and evacuation system using a 300 W Xe lamp (Ushio-CERMAX LX300) with an

optical cut-off filter ($\lambda \ge 420$ nm). The photocatalyst (0.1 g) was dispersed in 100 mL aqueous

solution contained NaIO₃ (5.0 mM) in a pyrex reaction cell and thoroughly degassed by evacuation in order to drive off the air inside. The evolved O_2 was quantified using an online gas chromatograph with argon (Ar) as the carrier gas. Samples were collected at 30-minute intervals to compare the O_2 production of different photocatalysts.

Photoelectrochemical (PEC) measurement.

PEC experiments were conducted in a three-electrode electrochemical cell using a CHI 660E instrument potentialstat (Shanghai Chenhua Instrument Co., Ltd.) at 25°C. The three-electrode system consisted of the as-prepared photoanode as the working electrode, a platinum tablet as the counter electrode, and a Ag/AgCl electrode as the reference electrode. A Xe lamp (CEL-HXF300C) equipped with an AM 1.5G-filter was used for photoanode irradiation, and the light intensity was calibrated to 100 mW/cm². The light irradiation was applied from behind the photoanode. J-V curves were obtained via linear sweep voltammetry at a scan rate of 20 mV/s. Typically, a 0.1 M phosphate buffer solution (PBS, pH 7) served as the electrolyte. The conversion between potentials vs. Ag/AgCl and vs. RHE was performed using the equation:

E (vs. RHE) = E (vs. Ag/AgCl) + 0.0591 V × pH + $E_{Ag/AgCl}$ (reference)

The applied bias photon-to-current efficiency (ABPE) was calculated from the J-V curve, where J is the photocurrent density, V_{bias} is the applied bias, and P_{in} is the incident illumination power density (AM 1.5G, 100 mW/cm²),

$$ABPE = \frac{J \times (1.23 - V_{bia})}{P_{in}} \times 100\%$$

The photocurrent density arising from PEC water oxidation can be described as:

$$J_{H_20} = J_{abs} \times \eta_{sep} \times \eta_{inj}$$

Here, J_{abs} denotes the photocurrent density when absorbed photons are fully converted into current, η_{sep} represents the charge separation efficiency of photogenerated holes, referring to bulk recombination, and η_{inj} signifies the charge transfer efficiency of surface-reaching holes into the electrolyte. By using Na₂SO₃ as a hole scavenger, surface recombination is eliminated ($\eta_{inj} = 1$), and

the photocurrent density can be described as:

$$J_{Na_2SO_3} = J_{abs} \times \eta_{sep}$$

So the η_{inj} can be described as:

$$\eta_{inj} = \frac{J_{H_2O}}{J_{Na_2SO_3}}$$

Figure S1. UV-vis spectra of water solutions containing Co^{2+} ions, Co_4O_4 molecules and Co_4O_4 poly (filtered the precipitate).

As shown in **Figure S1**, the water solution containing Co_4O_4 molecules exhibits obvious peaks at 350 nm. In contrast, the water solution containing Co_4O_4 -poly, when the precipitate is filtered, shows almost no absorbance. This further confirms that Co_4O_4 -poly lacks Co^{2+} ions and other soluble impurities.

Figure S3. SEM and EDS-mapping images of (a) $BiVO_4$ and (b) $Co_4O_4/BiVO_4$.

Figure S4. SEM image of Co₄O₄-poly/BiVO₄.

Figure S5. ABPE values of BiVO₄-based photoanods.

Figure S6. UV-vis spectra of BiVO₄-based photoanods.

Figure S7. The LSV curves of BiVO₄-based photoanodes in Na₂SO₃.

Figure S8. The charge injection efficiencies of BiVO₄-based photoanodes.

Figure S9. Calibration carve for the quantitative analysis of I- ion. (I_3^- ions, characterized by yellow absorbance (peak top: 470 nm), were generated by adding 5 mL of HNO₃ to 5 mL of sample solutions.)

Figure S10. The LSV curves of $BiVO_4$ -based photoanodes in D_2O .

Figure S11. SEM image of Co₄O₄-poly/BiVO₄ after prolonged electrolysis.

Figure S12. XRD patterns of Co₄O₄-poly/BiVO₄ before and after prolonged electrolysis.

Figure S13. HR-XPS spectra of Co 2p for Co₄O₄-poly/BiVO₄ before and after prolonged electrolysis.

Table S1. PEC water oxidation performances of recently reported molecule/semiconductor hybrid photoanodes.

Photoanodes	Electrolyte	Photocurrent density $(m A/am^2 \oplus 1.22 M)$	References
		$(\text{mA/cm}^2 @ 1.23 \text{ V}_{\text{RHE}})$	
(Co ₄ O ₄)1h/BiVO ₄	0.5 M borate buffer (pH 9.3)	5.0	[1]
Fe-PBI/BiVO ₄	0.2 M borate buffer (pH 8.2)	1.3	[2]
Co ₄ O ₄ /BiVO ₄	0.5 M borate buffer (pH 8)	3.3	[3]
Co2/BiVO ₄	0.1 M PBS (pH 7.0)	4.3	[4]
Cobim/BVO-20	0.5 M Na ₂ SO ₄ (pH 7)	3.1	[5]
Ni ₄ O ₄ /BiVO ₄	0.2 M PBS (pH 7)	3.9	[6]
poly-1/Vpa/Al ₂ O ₃ /BiVO ₄	0.1 M PBS (pH 7.0)	2.8	[7]
Co ₄ O ₄ -poly/BiVO ₄	0.1 M PBS (pH 7.0)	3.2	This work

References

- [1] Y. Wang, F. Li, X. Zhou, F. Yu, J. Du, L. Bai, L. Sun, Angew Chem Int Ed. 2017, 56, 6911-6915.
- [2] T. Benkó, S. Shen, M. Németh, J. Su, Á. Szamosvölgyi, Z. Kovács, G. Sáfrán, S. M. Al-Zuraiji, E. Z. Horváth,
 A. Sápi, Z. Kónya, J. S. Pap, *Appl catal A-gen.* 2023, 652, 119035.
- [3] H. Chen, J. Li, L. Meng, S. Bae, R. Erni, D. F. Abbott, S. Li, C. A. Triana, V. Mougel and G. R. Patzke, Adv Funct Materials. 2023, 33, 2307862
- [4] Y. D. Liu, Y. Jiang, F. Li, F. S. Yu, W. C. Jiang, L. X. Xia, J. Mater. Chem. A 2018, 6, 10761-10768.
- [5] W. Zhang, R. Li, X. Zhao, Z. Chen, A. W. K. Law, K. Zhou, ChemSusChem 2018, 11, 2710-2716.
- [6] B. Gao, T. Wang, X. L. Fan, H. Gong, P. Li, Y. Y. Feng, X. L. Huang, J. P. He, J. H. Ye, J. Mater. Chem. A 2019, 7, 278-288.
- [7] W. Jiang, X. Yang, F. Li, Q. Zhang, S. Li, H. Tong, Y. Jiang and L. Xia, Chem. Commun. 2019, 55, 1414-1417.