Supporting Information

Diphosphene with a Phosphineborane Tether and Its Rhodium Complex

Akihiro Tsurusaki,* Shingo Takechi and Ken Kamikawa*

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan

E-mail: tsurusaki@omu.ac.jp; kamikawa@omu.ac.jp

Table of Contents

1.	Experimental	S2
2.	Spectral Data	S 9
3.	Temperature-Dependent ¹ H NMR Spectra	S27
4.	Ligand Exchange Reactions of Diphosphene-Rhodium Complex	S28
5.	X-Ray Crystallographic Analysis	S33
6.	UV-vis Spectra	S36
7.	Theoretical Calculations	S37
8.	References	S50

1. Experimental

General. All anaerobic and/or moisture-sensitive manipulations were carried out with conventional Schlenk techniques under a nitrogen atmosphere or with glovebox techniques under an argon atmosphere. Analytical thin-layer chromatography (TLC) was performed using Silicagel 70 F₂₅₄ TLC Plate-Wako. The developed chromatogram was viewed under a UV lamp (254 nm). Silica gel column chromatography was performed with Wako-gel® 60N (Wako, 150-425 µm, irregular) or Silica Gel 60 (Nacalai Tesque Inc., spherical, neutral) under an argon atmosphere. Preparative thin-layer chromatography (PTLC) was performed using Silicagel 70 PF₂₅₄ TLC Plate-Wako. ¹H NMR (400 or 500 MHz), ¹³C NMR (100 or 125 MHz), ³¹P NMR (162 MHz), ¹¹B NMR (129 MHz), and ¹⁹F NMR (378 MHz) spectra were measured in CDCl₃ and CD₂Cl₂ with a JEOL JNM-ECS400 or JEOL JNM-ECZ500R spectrometer. Signals of tetramethylsilane (0.0 ppm) in CDCl₃ and CHDCl₂ (5.32 ppm) in CD₂Cl₂ in the ¹H NMR spectra; and CDCl₃ (77.16 ppm) and CD₂Cl₂ (53.84 ppm) in the ¹³C NMR spectra were used as internal references. ³¹P, ¹¹B, and ¹⁹F NMR chemical shifts were externally referenced to 85% H₃PO₄ (0 ppm), BF₃·OEt₂ (0 ppm), and CFCl₃ (0 ppm), respectively. Chemical shifts are reported in ppm downfield. Low- and high-resolution mass spectra were recorded on a JEOL JMS-700 spectrometer in the FAB (3-nitrobenzyl alcohol) mode or a Bruker micrOTOF II time-of-flight mass spectrometer (ESI). IR samples were prepared by the KBr plate method (JASCO Tablet Master), and IR spectra were measured on a JASCO FT/IR-4100 spectrometer. All melting points were determined on a Yanaco micro melting point apparatus (MP-J3) and were uncorrected. The melting points of phosphine 3', dichlorophosphine 2, diphosphene-phosphineborane ligand 1, and diphosphene-rhodium complex 7 were measured under an argon atmosphere in a sealed tube.

Reagents. Acetonitrile, dichloromethane, Et₂O, THF, toluene, 1,4-dioxane (Wako, super dehydrated grade), and 1,2-dichloroethane (Aldrich, anhydrous) were purchased and used as received. CDCl₃ (CIL) and CD₂Cl₂ (CIL) used in a glovebox were dried over calcium hydride, degassed by freeze-pump-thaw cycles, distilled in a vacuum line, and stored in a glovebox. Sodium iodide (Aldrich), chlorodiphenylphosphine (Wako), hydrogen peroxide in aqueous solution (Wako), triethoxysilane (TCI), titanium(IV) tetraisopropoxide (Wako), borane-tetrahydrofuran complex (1.03 M in THF; Aldrich), n-butyllithium (1.6 M in hexane; Mitsuwa), and tert-butyllithium (1.55 M in pentane; Kanto) were purchased and used as received. Phosphorus trichloride was distilled from calcium hydride prior to use. N-Methylpyrrolidine, triethylamine, N,N,N,N-tetramethylethylenediamine (tmeda), and pyridine (py) were distilled from sodium 2-Bromo-3,5-di-*tert*-butyl-1-(hydroxymethyl)benzene hydroxide prior use. (**4**).^{S1} to 2-bromo-1-bromomethyl-3,5-di-tert-butyl-benzene (6),^{S1} Ph₂PH·BH₃,^{S2} ^tBu(Me₃Si)NH,^{S3} Mes*PH₂,^{S4} and $[Rh(cod)_2]BF_4^{S5}$ were synthesized according to the reported procedures.

Synthesis of (2-bromo-3,5-di-tert-butylphenyl)methyldiphenylphosphine oxide (5).

This compound was prepared according to the similar method to the reported procedure.^{S6} To a solution of 2-bromo-3,5-di-*tert*-butyl-1-(hydroxymethyl)benzene (**4**, 9.81 g, 32.8 mmol) and sodium iodide (24.6 g, 164 mmol) in CH₃CN (80 mL) was added chlorodiphenylphosphine (36.2 g, 164 mmol). After the reaction mixture was stirred at reflux for 14 h, H₂O₂ aq. was added dropwise at 0 °C. The reaction mixture was stirred at room temperature for 10 min, and then quenched with Na₂SO₃ aq. The organic layer was separated, and then the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over MgSO₄, filtered through a pad of Celite, and then evaporated under reduced pressure. The residue was chromatographed on silica gel with hexane/ethyl acetate = 1/1 ($R_f = 0.45$) to give **5** as a colorless solid (13.3 g, 27.5 mmol, 84%).

Mp. 181-182 °C. ¹H NMR (400 MHz, CDCl₃) δ = 1.21 (s, 9H, 'Bu), 1.42 (s, 9H, 'Bu), 4.05 (d, *J* = 14.4 Hz, 2H, CH₂), 7.30 (dd, *J* = 2.5, 2.5 Hz, 1H, aromH), 7.31 (dd, *J* = 2.5, 2.5 Hz, 1H, aromH), 7.38-7.43 (m, 4H, Ph), 7.47-7.51 (m, 2H, Ph), 7.63-7.68 (m, 4H, Ph); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 30.2 (CH₃), 31.2 (CH₃), 34.7 (C), 37.6 (C), 39.5 (d, *J* = 66.5 Hz, CH₂), 123.3 (d, *J* = 7.7 Hz, C), 124.1 (d, *J* = 2.8 Hz, CH), 127.2 (d, *J* = 4.8 Hz, CH), 128.5 (d, *J* = 11.6 Hz, CH), 131.5 (d, *J* = 8.7 Hz, CH), 131.8 (d, *J* = 2.9 Hz, CH), 132.2 (d, *J* = 98.3 Hz, C), 132.8 (d, *J* = 6.8 Hz, C), 147.9 (d, *J* = 1.9 Hz, C), 149.4 (d, *J* = 2.9 Hz, C); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ = 30.5 (P=O); HRMS (FAB) *m/z* found: 483.1459 ([M+H]⁺), calcd for C₂₇H₃₃⁷⁹BrOP 483.1452.

Synthesis of (2-bromo-3,5-di-tert-butylphenyl)methyldiphenylphosphine (3').

To a solution of **5** (500 mg, 1.03 mmol) in toluene (10 mL) was added triethoxysilane (1.14 mL, 6.21 mmol) and titanium(IV) tetraisopropoxide (0.15 mL, 0.52 mmol). After the reaction mixture was stirred at reflux for 1 h, the volatiles were removed under reduce pressure. The residue was chromatographed on silica gel with hexane/benzene = 5/1 ($R_f = 0.60$) in a glovebox under an argon atmosphere to give **3'** as a colorless solid (461 mg, 0.99 mmol, 95%).

Mp. 84.5-85.3 °C. ¹H NMR (400 MHz, CDCl₃) δ = 1.05 (s, 9H, ^{*i*}Bu), 1.55 (s, 9H, ^{*i*}Bu), 3.65 (s, 2H, CH₂), 6.44 (dd, *J* =2.3, 2.3 Hz, 1H, aromH), 7.26 (dd, *J* = 2.1, 2.1 Hz, 1H, aromH), 7.31-7.34 (m, 6H, Ph), 7.39-7.44 (m, 4H, Ph); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 30.4 (CH₃), 31.1 (CH₃), 34.5 (C), 37.6 (C), 38.8 (d, *J* = 16.4 Hz, CH₂), 122.5 (d, *J* = 4.8 Hz, C), 123.4 (d, *J* = 1.9 Hz, CH), 126.7 (d, *J* = 5.8 Hz, CH), 128.5 (d, *J* = 5.8 Hz, CH), 133.3 (d, *J* = 18.3 Hz, CH), 137.9 (d, *J* = 5.8 Hz, C), 138.5 (d, *J* = 16.4 Hz, C), 147.8 (d, *J* = 2.0 Hz, C), 148.7 (d, *J* = 1.9 Hz, C); ³¹P {¹H</sup> NMR (162 MHz, CDCl₃) δ =

-13.2 (PPh₂); HRMS (FAB) *m/z* found: 466.1420 ([M]⁺), calcd for C₂₇H₃₂⁷⁹BrP 466.1425.

Synthesis of (2-bromo-3,5-di-tert-butylphenyl)methyldiphenylphosphine-borane (3).

To a solution of **3'** (200 mg, 0.427 mmol) in THF (6 mL) was added dropwise borane–tetrahydrofuran complex (1.03 M in THF; 1.90 mL, 1.96 mmol) at 0 °C. After the reaction mixture was stirred at room temperature for 2 h, the volatiles were removed under reduce pressure. The residue was chromatographed on silica gel with hexane/AcOEt = 10/1 ($R_f = 0.50$) to give **3** as a colorless solid (165 mg, 0.343 mmol, 80%).

Mp. 137-138°C. ¹H NMR (400 MHz, CDCl₃) δ = 0.6-1.4 (br, 3H, BH₃), 1.20 (s, 9H, 'Bu), 1.40 (s, 9H, 'Bu), 3.99 (d, *J* = 11.5 Hz, 2H, CH₂), 7.14 (dd, *J* = 2.3, 2.3 Hz, 1H, aromH), 7.32 (dd, *J* = 2.0, 2.0 Hz, 1H, aromH), 7.35-7.40 (m, 4H, Ph), 7.44-7.49 (m, 2H, Ph), 7.55-7.61 (m, 4H, Ph); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 30.2 (CH₃), 31.2 (CH₃), 34.7 (C), 35.3 (d, *J* = 31.8 Hz, CH₂), 37.5 (C), 123.4 (d, *J* = 5.8 Hz, C), 124.3 (d, *J* = 1.9 Hz, CH), 127.3 (d, *J* = 3.9 Hz, CH), 128.3 (d, *J* = 53.9 Hz, C), 128.6 (d, *J* = 9.6 Hz, CH), 131.3 (d, *J* = 1.9 Hz, CH), 133.1 (d, *J* = 8.7 Hz, CH), 133.5 (d, *J* = 4.8 Hz, C), 147.8 (d, *J* = 2.0 Hz, C), 149.3 (d, *J* = 1.9 Hz, C); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ = 19.3 (br d, *J* = 43.6 Hz, PBH₃). ¹¹B {¹H} NMR (129 MHz, CDCl₃) δ = -39.1 (br d, *J* = 34.4 Hz); HRMS (FAB) *m/z* found: 481.1833 ([M+H]⁺), calcd for C₂₇H₃₆B⁷⁹BrP 481.1831.

Synthesis of phosphineborane 3 from 2-bromo-1-bromomethyl-3,5-di-tert-butyl-benzene (6).

To a solution of Ph₂PH·BH₃ (3.97 g, 19.8 mmol) in THF (40 mL) was added dropwise "BuLi (1.6 M in hexane; 12.4 mL, 19.8 mmol) at -78 °C. After the reaction mixture was stirred at -78 °C for 20 min, a solution of **6** (7.54 g, 20.8 mmol) in THF (8 mL) was added. The reaction mixture was gradually warmed to room temperature, and then stirred for 1 h. The reaction was quenched with sat. NH₄Cl aq. The organic layer was separated, and then the aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over MgSO₄, filtered through a pad of Celite, and then evaporated under reduced pressure. The residue was washed with hexane to give **3** as a colorless solid (7.35 g, 15.3 mmol, 77%).

Synthesis of (3,5-di-tert-butyl-2-dichlorophosphinophenyl)methyldiphenylphosphine-borane (2).

To a solution of **3** (1.00 g, 2.08 mmol) and THF (168 μ L, 2.08 mmol) in Et₂O (40 mL) was added dropwise 'BuLi (1.55 M in pentane; 2.68 mL, 4.16 mmol) at -105 °C. After the reaction mixture was stirred at -105 °C for 15 min, PCl₃ (0.91 mL, 10.4 mmol) was added. The reaction mixture was gradually warmed to room temperature, and then stirred for 2 h. The volatiles were removed under reduced pressure. The precipitate was filtered off by passing though a pad of Celite under a nitrogen atomosphere. The volatiles of the filtrate was removed under reduced pressure. The residue was washed with hexane to give **2** (429 mg, 0.85 mmol, 41%) as a pale yellow solid.

Mp. 101 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) $\delta = 1.12$ (s, 9H, 'Bu), 1.52 (d, J = 1.6 Hz, 9H, 'Bu), 4.51 (d, J = 11.7 Hz, 2H, CH₂), 7.32 (d, J = 6.7 Hz, 1H, aromH), 7.36-7.41 (m, 5H, aromH and Ph), 7.43-7.48 (m, 2H, Ph), 7.57-7.62 (m, 4H, Ph); The BH₃ signal could not be assigned likely due to the line-broadening around 1 ppm; ¹³C {¹H} NMR (100 MHz, CDCl₃) $\delta = 30.8$ (CH₃), 32.4 (dd, J = 33.7, 3.9 Hz, CH₂), 34.2 (d, J = 22.2 Hz, CH₃), 35.3 (C), 37.6 (d, J = 3.9 Hz, C), 122.0 (d, J = 8.7 Hz, CH), 128.5 (d, J = 6.8 Hz, CH), 128.8 (d, J = 10.6 Hz, CH), 129.3 (d, J = 54.9 Hz, C), 131.3 (d, J = 1.9 Hz, CH), 133.0 (d, J = 8.7 Hz, CH), 133.2 (dd, J = 85.7, 5.8 Hz, C), 140.9 (dd, J = 3.8, 2.9 Hz, C), 155.3 (C), 156.0 (d, J = 36.6 Hz, C); ³¹P {¹H} NMR (162 MHz, CDCl₃) $\delta = 20.7$ (br d, J = 47.9 Hz, PBH₃), 159.4 (PCl₂); ¹¹B {¹H} NMR (129 MHz, CDCl₃) $\delta = -38.2$ (br); HRMS (FAB) *m/z* found: 503.1757 ([M+H]⁺), calcd for C₂₇H₃₆BCl₂P₂ 503.1762.

Synthesis of diphosphene-phosphineborane ligand 1.

To a solution of Mes*PH₂ (96.7 mg, 0.347 mmol) in Et₂O (3 mL) was added ^{*n*}BuLi (1.55 M in hexane; 231 μ L, 0.365 mmol) dropwise at room temperature in a glovebox filled with argon. After stirring for 30 min, the mixture was added to **2** (174.7 mg, 0.347 mmol) in Et₂O (30 mL) dropwise. After the mixture was stirred for 1.5 h, 'Bu(Me₃Si)NLi in a Et₂O solution was added dropwise, which was prepared by the reaction of 'Bu(Me₃Si)NH (80.6 μ L, 420 μ mol) with *n*-BuLi (1.55 M in hexane; 231 μ L, 365 μ mol) in a Et₂O solution (3 mL) at room temperature for 2 h. After the reaction mixture was stirred for 3.5 h, the volatiles were removed under reduce pressure to give an orange solid. The residue was filtered though a pad of Celite with hexane, and then the solvent of the filtrate was removed under reduced pressure. The residue was chromatographed on silica gel with hexane/toluene = 5/1 ($R_f = 0.10$) to 2/1 ($R_f = 0.20$) under argon atmosphere to give **1** as an orange solid (74.4 mg, 0.109 mmol, 30%).

Mp. 137 °C (decomp.). ¹H NMR (400 MHz, CDCl₃) δ = 1.16 (s, 9H, 'Bu), 1.34 (s, 9H, 'Bu), 1.36 (s, 9H, 'Bu), 1.37 (s, 18H, 'Bu), 4.05 (d, *J* = 11.5 Hz, 2H, CH₂), 7.11 (dd, *J* = 2.1, 2.1 Hz, 1H, aromH), 7.31-7.36 (m, 5H, aromH and Ph), 7.41 (s, 2H, Mes*-*m*-aromH), 7.41-7.45 (m, 2H, Ph), 7.48-7.54 (m, 4H, Ph); The BH₃ signal could not be assigned likely due to the line-broadening around 1 ppm; ¹H NMR (500 MHz, CD₂Cl₂) δ = 1.16 (s, 9H, 'Bu), 1.34 (s, 9H, 'Bu), 1.360 (s, 9H, 'Bu), 1.363 (s, 18H, 'Bu), 4.04 (d, *J* = 11.5 Hz, 2H, CH₂), 7.06 (dd, *J* = 1.8, 1.8 Hz, 1H, aromH), 7.35-7.39 (m, 4H, Ph), 7.41 (dd, *J* = 1.8, 1.8 Hz, 1H, aromH), 7.44 (s, 2H, Mes*-*m*-aromH), 7.45-7.53 (m, 6H, Ph); The BH₃ signal could not be assigned likely due to the line-broadening around not be assigned likely due to the line-broadening around not be assigned likely due to the line-broadening around 1 ppm; ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 31.1 (CH₃), 31.5 (CH₃), 33.1 (br, CH₃), 34.1 (br, CH₃), 34.7 (C), 35.0 (C), 36.4 (d, *J* = 29.9 Hz, CH₂), 38.0 (C), 38.8 (C), 122.5 (CH), 123.0 (d, *J* = 2.0 Hz, CH), 126.3 (d, *J* = 5.7 Hz, CH), 128.7 (d, *J* = 9.6 Hz, CH), 128.8 (d, *J* = 53.2 Hz, C), 131.2 (d, *J* = 1.9 Hz, CH), 133.1 (d, *J* = 9.6 Hz, CH), 134.6 (br, C), 137.6 (dd, *J* = 67, 12 Hz, C),^{*1)} 139.5 (d, *J* = 61 Hz, C),^{*1)} 149.8 (C), 150.6 (C), 153.7 (d, *J* = 4.8 Hz, C), 154.0 (C); ³¹P {¹H} NMR (162 MHz, CDCl₃) δ = 528.9 (d, ¹*J*_{PP} = 579 Hz, P=PAr), 479.2 (d, ¹*J*_{PP} = 579 Hz, P=PAr), 21.1 (br, PBH₃); ¹¹B {¹H} NMR (129 MHz, CDCl₃) δ = -35.9 (br). HRMS (ESI) *m*/*z* found: 709.4396 ([M+H]⁺), calcd for C₄₅H₆₅BP₃ 709.4392. IR (KBr) v_{max}/cm⁻¹ 2965, 2401 (BH), 2368 (BH), 1596, 1361, 1237, 1060.

*1) The signals were tentatively assigned due to their low intensities.

Synthesis of diphosphene-rhodium complex 7.

To a solution of $[Rh(cod)_2]BF_4$ (40.5 mg, 99.7 µmol) in CH₂Cl₂ (2.5 mL) was added dropwise a solution of diphosphene–phosphineborane ligand **1** (74.4 mg, 105 µmol) in CH₂Cl₂ (2.5 mL). After stirring at room temperature for 1.5 h, the reaction mixture was filtered through a pad of Celite to remove a black precipitate. The solvent of the filtrate was removed under reduce pressuere. The residue was washed with hexane and then reprecipitated with CH₂Cl₂/hexane to give **7** as red crystals (84.5 mg, 83.9 µmol, 80%). Mp. 151 °C (decomp). ¹H NMR (500 MHz, CD₂Cl₂) $\delta = -0.56$ (br, d, J = 105 Hz, 3H, BH₃), 0.99 (s, 9H, ¹Bu), 1.38 (s, 9H, ¹Bu), 1.43 (s, 9H, ¹Bu), 1.54 (s, 9H, ¹Bu), 1.66-1.74 (m, 1H, cod), 1.82 (s, 9H, ¹Bu), 1.85-1.97 (m, 2H, cod), 2.10-2.15 (m, 2H, cod), 2.15-2.20 (m, 1H, cod), 2.29 (dd, J = 15.1, 6.9 Hz, 1H, cod), 2.58 (dtd, J = 16.0, 10.0, 6.9 Hz, 1H, cod), 2.80-2.84 (m, 1H, cod), 3.81-3.86 (m, 1H, cod), 3.97 (dd, J = 17.7, 14.0 Hz, 1H, CH₂), 4.34 (dd, J = 14.0, 8.1 Hz, 1H, CH₂), 4.86-4.91 (m, 1H, cod), 5.60 (dd, J = 7.8, 7.8 Hz, 1H, cod), 6.31 (dd, J = 1.9, 1.9 Hz, 1H, aromH), 7.02 (ddd, J = 12.0, 8.2, 1.3 Hz, 2H, Ph), 7.33 (ddd, J = 8.0, 8.0, 2.7 Hz, 2H, Ph), 7.40 (d, J = 1.6 Hz, 1H, aromH), 7.49-7.53 (m, 1H, Ph), 7.56 (d, J = 1.9 Hz, 2H, aromH), 7.68-7.71 (m, 2H, Ph), 7.75-7.79 (m, 3H, Ph); ¹³C {¹H} NMR (126 MHz, CD₂Cl₂) $\delta = 25.0$ (CH₂), 30.5 (CH₂), 30.8 (CH₃), 31.5 (CH₃), 31.7 (CH₂), 33.3 (d, J = 33.8 Hz, CH₂), 34.0 (br, CH₃), 34.5 (br, CH₃), 34.6 (CH₃), 34.8 (C), 35.3 (C), 37.8 (CH₂), 38.8 (×2C), 39.4 (C), 75.8 (CH), 75.9 (CH),

106.0 (CH), 109.5 (CH), 122.9 (CH), 123.9 (CH), 124.6 (d, J = 51.9 Hz, C), 125.2 (d, J = 54.3 Hz, C), 125.7 (br, CH), 128.0 (br, CH), 129.5 (d, J = 10.9 Hz, CH), 130.1 (d, J = 9.6 Hz, CH), 132.5 (d, J = 7.2 Hz, CH), 133.3 (d, J = 9.7 Hz, CH), 133.5 (CH), 133.9 (br, C), 153.5 (C), 153.9 (d, J = 3.6 Hz, C), 155.5 (C), 156.1 (d, J = 10.8 Hz, C), 156.3 (d, J = 10.8 Hz, C). The ¹³C signals bound to the phosphorus atoms could not be assigned due to their low intensities; ³¹P {¹H} NMR (162 MHz, CD₂Cl₂) $\delta = 439.8$ (d, ¹ $J_{PP} = 544$ Hz, ² $J_{PRh} = 18$ Hz, Mes**P*=P), 348.7 (dd, ¹ $J_{PP} = 544$ Hz, ¹ $J_{PRh} = 149$ Hz, P=*P*[Rh]Ar), 4.6 (br q, J = 114 Hz, PBH₃); ¹¹B {¹H} NMR (129 MHz, CD₂Cl₂) $\delta = -3.1$ (BF₄), -36.6 (br, BH₃); HRMS (ESI) *m*/*z* found: 919.4301 ([M–BF₄]⁺), calcd for C₅₃H₇₆BP₃Rh 919.4308. IR (KBr) v_{max} /cm⁻¹ 2955, 2432 (B–H), 2075 (Rh–H), 2008 (Rh–H), 1594, 1438, 1058.

Coupling reaction of benzimidazole (12) with cyclohexylallene (13).⁸⁷

Diphosphene–rhodium complex 7 (2.0 mg, 2.0 μ mol), benzimidazole (9.3 mg, 79 μ mol), cyclohexylallene (58 μ L, 397 μ mol), and 1,2-dichloroethane (0.32 mL) was successively charged in a 5 mL screw vial in a glovebox filled with argon and sealed. The reaction mixture was stirred at 80 °C for 24 h. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by PTLC on silica gel to give **14** as a yellow oil (6.7 mg, 28 μ mol, 35%).

¹H and ¹³C NMR spectral data are identical to those in the literature.^{S7} ¹H NMR (400 MHz, CDCl₃) δ = 0.85-0.94 (m, 1H, Cy), 0.99-1.10 (m, 1H, Cy), 1.10-1.21 (m, 2H, Cy), 1.22-1.31 (m, 1H, Cy), 1.31-1.39 (m, 1H, Cy), 1.62-1.69 (m, 2H, Cy), 1.78-1.84 (m, 1H, Cy), 1.90-2.05 (m, 2H, Cy), 4.50 (dd, *J* = 8.7, 7.5 Hz, 1H, NC*H*Cy), 5.18 (d, *J* = 17.0 Hz, 1H, CH=C*H*₂), 5.28 (d, *J* = 10.3 Hz, 1H, CH=C*H*₂), 6.17 (ddd, *J* = 17.0, 10.3, 7.5 Hz, 1H, C*H*=CH₂), 7.25-7.30 (m, 2H, aromH), 7.38-7.43 (m, 1H, aromH), 7.79-7.84 (m, 1H, aromH), 7.92 (s, 1H, imidazoleH); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ = 25.7 (CH₂), 25.8 (CH₂), 26.1 (CH₂), 29.7 (CH₂), 30.4 (CH₂), 41.3 (CH), 64.8 (CH), 110.6 (CH), 119.0 (CH₂), 120.5 (CH), 122.1 (CH), 122.7 (CH), 133.6 (C), 134.6 (CH), 142.0 (CH), 143.9 (C).

To a solution of $[Rh(cod)_2]BF_4$ (60.9 mg, 0.150 mmol) in CH_2Cl_2 (1 mL) was added dropwise N,N,N,N-tetramethylethylenediamine (169 mg, 1.45 mmol). After stirring at room temperature for 15 min, Et_2O (5 mL) was added. The resulting precipitate was filtered and washed with Et_2O to give $[Rh(tmeda)(cod)]BF_4$ as a yellow solid (60.3 mg, 0.146 mmol, 97%).

Mp. 168 °C (decomp). ¹H NMR (500 MHz, CD₂Cl₂) δ = 1.84-1.89 (m, 4H, cod), 2.43-2.49 (m, 4H, cod), 2.55 (s, 12H, NCH₃), 2.59 (s, 4H, NCH₂), 3.95 (br s, 4H, cod); ¹³C {¹H} NMR (126 MHz, CD₂Cl₂) δ = 30.2 (CH₂), 49.2 (CH₃), 61.1 (CH₂), 83.9 (d, *J* = 13.3 Hz, CH); ¹⁹F NMR (378 MHz, CD₂Cl₂) δ = -152.4; ¹¹B {¹H} NMR (129 MHz, CD₂Cl₂) δ = -2.1. HRMS (ESI) *m*/*z* found: 327.1310 ([M–BF₄]⁺), calcd for

Synthesis of [Rh(py)₂(cod)]BF₄ (15, py = pyridine).^{S8}

To a solution of $[Rh(cod)_2]BF_4$ (60.9 mg, 0.150 mmol) in CH_2Cl_2 (1 mL) was added dropwise pyridine (236 mg, 2.98 mmol). After stirring at room temperature for 15 min, Et_2O (5 mL) was added. The resulting precipitate was filtered and washed with Et_2O to give **15** as a yellow solid (57.0 mg, 0.125 mmol, 83%).

Mp. 162 °C (decomp). ¹H NMR (500 MHz, CD₂Cl₂) δ = 1.99-2.08 (m, 4H, cod), 2.63-2.70 (m, 4H, cod), 4.18 (br s, 4H, cod), 7.40-7.43 (m, 4H, py), 7.77 (tt, *J* = 7.7, 1.7 Hz, 2H, py), 8.72-8.73 (m, 4H, py); ¹³C {¹H} NMR (126 MHz, CD₂Cl₂) δ = 30.9 (CH₂), 85.7 (d, *J* = 12.1 Hz, CH), 126.5 (CH), 139.0 (CH), 150.6 (CH); ¹⁹F NMR (378 MHz, CD₂Cl₂) δ = -152.6; ¹¹B {¹H} NMR (129 MHz, CD₂Cl₂) δ = -1.9. HRMS (ESI) *m/z* found: 369.0838 ([M–BF₄]⁺), calcd for C₁₈H₂₂N₂Rh 369.0838.

2. Spectral Data

Fig. S1 ¹H NMR Spectrum of 5.

Fig. S2 ¹³C NMR Spectrum of 5.

Fig. S3 ³¹P NMR Spectrum of 5.

Fig. S4 ¹H NMR Spectrum of 3'.

Fig. S5¹³C NMR Spectrum of 3'.

Fig. S6 ³¹P NMR Spectrum of 3'.

Fig. S7 ¹H NMR Spectrum of 3.

Fig. S8 ¹³C NMR Spectrum of 3.

Fig. S9 ³¹P NMR Spectrum of 3.

Fig. S10¹¹B NMR Spectrum of 3.

Fig. S11 ¹H NMR Spectrum of 4.

Fig. S12 ¹³C NMR Spectrum of 4.

Fig. S13 ³¹P NMR Spectrum of 4.

Fig. S14 ¹¹B NMR Spectrum of 4.

Fig. S15 ¹H NMR Spectrum of 1 in CDCl₃.

Fig. S16 ¹H NMR Spectrum of 1 in CD₂Cl₂.

Fig. S17 ¹³C NMR Spectrum of 1.

Fig. S18 ³¹P NMR Spectrum of 1.

Fig. S19¹¹B NMR Spectrum of 1.

Fig. S20 ¹H NMR Spectrum of 7.

Fig. S21 ¹H-¹H COSY Spectrum of 7.

Fig. S22 ¹³C NMR Spectrum of 7.

Fig. S23 ³¹P NMR Spectrum of 7.

Fig. S24 ¹¹B NMR Spectrum of 7.

Fig. S25 IR Spectra of 1 and 7.

Fig. S26 ¹H NMR Spectrum of 14.

Fig. S27 ¹³C NMR Spectrum of 14.

Fig. S28 ¹H NMR Spectrum of [Rh(tmeda)(cod)]BF₄.

Fig. S29 ¹³C NMR Spectrum of [Rh(tmeda)(cod)]BF₄.

Fig. S30 ¹¹B NMR Spectrum of [Rh(tmeda)(cod)]BF₄.

Fig. S31 ¹⁹F NMR Spectrum of [Rh(tmeda)(cod)]BF₄.

Fig. S32 ¹H NMR Spectrum of 15.

Fig. S33 ¹³C NMR Spectrum of 15.

Fig. S34 ¹¹B NMR Spectrum of 15.

Fig. S35¹⁹F NMR Spectrum of 15.

3. Temperature-Dependent ¹H NMR Spectra

Temperature-dependent ¹H NMR spectra (500 MHz) of diphosphene–rhodium complex **7** were measured in CD_2Cl_2 with a JEOL JNM-ECZ500R spectrometer. The solution was prepared and charged into an NMR tube with a J. Young valve in a glovebox under an argon atmosphere. The spectra were measured at 20 °C, 0 °C, -20 °C, and every 10 °C from -20 °C to -90 °C. The observed NMR spectra are shown in Fig. S36.

Fig. S36 Temperature-dependent ¹H NMR spectra of 7 in CD₂Cl₂.

4. Ligand Exchange Reactions of Diphosphene-Rhodium Complex 7

4-1. Reaction of 7 with N-donor reagent (20 eq.) in CD₂Cl₂

A solution of rhodium complex 7 (2.0 mg, 2.0 μ mol) in CD₂Cl₂ (0.7 mL) was charged into an NMR tube equipped with a J. Young valve under an argon atmosphere, and *N*-donor reagent (20 eq.) was added. The reaction was monitored by measuring the ¹H NMR spectra. The results are summarized in Figs. S37 to S41.

4-2. Reaction of diphosphene-phosphineborane ligand 1 with [Rh(py)2(cod)]BF4 (15) in CD2Cl2

Diphosphene–phosphineborane ligand **1** (2.1 mg, 3.0 μ mol) and **15** (1.3 mg, 2.9 μ mol) were charged into an NMR tube equipped with a J. Young valve under an argon atmosphere, and CD₂Cl₂ (0.7 mL) was added. The reaction was monitored by measuring the ¹H NMR spectra. The results are summarized in Figs. 3c and S40c.

Fig. S37 Reaction of **7** with *N*-methylpyrrolidine (20 eq.) at room temperature monitored by ¹H NMR spectra in CD_2Cl_2 .

Fig. S38 Reaction of 7 with Et₃N (20 eq.) at room temperature monitored by ¹H NMR spectra in CD₂Cl₂.

Fig. S39 ¹H NMR spectum of the crude mixture of the reaction of **7** with TMEDA (20 eq.) at room temperature.

Fig. S40 ¹H NMR spectra measured in CD_2Cl_2 (a) after the reaction of rhodium complex 7 with pyridine (20 eq.); (b) after removal of unreacted pyridine from the reaction mixture; (c) after the treatment of 1 with $[Rh(py)_2(cod)]BF_4$ (15, 1 eq.).

Fig. S41 Reaction of 7 with MeCN (20 eq.) at room temperature monitored by ¹H NMR spectra in CD₂Cl₂.

4-3. Titration of pyridine into a solution of diphosphene-rhodium complex 7 in CD₂Cl₂

Diphosphene–rhodium complex **7** (2 mg, 2 μ mol), CD₂Cl₂ (0.70 mL), and 1,4-dioxane (0.196 M in CD₂Cl₂; 5.1 μ L, 1.0 μ mol) were charged into an NMR tube equipped with a J. Young valve under an argon atmosphere. Pyridine (0.996 M in CD₂Cl₂) was added, and ¹H NMR (500 MHz) spectra were measured. The integrals of the doublet of doublets signal of **7** at 6.31 ppm (1H), the multiplet signal of pyridine around 8.6 ppm (2H), the doublet signal of **1** at 4.05 ppm (2H), the multiplet signal of **15** around 4.1 ppm (4H), and the singlet signal of 1,4-dioxane at 3.65 ppm (8H; 1.0 μ mol) as the internal standard were used.

Fig. S42 ¹H NMR spectra of the titration of pyridine (0.996 M in CD₂Cl₂) into diphosphene–rhodium complex **7** in CD₂Cl₂.

Table S1 Integral intensities, amounts (μ mol), and concentrations (mol L⁻¹) of diphosphene–rhodium complex 7, pyridine (py), diphosphene–phosphineborane ligand 1, and [Rh(py)₂(cod)]BF₄ (15) after titration with pyridine (0.996 M in CD₂Cl₂).

				Compound			
Addition		7	ру	1	15	dioxane ^a	$K_{\rm eq}{}^b$
0 µL	Integral	0.954	_	_	_	8.0	
(0 µmol)	Amount (µmol)	0.954	-	_	_	1.0	
	Conc. (mol L^{-1})	1.35×10^{-3}	_	_	_		
1 µL	Integral	1.03	1.09	n.d. ^c	0.632	8.0	
(1 µmol)	Amount (µmol)	1.03	0.547	—	0.158	1.0	
	Conc. (mol L^{-1})	1.45×10^{-3}	$7.75 imes 10^{-4}$	_	$2.24 imes 10^{-4}$		-
2 µL	Integral	0.996	3.37	0.034	0.737	8.0	
(2 µmol)	Amount (µmol)	0.996	1.69	0.017	0.184	1.0	
	Conc. (mol L^{-1})	1.41×10^{-3}	2.39×10^{-3}	2.40×10^{-5}	2.61×10^{-4}		0.78
4 μL	Integral	0.910	7.42	0.144	1.19	8.0	
(4 µmol)	Amount (µmol)	0.910	3.71	0.072	0.297	1.0	
	Conc. (mol L^{-1})	1.28×10^{-3}	$5.23 imes 10^{-3}$	1.02×10^{-4}	4.19×10^{-4}		1.21
7 μL	Integral	0.830	14.3	0.318	1.65	8.0	
(7 µmol)	Amount (µmol)	0.830	7.14	0.159	0.414	1.0	
	Conc. (mol L^{-1})	1.17×10^{-3}	$1.00 imes 10^{-2}$	$2.23 imes 10^{-4}$	$5.81 imes 10^{-4}$		1.11
10 µL	Integral	0.690	21.3	0.531	2.01	8.0	
(10 µmol)	Amount (µmol)	0.690	10.6	0.266	0.503	1.0	
	Conc. (mol L^{-1})	9.65×10^{-4}	$1.49 imes 10^{-2}$	3.71×10^{-4}	$7.04 imes 10^{-4}$		1.23
15 µL	Integral	0.536	35.0	0.752	2.77	8.0	
(15 µmol)	Amount (µmol)	0.536	17.5	0.376	0.692	1.0	
	Conc. (mol L^{-1})	7.44×10^{-4}	2.43×10^{-2}	5.22×10^{-4}	$9.61 imes 10^{-4}$		1.14
20 µL	Integral	0.455	44.8	0.919	3.10	8.0	
(20 µmol)	Amount (µmol)	0.455	22.4	0.460	0.775	1.0	
	Conc. (mol L^{-1})	$6.28 imes 10^{-4}$	3.09×10^{-2}	$6.34 imes 10^{-4}$	1.07×10^{-3}		1.13
25 µL	Integral	0.353	57.4	1.05	3.49	8.0	
(25 µmol)	Amount (µmol)	0.353	28.7	0.527	0.874	1.0	
	Conc. (mol L^{-1})	$4.83 imes 10^{-4}$	$3.93 imes 10^{-2}$	7.21×10^{-4}	$1.20 imes 10^{-3}$		1.15

a) Internal standard. b) Equilibrium constant, $K_{eq} = ([1] \cdot [15])/([7] \cdot [py]^2)$. c) Not determined owing to the low intensity.

5. X-ray Crystallographic Analysis

Orange crystals of diphosphene-phosphineborane ligand 1 and red-orange crystals of diphosphenerhodium complex 7 were grown by slow evaporation of hexane solution (for 1) and recrystallization from 1,2-dichloroethane/diisopropyl ether at -25 °C in a glovebox under an argon atmosphere. X-ray data of 1 were collected on a Rigaku Saturn diffractometer with VariMax multi-layer mirror monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å) at -170 °C. The data were corrected for Lorentz and polarization effects. An empirical absorption correction based on multiple measurements of equivalent reflections was applied using the REQABS program in CrystalClear software. X-ray data of 7 were collected on an XtaLAB Synergy four-circle diffractometer (Rigaku Oxford Diffraction) with a HyPix-6000HE hybrid pixel two-dimensional detector and a PhotonJet monochromated Cu-K α radiation ($\lambda = 1.5418$ Å) at -173 °C. An empirical absorption correction was applied using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm in CrysAlisPro (1.171.42.72a) software. The structures were solved by direct methods (SIR2014^{\$9} for 1 and SHELXS2013^{\$10} for 7) and refined by the full-matrix least squares method against F^2 using all data. Non-hydrogen atoms were refined anisotropically, whereas all hydrogen atoms were generated by AFIX instructions. Hydrogen atoms of BH3 in diphosphene-rhodium complex 7 were located from difference Fourier maps and refined isotropically. All calculations were performed using the Yadokari-XG 2009^{S11} software package except for refinement, which was performed using SHELXL-2013.^{S12}

Crystal data for **1** (CCDC-2301466): Crystal Size, $0.17 \times 0.15 \times 0.10$ mm; Molecular formula; C₄₅H₆₄BP₃; Molecular weight, M = 708.68; T = -170 °C; triclinic; *P*-1 (#2); a = 9.875(4) Å, b = 12.159(4) Å, c = 19.275(7) Å, $\alpha = 102.317(4)^{\circ}$, $\beta = 101.497(4)^{\circ}$, $\gamma = 100.4456(13)^{\circ}$, V = 2154.2(13) Å³, Z = 2, $D_{calc} = 1.093$ g cm⁻³, $\mu = 0.167$ cm⁻¹, $2\theta_{max} = 55.0^{\circ}$, 22513 measured reflections, 9741 independent reflections [$R_{int} = 0.0353$], 526 refined parameters, Completeness to $\theta = 99.1\%$, $R_1 = 0.0437$ [$I > 2\sigma(I)$], $wR_2 = 0.1197$ (all data), GOF = 1.053, largest diff. peak/hole 0.419/-0.229 e.Å⁻³.

Crystal data for **7** (CCDC-2301467): Crystal Size, $0.18 \times 0.15 \times 0.05$ mm; Molecular formula; C₅₉H₈₈B₂Cl₆F₄P₃Rh; Molecular weight, M = 1303.43; T = -173 °C; triclinic; *P*-1 (#2); a = 10.4512(2) Å, b = 13.8345(3) Å, c = 23.1447(4) Å, $\alpha = 97.4885(16)^{\circ}$, $\beta = 96.6648(17)^{\circ}$, $\gamma = 101.8517(17)^{\circ}$, V = 3211.78(11) Å³, Z = 2, $D_{calc} = 1.348$ g cm⁻³, $\mu = 5.531$ cm⁻¹, $2\theta_{max} = 156.0^{\circ}$, 45374 measured reflections, 13105 independent reflections [$R_{int} = 0.0561$], 704 refined parameters, Completeness to $\theta = 99.9\%$, $R_1 = 0.0527$ [$I > 2\sigma(I)$], $wR_2 = 0.1378$ (all data), GOF = 1.022, largest diff. peak/hole 1.827/-1.248 e.Å⁻³.
 Table S2 Selected structural parameters of Mes*-substituted diphosphenes and rhodium complex 7.

structural					
parameter	1	7	S1 ^c	$\mathbf{S2}^{d}$	S3 ^e
d(P1=P2) /Å	2.0406(8)	2.0414(11)	2.034(2)	2.0240(13)	2.0323(6)
<i>d</i> (P1–C1) /Å	1.8598(15)	1.850(3)	1.862(2)	1.846(3)	1.8523(13)
<i>d</i> (P2–C2) /Å	1.8593(15)	1.852(3)	_	1.860(3)	1.8565(13)
<i>d</i> (P–B) /Å	1.924(2)	1.927(4)	_	_	-
deg(C1-P1-P2) /º	100.39(6)	101.80(10)	102.8(1)	101.19(11)	98.59(4)
deg(P1-P2-C2) /º	98.73(5)	106.15(10)		97.99(11)	103.07(4)
(CPP)–(R) /º a	65.2	76.5	63.9 ^f	82.5 ^f	77.0
(CPP)–(Mes*) /• b	75.7	82.9	—	84.1 ^{<i>f</i>}	89.1

^{*a*} Dihedral angles between the CPP plane containing the C1 atom and its benzene ring of substituent R. ^{*b*} Dihedral angles between the CPP plane containing the C2 atom and the benzene ring of the Mes* groups. ^{*c*} Ref S13. ^{*d*} Ref S14. ^{*e*} Ref S15. ^{*f*} Reinvestigated from information in the deposited cif files.

Table S3 Selected structural parameters of rhodium complexes 7, 8c, and 9c with bidentate ligand including a phosphinoborane moiety.

Ph₂

 \cap

structural			
parameter	7	8c ^{<i>a</i>}	9 c ^{<i>b</i>}
d(Rh–P1) /Å	2.2694(8)	2.2743(7)	2.2483(4)
<i>d</i> (Rh…B) /Å	2.348(4)	2.313(3)	2.331(2)
<i>d</i> (Rh–C1)/Å	2.161(3)	2.124(3)	2.120(2)
<i>d</i> (Rh–C2)/Å	2.126(3)	2.126(3)	2.120(2)
d(Rh–C3) /Å	2.234(3)	2.249(3)	2.264(2)
<i>d</i> (Rh–C4) /Å	2.274(3)	2.271(3)	2.271(2)
<i>d</i> (Rh–H1) /Å	1.98(4)	1.82(4)	1.96(3)
<i>d</i> (Rh–H2) /Å	2.04(3)	1.91(3)	1.85(3)
<i>d</i> (P2–B) /Å	1.927(4)	1.923(3)	1.928(3)
<i>d</i> (B–H1) /Å	1.13(4)	1.16(3)	1.13(3)
<i>d</i> (B–H2)/Å	1.19(3)	1.16(3)	1.24(3)
<i>d</i> (B–H3)/Å	1.06(6)	1.09(3)	1.00(3)
deg(P1-Rh-B) /º	92.97(9)	87.26(8)	87.35(4)

^a Ref S16. ^b Ref S17.

6. UV-vis Spectra

UV-vis spectra of **1** and **7** were measured on a JASCO V-670 spectrophotometer in dichloromethane solution (ca. 2×10^{-4} M) at room temperature with a 1 mm quartz cell equipped with a screw cap filled with argon. Dichloromethane (Nacalai Tesque Inc., spectral grade solvent) was dried over calcium hydride, degassed by freeze-pump-thaw cycles, distilled in a vacuum line, and stored in a glovebox. The results are shown in Fig. 3a and Table S4.

Compound	$\lambda / \text{nm} (\epsilon / M^{-1} \text{ cm}^{-1})$				
1	464 (400)	338 ^a (4190)	276 (10670)		
7		398 ^{<i>a</i>} (3840)	300 ^a (13900)		
$\mathbf{S1}^{b}$	460 (1360)	340 (7690)	284 (15660)		
S3 ^c	455 (500)	334 (7060)	275 (22300)		

Table S4 UV-vis spectral data of 1, 7 and related diphosphenes.

^{*a*} Observed as a shoulder. ^{*b*} Ref S13. ^{*c*} Ref S15.

Fig. S43 Photographs of dichloromethane solutions of (*a*) 1 and (*b*) 7.

7. Theoretical Calculations

All theoretical calculations were performed using the Gaussian 09^{S18} program on an NEC LX 110Rh-1 system of the Research Center for Computational Science, Japan. All structures were optimized without any symmetry assumptions. Zero-point energy, enthalpy, and Gibbs free energy at 298.15 K and 1 atm were estimated from the gas-phase studies. Harmonic vibration frequency calculations at the same level were performed to verify all stationary points as local minima (with no imaginary frequency). The structures of **1**, the cation moieties of **7**, **7**', and **8c**, and cations **10** and **11** were optimized using M06^{S19} functional with the basis set of SDD^{S20} (Rh) and 6-31G(d) (other atoms) level. NBO calculations^{S21} were carried out using PBE0 functional^{S22} with the basis set of SDD (Rh) and 6-311+G(d) (other atoms) level. TD–DFT calculations of **1** and the cation moiety of **7** were performed at M06/SDD (Rh) and 6-311+G(2d,p) (other atoms) level in conjunction with the PCM model (dichloromethane)^{S23} to evaluate solvation effects.

Table S5 Uncorrected and thermal-corrected (298 K) energies of stationary points (Hartree).^a

	Ε	E + ZPE	Н	G
1	-2800.76167967	-2799.781339	-2799.726872	-2799.865429
7	-3222.96068351	-3221.793828	-3221.730714	-3221.885013
7'	-2437.35583442	-2436.753538	-2436.716494	-2436.823154
8c	-2096.65444604	-2096.042796	-2096.007439	-2096.108610
10	-2206.48069235	-2205.959836	-2205.927365	-2206.024793
11	-2327.51461814	-2326.820790	-2326.780756	-2326.892353

^{*a*} *E*: electronic energy; *ZPE*: zero-point energy; $H (= E + ZPE + E_{vib} + E_{rot} + E_{trans} + RT)$: sum of electronic and thermal enthalpies; G (= H - TS): sum of electronic and thermal free energies.

Table S6 Selected structural parameters of rhodium complexes of bidentate ligand with a phosphinoborane moiety.

structural					
parameter	7	7'	10	11	8c
d(P1-P2) /Å	2.051	2.043	2.043	_	_
<i>d</i> (Rh–P1)/Å	2.345	2.294	2.310	2.390	2.324
$(WBI)^a$	$(0.509)^a$	$(0.558)^a$	$(0.551)^a$	$(0.501)^a$	$(0.532)^{a}$
d(Rh…B) /Å	2.394	2.392	2.404	2.375	2.375
<i>d</i> (Rh–C1)/Å	2.139	2.154	2.166	2.142	2.140
<i>d</i> (Rh–C2) /Å	2.172	2.169	2.161	2.156	2.152
<i>d</i> (Rh–C3)/Å	2.286	2.282	2.275	2.285	2.282
<i>d</i> (Rh–C4) /Å	2.238	2.258	2.252	2.263	2.261
<i>d</i> (Rh–H1) /Å	2.021	2.046	2.133	1.955	2.059
<i>d</i> (Rh–H2)/Å	2.036	2.012	1.919	2.093	1.941
<i>d</i> (P2–B) /Å	1.929	1.932	1.939	1.919	1.939
<i>d</i> (B–H1)/Å	1.246	1.242	1.236	1.256	1.244
<i>d</i> (B–H2)/Å	1.240	1.249	1.261	1.237	1.254
<i>d</i> (B–H3)/Å	1.208	1.208	1.203	1.208	1.203
deg(P1-Rh-B) /º	93.9	92.3	84.6	96.1	86.9

^{*a*} Wiberg bond index.

Table S7 Natural bond orbital analysis selected for the Rh–P moiety.

0.0000

-0.0005

0.0185

0.3758

0.0024

-0.0003

0.0002

0.0011

0.0034

-0.2229

0.0085

0.0249

-0.0052

0.0083

0.0122

0.0000

-0.0005

0.0213

0.0002

-0.0130

-0.3159

0.0000

-0.0004

0.0046

-0.0021

0.0000

-0.0024

0.0019

0.0493

0.0299

0.0160

0.0003

0.0000 0.0482

-0.5036

0.0050

(Occupancy) Bond orbital / Coefficients / Hybrids

7 78. (1.59910) LP (1) P2 s(74.82%)p 0.34(25.16%)d 0.00(0.03%) 0.0000 0.0000 0.8648 -0.0141 0.0000 0.0000 -0.2092 -0.0018 -0.0018 0.0000 0.0000 0.2554 0.0000 0.0005 -0.0002 0.0000 0.0314 -0.0002 0.0007 0.0000 0.0012 0.0122 -0.0074 0.0071 7' 59. (1.95121) BD (1) Rh 1 - P2 0.5816*Rh 1 s(14.60%)p 0.02(0.23%)d 5.83(85.17%) (33.82%) 0.0000 0.3820 -0.0055 0.0058 -0.0002 0.0000 0.0031 0.0082 0.0010 0.0000 -0.0003 -0.0040 0.0002 0.0000 -0.0467 -0.0051 0.0001 0.2144 0.0098 0.0057 -0.0147 -0.0138 0.1598 0.0026 -0.0119 -0.2858 -0.0072 0.8029 0.0523 (66.18%) 0.8135* P 2 s(42.99%)p 1.32(56.93%)d 0.00(0.08%) 0.0000 0.0000 0.6546 0.0372 0.0000 0.0000 0.0007 0.1688 0.0066 -0.0031 0.0000 0.0000 -0.0027 0.0018 0.0000 -0.0003 -0.7349 -0.0198 -0.0032 -0.0039 -0.0153 -0.0041 -0.0026 -0.0068 10 s(77.58%)p 0.29(22.37%)d 0.00(0.05%) 52. (1.60305) LP (1) P2 0.0000 0.0000 0.8806 0.0184 0.0006 0.0000 0.0000 -0.3253 -0.0002 -0.0036 -0.0001 0.0000 -0.0001 -0.0275 -0.0010 -0.0026 0.1296 0.0175 0.0068 -0.0024 0.0005 -0.0021 -0.0173 -0.0123 11 59. (1.93925) BD (1)Rh1-P2 (33.82%) 0.5816*Rh 1 s(13.78%)p 0.01(0.16%)d 6.25(86.06%) 0.0000 0.3711 -0.0068 -0.0055 0.0005 0.0000 -0.0003 0.0044 0.0006 0.0000 -0.0345 -0.0063 0.0000 -0.0144 -0.0005 -0.0097 0.0000 0.1802 0.0036 0.0090 0.0043 0.4747 0.0132 -0.0001 -0.7612 -0.0196 -0.0415 0.1315 0.0079 (66.18%) 0.8135* P 2 s(32.23%)p 2.10(67.70%)d 0.00(0.07%) 0.0000 0.0000 0.5671 -0.0271 0.0000 -0.0962 0.0080 0.0000 -0.0004 -0.0002 0.0000 -0.6412 0.0022 -0.0010 0.0004 0.0000

0.0018

0.0198

0.0013

-0.0158 0.0016

0.0003

0.0240

0.0015

```
53. (1.94500) BD (1)Rh 1 - P2
                  (36.82%)
                                0.6068*Rh 1 s( 11.99%)p 0.01( 0.15%)d 7.33( 87.87%)
                                                  0.0000 \quad 0.3461 \ \text{-} 0.0046 \quad 0.0051 \ \text{-} 0.0020
                                                  -0.0009 0.0000 0.0144 0.0075 0.0001
                                                  0.0007 \quad 0.0000 - 0.0155 - 0.0031 \quad 0.0012
                                                  0.0004 0.0000 -0.0309 0.0008 -0.0010
                                                 -0.0002 \ -0.4279 \ -0.0164 \ -0.0250 \ -0.4935
                                                 -0.0160 - 0.0273 \quad 0.3948 \quad 0.0101 \quad 0.0263
                                                 -0.3521 \ -0.0165 \ -0.0180 \quad 0.4104 \quad 0.0103
                                                  0.0196
                  (63.18%)
                                0.7948* P 2 s( 32.83%)p 2.04( 67.08%)d 0.00( 0.09%)
                                                   0.0000
                                                             0.0000 \quad 0.5722 \quad 0.0289
                                                                                          0.0001
                                                   0.0000
                                                             0.0000 0.3574 -0.0144
                                                                                         -0.0001
                                                   0.0022
                                                            -0.0001
                                                                      0.0000
                                                                                         0.0271
                                                                               -0.4207
                                                   0.0009
                                                             0.0008
                                                                      0.0005 0.0000
                                                                                         -0.6029
                                                             0.0023
                                                  0.0403
                                                                      -0.0012 0.0004 -0.0110
                                                            0.0204 - 0.0054 - 0.0110
                                                 -0.0162
```

Table S8. Transition energies, wavelengths, and oscillator strengths (f) of the transitions of **1** and **7** longer than 290 nm (8 states for **1** and 19 states for **7**).

Excited State 1: Singlet-A	190 -> 193 -0.17635
2.4665 eV 502.67 nm f=0.0281	Excited State 5: Singlet-A
191 -> 193 0.17702	3.5844 eV 345.90 nm f=0.0152
192 -> 193 0.67351	188 -> 193 0.64305
Excited State 2: Singlet-A	189 -> 193 -0.18694
3.2650 eV 379.74 nm f=0.0630	190 -> 193 -0.20033
188 -> 193 -0.10286	Excited State 6: Singlet-A
189 -> 193 -0.12482	3.9105 eV 317.05 nm f=0.0190
190 -> 193 -0.36717	183 -> 193 -0.10257
191 -> 193 0.56411	185 -> 193 0.13539
192 -> 193 -0.10478	186 -> 193 0.44066
Excited State 3: Singlet-A	187 -> 193 0.45565
3.4416 eV 360.26 nm f=0.0974	189 -> 193 -0.13173
186 -> 193 0.10596	191 -> 193 -0.12547
187 -> 193 0.10243	Excited State 7: Singlet-A
188 -> 193 0.21483	4.2002 eV 295.19 nm f=0.3242
190 -> 193 0.52311	192 -> 194 0.22704
191 -> 193 0.34458	192 -> 195 0.49943
192 -> 193 -0.15739	192 -> 197 -0.39972
Excited State 4: Singlet-A	Excited State 8: Singlet-A
3.5457 eV 349.67 nm f=0.0237	4.2525 eV 291.56 nm f=0.0031
187 -> 193 0.10584	183 -> 193 0.13586
188 -> 193 0.14442	186 -> 193 -0.45398
189 -> 193 0.64994	187 -> 193 0.50501

1: The 192nd orbital is the HOMO, and the 193rd orbital is the LUMO.

7: The 230th orbital is the HOMO, and the 231st orbital is the LUMO.

Excited State 1:	Singlet-A	2.6425 eV	469.19 nm f=0.0033
2.4924 eV 4	197.45 nm f=0.0084	228 -> 231	-0.16697
228 -> 231	-0.13286	228 -> 232	-0.15791
228 -> 232	-0.15575	229 -> 231	-0.37717
229 -> 231	0.11818	230 -> 231	-0.26908
230 -> 231	0.57648	230 -> 232	0.45301
230 -> 232	0.30891	Excited State 3:	Singlet-A
Excited State 2:	Singlet-A	2.8159 eV	440.31 nm f=0.0113

8c

228 -> 231 0.29679 228 -> 232 -0.18241 229 -> 2310.43986 229 -> 232 0.11651 230 -> 231 -0.23136 0.29172 230 -> 232 Excited State 4: Singlet-A 2.9060 eV 426.65 nm f=0.0326 219 -> 232 -0.10328 223 -> 232 0.14406 227 -> 231 -0.14761 227 -> 232 -0.12050 228 -> 231 0.44636 228 -> 232 0.20619 229 -> 231 -0.12008 229 -> 232 -0.32102 230 -> 232 0.12243 Excited State 5: Singlet-A 3.0682 eV 404.10 nm f=0.0085 219 -> 232 -0.12988 223 -> 232 0.18079 226 -> 231 0.21609 226 -> 232 0.16882 227 -> 231 0.41091 227 -> 232 0.21947 228 -> 231 -0.12687 228 -> 232 0.27965 Excited State 6: Singlet-A 3.1452 eV 394.21 nm f=0.0487 -0.14469 223 -> 231 223 -> 232 -0.27097 226 -> 231 0.13175 227 -> 231 0.26854 227 -> 232 0.17617 228 -> 231 0.32784 228 -> 232 -0.23158 -0.23555 229 -> 231 0.10155 230 -> 231 230 -> 232 -0.11009 Excited State 7: Singlet-A 3.2298 eV 383.87 nm f=0.0488 218 -> 232 -0.11817 223 -> 231 0.14482 223 -> 232 0.22555 224 -> 231 -0.10594 224 -> 232 -0.11727 225 -> 231 -0.20538 225 -> 232 -0.12334227 -> 231 -0.11879 227 -> 232 0.23784 $228 \rightarrow 231$ 0.11963 229 -> 231 -0.22220 229 -> 232 0.36637 Excited State 8: Singlet-A 3.3527 eV 369.80 nm f=0.0023 223 -> 231 -0.16066 224 -> 231 0.16169 225 -> 231 0.23240 226 -> 232 0.24238 227 -> 231 -0.33986 227 -> 232 0.39020 228 -> 232 0.10521 Excited State 9: Singlet-A

3.4227 eV 362.24 nm f=0.0022 $224 \rightarrow 231$ -0.14846 $225 \rightarrow 231$ -0.11846 226 -> 231 0.60085 227 -> 231 -0.30300 Excited State 10: Singlet-A 3.4970 eV 354.54 nm f=0.0649 218 -> 232 -0.10664 223 -> 231 -0.10212 223 -> 232 0.23199 224 -> 231 0.27023 225 -> 231 0.42808 225 -> 232 -0.15987 226 -> 231 0.20265 226 -> 232 -0.10288227 -> 232 -0.13832229 -> 232 0.16637 Excited State 11: Singlet-A 3.5587 eV 348.39 nm f=0.0019 223 -> 231 0.59368 223 -> 232 -0.12925 224 -> 231 0.26100 228 -> 232 -0.11028 Excited State 12: Singlet-A 3.5887 eV 345.49 nm f=0.0022 223 -> 231 -0.15091 224 -> 231 0.52665 225 -> 231 -0.42433Excited State 13: Singlet-A 3.8110 eV 325.33 nm f=0.0333 228 -> 233 -0.13770 230 -> 233 0.56723 230 -> 237 0.23566 Excited State 14: Singlet-A 3.9643 eV 312.75 nm f=0.1898 223 -> 232 -0.18237 224 -> 232 0.14146 225 -> 232 0.19572 228 -> 232 0.37062 229 -> 232 0.30624 230 -> 232 0.23447 Excited State 15: Singlet-A 3.9962 eV 310.26 nm f=0.0053 217 -> 231 0.18366 218 -> 231 0.26447 219 -> 231 0.32764 220 -> 231 0.27944 221 -> 231 0.29522 222 -> 231 0.22369 223 -> 232 0.10055 Excited State 16: Singlet-A 4.0729 eV 304.41 nm f=0.0327 217 -> 231 0.15459 218 -> 231 0.35260 222 -> 231 -0.11726 223 -> 232 -0.10612 228 -> 232 0.10196 228 -> 233 -0.15154 229 -> 233 0.44030 Excited State 17: Singlet-A 4.1457 eV 299.06 nm f=0.0258 217 -> 231 0.11617 218 -> 231 0.33588

219 -> 231	-0.13835	222 -> 231	0.51703
221 -> 231	-0.12919	228 -> 233	-0.10675
222 -> 231	-0.19220	Excited State 19	: Singlet-A
228 -> 233	0.26837	4.2609 eV	290.98 nm f=0.1067
229 -> 232	0.16068	222 -> 231	0.18687
229 -> 233	-0.32153	226 -> 232	-0.18777
Excited State 18	S: Singlet-A	227 -> 232	0.14672
4.2067 eV	294.73 nm f=0.0032	228 -> 233	0.36091
216 -> 231	-0.21211	229 -> 233	0.18093
218 -> 231	0.18585	230 -> 233	0.25823
219 -> 231	-0.17663	230 -> 235	-0.20875
220 -> 231	-0.20705	230 -> 237	-0.17122

Fig. S44 Energy diagram of $1, 7^+$ and 11^+ (Isovalue = 0.03).

 Table S9 Atomic coordinates of the optimized structures.

1

Р	1.10794900	-0.95508300	-1.36284600
Р	0.27268600	-0.79989000	0.51064500
Р	-2.85940600	2.26910100	-0.31968300
С	2.87558500	-0.53563400	-0.93038700
С	-1.49373600	-1.21021000	0.06706200
С	-2.19764700	-0.37342200	-0.82541600
С	4.47892500	0.94570600	0.10781300
Н	4.75677600	1.94733700	0.42056100
С	4.98937800	-1.35625800	-0.09889500
Н	5.69109800	-2.17093300	0.05109700
С	-1.77038600	1.02659300	-1.17199000
Н	-1.86815400	1.21517000	-2.25173200
Н	-0.73774900	1.25042000	-0.89033300
С	-3.41566200	-2.67449400	0.05640700
Н	-3.92715600	-3.55807200	0.42638900
С	3.81356000	-1.60534400	-0.79964700
С	-4.06587100	-1.92064800	-0.92460600
С	-3.44014800	-0.75696400	-1.33475300
Н	-3.92394000	-0.08945700	-2.04536200
С	3.28136300	0.78207300	-0.60119800
С	-1.88954700	3.80782600	-0.42461200
С	5.31963800	-0.10741300	0.42697100
С	-5.43730700	-2.34439400	-1.43881000
С	-2.15957000	-2.36398700	0.57565700
С	-1.25383500	4.13494300	-1.62606400
Н	-1.31136000	3.45917500	-2.47983800
С	2.55166600	2.08273200	-1.01474900
С	1.73909700	1.92406600	-2.30464400
Н	0.87824900	1.24994300	-2.21973500
Н	2.37108200	1.54433900	-3.11979200
Н	1.34057500	2.90238800	-2.60906900
С	-5.91318900	-1.46832300	-2.59637900
Н	-6.04038700	-0.41916900	-2.29555700
Н	-6.88671500	-1.82964200	-2.95488100
Н	-5.21368800	-1.50125300	-3.44352800
С	-6.45118500	-2.21910500	-0.29552000
Н	-6.17998500	-2.84856000	0.56275000
Н	-7.45124000	-2.52455900	-0.63575700
Н	-6.51307400	-1.17833800	0.05279900
С	-5.38949800	-3.79571700	-1.92787300
Н	-4.65834200	-3.91251000	-2.73951000

Н	-6.37433300	-4.09740700	-2.31180600
Н	-5.11877600	-4.49813000	-1.12893700
С	-1.83248600	4.70878400	0.64097600
Н	-2.33923900	4.47494600	1.57686900
С	-0.54667100	5.32570500	-1.74822100
Н	-0.05091900	5.56524000	-2.68800100
С	1.67092000	2.61292000	0.12250900
Н	1.18828800	3.55858500	-0.16833700
Н	2.27289900	2.79621100	1.02345300
Н	0.88699800	1.89610900	0.39570200
С	3.64010700	-2.99320600	-1.45995900
С	-0.47676900	6.20801000	-0.67418700
Н	0.07720500	7.14028000	-0.76859200
С	6.59590400	0.05962200	1.24705700
С	-1 59509200	-3 24706200	1 70581700
C	3,57310600	3,18829900	-1.34525300
н	3 03949200	4 05202000	-1 76647300
н	4 31095400	2 84810200	-2 08438400
н	4 11396200	3 55795700	-0.46614300
C	-0.30249200	-3 95500900	1 28592600
н	-0.44248100	-4 50653500	0.34502100
н	0.00240700	4 67317600	2.06079000
н ц	0.53177100	3 25771800	1 14677700
n C	1 12667000	-3.23771800 5.00060100	0.51678400
с u	-1.1200/900	6 50232200	1 25610200
n C	-1.08559000	1.75652400	1.33019300
c	-2.85510500	1.73032400	1.42438000
U U	4.00804100	1.23938400	1.97209300
п	-4.91310300	1.21250800	1.30000100
C II	-2.5/1/1600	-4.350/0100	2.12822600
н	-2.76636700	-5.06948000	1.32047400
н	-3.53199100	-3.94/93800	2.4//63/00
п	-2.12957400	-4.9112//00	2.96226300
U U	-1.349/9900	-2.38813000	2.95374300
п	-1.02/49200	-3.02393600	3.79110100
н	-2.2/046200	-1.864/0400	3.24947800
Н	-0.5/085000	-1.63045300	2.80137700
C	2.569/8800	-3.852/3100	-0.///30300
H	2.74491500	-3.90/29400	0.30688200
H	2.60155200	-4.87607700	-1.17871500
Н	1.55363300	-3.4/443300	-0.93664300
C	3.30925400	-2.82145300	-2.94953900
Н	3.23758800	-3.80677600	-3.43181300
Н	4.09814400	-2.25013500	-3.45780300
Н	2.35494600	-2.30852300	-3.12108200
С	-1.66965200	1.79138300	2.20062800
Н	-0.74426900	2.19705600	1.78864100
С	4.93680000	-3.81255600	-1.41066500
Η	5.20893600	-4.10746400	-0.38828800
Η	5.78502000	-3.27698300	-1.85806200
Η	4.79069900	-4.73817900	-1.98252300
С	6.77077000	1.48548400	1.76514600
Η	5.92247000	1.79825200	2.38964200
Η	6.88144400	2.20985800	0.94645900
Н	7.67798300	1.54557700	2.38139600

В	-4.61963700	2.53212800	-1.08059300
Н	-5.27330700	1.52080800	-0.92543400
Н	-4.36438100	2.77922400	-2.24536500
Н	-5.04333000	3.48906700	-0.46366600
С	7.81253400	-0.28447100	0.37964600
Н	7.86361500	0.37279700	-0.49933300
Н	7.78466700	-1.32175000	0.02074300
Н	8.74083600	-0.15691400	0.95517800
С	6.54854800	-0.87929800	2.45808600

7

Rh	-0.59672700	0.48341700	1.82828200
Р	-0.16747900	-0.85112800	-0.05186100
Р	2.58226800	1.92273400	0.06680100
Р	-1.04785500	-1.40025900	-1.82112600
С	-1.09991500	1.08331600	-3.57397800
Н	-0.30488400	0.49943100	-3.09336900
Н	-0.59607800	1.89373700	-4.12005600
Н	-1.58385400	0.43611000	-4.31895100
С	-1.18825300	1.95198500	3.47686600
Н	-0.58634700	2.82808200	3.22940500
С	2.48008700	3.61637900	-0.56964400
С	-1.41111200	2.51980900	-1.53502700
Н	-2.13285900	3.05663900	-0.90207700
Н	-0.75278300	3.27205900	-1.99701800
Н	-0.80820700	1.89131800	-0.86453500
С	-2.12419900	1.68662100	-2.60627200
С	1.25037700	-3.84192900	0.86038000
С	-5.28788600	0.33660700	-0.97040200
С	-2.77647800	-0.73026300	-1.71857100
С	2.43358400	-0.61854900	-0.99974000
С	4.21216900	-2.27123700	-0.98664800
С	1.56240300	-1.48232300	-0.29557100
С	-3.84190600	-1.61317700	-1.34716700
С	2.04842400	-2.75657700	0.11194200
С	-4.29077600	1.14015900	-1.50256900
Н	-4.48173900	2.20452000	-1.59496500
С	3.35314500	-3.09337300	-0.25924900
Н	3.72869300	-4.07160900	0.02675400
С	1.94948700	5.22873800	-2.28893100
Н	1.60033300	5.44926200	-3.29575400
С	4.32835400	1.59454000	0.40665300
С	-5.05242900	-1.03746900	-0.96930600
Η	-5.86372100	-1.68686500	-0.65660600
С	2.10401400	0.81180600	-1.32825000

Н	7.46071800	-0.76724700	3.06154700
Н	6.47397600	-1.93368300	2.16294300
Н	5.68556900	-0.64855200	3.09745200
С	-4.02154400	0.76799500	3.28216900
Н	-4.94319300	0.37047200	3.70343700
С	-1.68525500	1.32050400	3.50713600
Н	-0.77429700	1.34695000	4.10257200
С	-2.86274300	0.81046600	4.04903200
Н	-2.87342900	0.44187000	5.07365800
Η	1.03971600	0.99216200	-1.52786600

Н	2.66689700	1.13524200	-2.21533000
С	3.72216600	-1.02470300	-1.34456100
Н	4.35023800	-0.32111600	-1.88915000
С	4.66382200	0.68568500	1.41381400
Н	3.87923200	0.22166000	2.01275500
С	2.77285600	5.97791400	-0.14903400
Н	3.06616200	6.78609700	0.51772300
С	-3.05142800	0.64847700	-1.93054400
С	5.33332700	2.18232400	-0.36871800
Н	5.07443500	2.89807900	-1.14994300
С	-3.04605900	-3.70373400	-2.58332700
Н	-3.12769800	-4.79861600	-2.60807500
Н	-1.97404800	-3.47553700	-2.61173600
Н	-3.49727100	-3.31047000	-3.50455000
С	-3.10480100	-3.66993300	-0.06032600
Н	-3.67654500	-3.34653400	0.82251200
Н	-2.07536600	-3.31118300	0.04886400
Н	-3.07254700	-4.76941100	-0.05804100
С	0.50944600	-4.69574000	-0.17812700
Н	1.22318400	-5.19666700	-0.84593200
Н	-0.15963500	-4.09283500	-0.80622700
Н	-0.09292500	-5.46960500	0.32011800
С	-6.63205900	0.88798000	-0.50716600
С	-3.76930000	-3.15986000	-1.34393400
С	2.02913100	3.90700100	-1.85963900
Н	1.73214700	3.10901800	-2.53994200
С	-2.27698400	-0.73748700	2.46500700
Н	-2.23730400	-1.69138900	1.93626500
С	2.85060200	4.66141100	0.28586400
Н	3.20838200	4.44144200	1.29240100
С	-2.37909800	-0.86943800	3.97372100
Н	-3.29953000	-0.38473600	4.32742100
Н	-2.49138400	-1.93135000	4.22771200
С	-2.72789900	0.35546900	1.69724500
Н	-2.97785200	0.14524600	0.65331300
С	2.32115500	6.26199800	-1.43587400
Η	2.26148700	7.29430100	-1.77467900
С	-5.16948100	-3.79298100	-1.38925100
Н	-5.76180500	-3.42397100	-2.23722700
Н	-5.74248400	-3.63524000	-0.46691600
Н	-5.06192700	-4.87890300	-1.50551400
С	6.66538100	1.86176000	-0.13459700
Н	7.44797700	2.32343200	-0.73322400
С	5.61825300	-2.74699300	-1.33456300
С	-7.04852000	0.23814900	0.81702700

Н	-6.29122700	0.40237100	1.59789200
Н	-7.20398500	-0.84402600	0.72580200
Н	-7.99462500	0.67251300	1.16743700
С	-2.68207900	2.15283900	3.49207800
Н	-3.11809600	1.66448300	4.37257000
Н	-2.89702200	3.22289100	3.60413000
С	-0.52263100	0.87225100	4.03142200
Н	0.54752300	0.99674900	4.21518300
С	-1.14822700	-0.32056700	4.70132600
Н	-1.38761100	-0.07585100	5.75002700
Н	-0.38298100	-1.10766200	4.74454300
С	6.99641600	0.95749000	0.87262300
Н	8.04055200	0.71299700	1.05961400
С	0.26159300	-3.27066300	1.87500700
Н	-0.55885700	-2.72066800	1.40540800
Н	0.75536100	-2.58976700	2.58497900
Н	-0.20143200	-4.08886200	2.44465800
С	-6.59314300	2.40130800	-0.29668100
Н	-5.81358400	2.69254500	0.42288500
Н	-7.55780300	2.74395100	0.09988500
Н	-6.41908700	2.94869200	-1.23284000
С	6.37338400	-3.08831100	-0.04396300
Н	7.39442800	-3.41747500	-0.28173800
Н	5.89060100	-3.89499500	0.52270400
Н	6.44327100	-2.20750900	0.61080800
С	-7.68498300	0.57304100	-1.57801200
Н	-8.66692800	0.96147000	-1.27272500

7'

Rh	-1.36241500	-0.75904600	0.88378300
Р	-1.03653900	-0.62193300	-1.38282900
Р	2.27813600	0.60953500	0.19062700
Р	-1.80568400	0.39042100	-2.98203100
С	-1.97941400	-0.46655600	3.06156400
Н	-1.34205700	0.37304900	3.34915300
С	2.60406400	2.36472500	0.49426300
С	-4.95741100	3.02689600	-0.86764800
С	-3.02968500	1.43263900	-2.11075700
С	1.69204000	-0.97194100	-2.03613100
С	2.57625700	-3.09117600	-2.82549200
С	0.40573200	-1.54447500	-2.00832300
С	-4.35390400	1.42987900	-2.56974700
С	0.22286400	-2.87718500	-2.39042500
С	-3.63561300	3.06592600	-0.42969300

Н	-7.78687900	-0.50792000	-1.74256500
Н	-7.41952900	1.03614200	-2.53829500
С	5.99803200	0.37077100	1.64616000
Н	6.26017000	-0.32842100	2.43819400
С	-2.95658500	2.64548900	-3.48069900
Н	-3.58432200	2.09368500	-4.19290100
Н	-2.28016000	3.29067300	-4.05645900
Н	-3.60389600	3.31410100	-2.90242200
С	-3.32949100	1.63750900	2.20570500
Н	-3.20476200	2.39370000	1.41409900
Н	-4.41978000	1.51961500	2.33826900
С	6.41702900	-1.68113000	-2.08179000
Н	5.94801400	-1.41147700	-3.03846600
Н	7.42027800	-2.06583700	-2.30719800
Н	6.53999500	-0.76593700	-1.48298400
С	2.16917700	-4.77588800	1.66549200
Н	1.55221300	-5.44084200	2.28329100
Н	2.83389000	-4.21422200	2.33651600
Н	2.78436500	-5.42847000	1.03491200
С	5.52578200	-3.99383200	-2.22212500
Н	4.98848600	-3.77541700	-3.15505400
Н	5.00772700	-4.82180100	-1.72075300
Н	6.53332200	-4.34482700	-2.48500200
Н	0.35233200	2.15246400	1.15059500
Н	1.41804900	0.54694300	1.97142800
Н	1.83827600	2.45754800	2.48171500
В	1.42981100	1.73733200	1.60198800

Н	-3.35108600	3.72032200	0.39280200
С	1.30246600	-3.64836100	-2.80385900
Н	1.14747500	-4.68094200	-3.10917200
С	2.67721300	4.68056700	-0.18756500
Н	2.54792500	5.43844300	-0.95750500
С	3.83768700	-0.27266400	0.43507400
С	-5.31518000	2.21060100	-1.93860800
Н	-6.34495600	2.19033600	-2.28949800
С	1.94276600	0.45070900	-1.61902300
Н	1.08936000	1.10069200	-1.85866900
Н	2.82217600	0.85648600	-2.14009900
С	2.76478400	-1.76733100	-2.44435700
Н	3.76591000	-1.33478500	-2.46687400
С	3.82684200	-1.58225300	0.92091100
Н	2.88811800	-2.04479300	1.22581400
С	3.25462700	4.07244300	2.07426700
Н	3.57633100	4.35691900	3.07392500
С	-2.67442400	2.27031200	-1.04304700
С	5.04354600	0.31752200	0.03933700
Н	5.05639800	1.34425500	-0.32910000
С	2.43574600	3.34296600	-0.48864200
Н	2.12279800	3.07572900	-1.49684300
С	-3.08034600	-2.06865600	0.68440000
Н	-3.00274700	-2.56382800	-0.28735100
С	3.01260900	2.73714500	1.78134500
Н	3.14944200	1.97739600	2.55195700
С	-3.25332700	-3.00759700	1.86421400

Н	-4.15767500	-2.72890700	2.42208000
Н	-3.43856500	-4.02184700	1.48959400
С	-3.50462600	-0.72365900	0.66510100
Н	-3.74709700	-0.29482200	-0.31229400
С	3.08623600	5.04440400	1.09021400
Н	3.27799200	6.09020300	1.32183700
С	6.22753800	-0.40331600	0.12504400
Н	7.16556200	0.05599700	-0.17993000
С	-3.46882400	-0.24586700	3.16762900
Н	-3.93339200	-1.11073800	3.65781900
Н	-3.65100900	0.60526000	3.83548000
С	-1.36030300	-1.69631700	2.93804000
Н	-0.29740600	-1.73606800	3.18441200
С	-2.03087200	-3.03363000	2.78327100
Н	-2.29569100	-3.43577200	3.77552300
Н	-1.28608300	-3.72725000	2.36859600

10

Rh	-1.05375900	-1.32598500	0.13091400
Р	2.34561400	-0.10151300	0.01346600
Р	-0.28664200	0.34055200	-1.27308500
В	1.21229800	-1.37951300	0.93112200
Н	0.89960500	-2.17808200	0.04056800
Н	0.25645300	-0.69151200	1.38144900
Н	1.74397100	-1.92830700	1.85989300
С	1.52627900	0.13700500	-1.62019500
Н	1.68721100	-0.79153700	-2.18649300
Н	1.94751800	0.97483500	-2.19001400
С	-2.02892600	-2.36302200	1.90587500
Н	-1.45995900	-1.94777000	2.74140200
С	-3.51870900	-2.11948500	1.92315300
Н	-3.82059600	-1.86443600	2.94667200
Н	-4.04442400	-3.05196800	1.68193400
С	-3.93937200	-0.99173100	0.97778900
Н	-5.01550900	-1.06028400	0.74409300
Н	-3.80632500	-0.02642800	1.48689600
С	-3.14104800	-0.93315000	-0.29630400
Н	-3.21547900	0.03243800	-0.80704700
С	-2.70936700	-2.02896200	-1.06692900
Н	-2.44901100	-1.81130600	-2.10590900
С	-3.05522900	-3.48024800	-0.78576300
Н	-4.05281000	-3.53783700	-0.33036900
Η	-3.13934300	-4.01426500	-1.74014900

С	6.21254300	-1.71056800	0.60732300
Н	7.14206900	-2.27242300	0.67550700
С	5.01626300	-2.29830800	1.00647600
Н	5.00847000	-3.31749000	1.38707300
С	-4.12187800	0.03410800	1.81034300
Н	-4.02470800	1.10462300	1.57769300
Н	-5.20592700	-0.16629400	1.85322000
Н	-0.07950100	0.76442100	1.17155700
Н	0.62843900	-1.20657300	1.03236700
Н	1.27494100	0.04334100	2.48253600
В	0.86809400	-0.02969100	1.34702900
Н	-1.64010300	2.30344800	-0.69655800
Н	-4.63550900	0.80155900	-3.41515700
Н	-5.70881700	3.64821800	-0.38433500
Н	-0.77703900	-3.31220900	-2.36679300
Н	3.42935500	-3.68667200	-3.14365300

С	-2.01229500	-4.19160000	0.08410700
Н	-1.20019000	-4.55852100	-0.55913900
Н	-2.44671200	-5.08851300	0.55641300
С	-1.38666300	-3.31436800	1.13375400
Н	-0.38219000	-3.60676200	1.44734700
С	4.02552400	-0.68030200	-0.31371000
С	4.20661200	-2.03360900	-0.62341000
Н	3.35245200	-2.71184400	-0.64129600
С	5.48098500	-2.51573500	-0.89166600
Н	5.62371600	-3.56826100	-1.12700500
С	6.57480000	-1.65430400	-0.84633900
Н	7.57295100	-2.03660200	-1.05006000
С	6.39761200	-0.31028600	-0.53310800
Н	7.25457600	0.35847200	-0.49075200
С	5.12502800	0.18085600	-0.26535700
Н	4.99176900	1.22980400	-0.00369700
С	2.40662200	1.52323400	0.80028300
С	2.11395200	1.60884000	2.16498700
Н	1.86637400	0.70920900	2.72821700
С	2.14582200	2.84259300	2.80681500
Н	1.92358300	2.90512600	3.86991500
С	2.46270700	3.99167500	2.08967600
Н	2.48484900	4.95648300	2.59235000
С	2.75375600	3.91304200	0.72948000
Н	3.00243600	4.81231400	0.17004300
С	2.72682500	2.68296400	0.08382800
Н	2.96094800	2.63237100	-0.98033700
Р	-0.66238000	2.28215200	-1.78731600
С	-2.31818600	2.50201200	-1.05195900
С	-2.50585400	2.44514300	0.33682500
С	-3.39794300	2.82734600	-1.88307900
С	-3.76354200	2.68836000	0.87816300
Н	-1.66233300	2.21688000	0.99099000
С	-4.65828700	3.03958900	-1.33704000
Н	-3.25410200	2.90118100	-2.96109300
С	-4.84162100	2.96940200	0.04240300
Н	-3.90315400	2.65803300	1.95773600
Н	-5.49837000	3.27294900	-1.98795500
Н	-5.82603200	3.15162700	0.46900100

С	0.26124900	2.22307300	0.13314500
С	-1.11178800	2.17599100	0.47121100
С	0.75848100	3.40970200	-0.42198200
С	-1.91295700	3.29306900	0.21316500
С	-0.05696700	4.50450800	-0.68035900
С	-1.40661600	4.44590100	-0.36826200
Н	-2.97033700	3.24701700	0.47679300
Н	0.37483400	5.40505900	-1.11213900
С	-1.80414800	0.99618700	1.09586400
Н	-2.63062800	1.33599600	1.73679300
Н	-1.13635400	0.39421200	1.72371400
Р	-2.52196400	-0.12391100	-0.17374300
Н	-0.45683400	-0.29514400	-1.82470700
Н	-0.57006500	-1.55847500	-0.16181300
Н	-1.70782000	-1.91303400	-1.80527700
В	-1.16035100	-1.05787300	-1.15122300
С	1.90648000	-4.11560800	-0.40054700
Н	1.46014100	-4.18773800	0.60187300
С	2.48410700	-2.90078700	-3.23540700
Н	3.00395900	-3.82612300	-2.95505600
Н	2.29239500	-2.98107200	-4.31267400
С	1.16624500	-2.81901800	-2.50703800
С	0.91606300	-3.40232000	-1.27920800
Н	2.02821700	-5.15625200	-0.74554000
С	3.26380500	-3.41705100	-0.29369300
Н	3.73562300	-3.70007600	0.65583500
Н	3.94921900	-3.76961500	-1.07709100
С	3.36026400	-1.68015600	-2.96195800
Н	4.41677900	-1.89561700	-3.19614500
Н	3.06186900	-0.86733000	-3.64063900
С	3.15901600	-1.90341900	-0.36523000
С	3.23968800	-1.15173200	-1.55688400
Н	3.47635000	-1.38379600	0.54583500
Н	3.63752400	-0.14306900	-1.45390700
Н	0.29705100	-2.52123800	-3.09806100
н	-0 12953400	-3 56824900	-1.01650500

Rh	1.19890200	-1.18822700	-0.90708500
Н	-2.06083400	5.29394400	-0.55860900
Н	1.81649700	3.50559200	-0.64294600
Р	1.42701900	0.79427300	0.40742100
С	1.18226300	0.42023100	2.18584500
С	1.09647100	-0.90429000	2.62457200
С	1.02546200	1.46174900	3.10939100
С	0.84434000	-1.18361400	3.96590500
Н	1.20594600	-1.71534800	1.90119700
С	0.77624100	1.17990300	4.44633700
Н	1.08612200	2.49859600	2.77601400
С	0.68020700	-0.14320700	4.87448600
Н	0.77458800	-2.21721900	4.29973300
Н	0.65174800	1.99366600	5.15806800
Н	0.47820100	-0.36169500	5.92140100
С	3.09299400	1.56588600	0.34912900
С	3.92176000	1.62154300	1.47214700
С	3.58302000	2.04781000	-0.87531200
С	5.19970200	2.16915700	1.37832800
Н	3.57433700	1.23844000	2.42996400
С	4.85096600	2.60607300	-0.96326800
Н	2.96317200	1.98165000	-1.77249100
С	5.66286900	2.66774100	0.16758100
Н	5.83294500	2.20483700	2.26258600
Н	5.21106800	2.98472900	-1.91782500
н	6.65954000	3.09892500	0.09893700
С	-3.65056600	0.89298900	-1.14729400
С	-3.21994700	1.39267700	-2.37830900
С	-4.89198400	1.27983000	-0.62883500
С	-4.02337600	2.28202900	-3.08423800
н	-2.25169700	1.09101200	-2.77866300
С	-5.69044800	2.16717400	-1.33857100
н	-5.23364400	0.88276800	0.32828100
C	-5.25360200	2.66981200	-2.56329900
н	-3.68796900	2.67058100	-4.04353700
н	-6.65691000	2.46749000	-0.93893000
н	-5.88201200	3.36410000	-3.11780100
C	-3.51383700	-1.33871700	0.73245200
C	-4.48427700	-2.06852800	0.03623900
C	-3.25799100	-1.63080700	2.07548300
C	-5 20316500	-3.06425600	0.68482000
н	-4 68095600	-1 85337200	-1 01456500
C	-3 98037000	-2 63118900	2 71876900
й	-2 49408500	-1 08596300	2 63090200
C	-4 95310500	-3 34401000	2.03070200
ч	-5 96180600	-3 62427000	0 14201500
н	-3 78288200	-2 85123700	3 76508000
н	-5.10200200	-4 12450600	2 53200500
11	-5.51//0900	-4.12+30000	2.55209500

Rh	1.48786800	-0.75849200	-0.90844200
Р	-2.01582800	-0.80096900	-0.11530700
Р	0.56889900	0.47895700	0.83152500
В	-0.70859900	-1.55539500	-1.33290800
Н	0.05322700	-2.20036900	-0.59130200
Н	-0.18510100	-0.55146600	-1.87112600
Н	-1.18932500	-2.25611900	-2.18482900
С	-1.04684000	-0.27720700	1.35588400
Н	-0.83251400	-1.20903000	1.89890300
Н	-1.60421900	0.38452900	2.03190900
С	2.37365600	-1.33095600	-2.93174700
Н	1.51101700	-1.22141900	-3.59355800
С	3.56944200	-0.46068400	-3.23894800
Н	3.49974600	-0.11990300	-4.27962900
Н	4.48455100	-1.06377900	-3.18561900
С	3.66453200	0.75762700	-2.31682500
Н	4.68650900	1.17289800	-2.33016800
Н	3.01432000	1.55405700	-2.70909100
С	3.23215600	0.48168100	-0.89919700
Н	3.03628100	1.39678300	-0.32794500
С	3.49986200	-0.68389000	-0.14745300
Н	3.43833000	-0.57729900	0.93943100
С	4.36124000	-1.84119000	-0.62091000
Н	5.15198400	-1.46742600	-1.28509500
Н	4.88480600	-2.26956100	0.24278200
С	3.54932800	-2.94845800	-1.30090600
Н	3.13937000	-3.61389500	-0.52813800
Н	4.20025900	-3.58159800	-1.92683300
С	2.38865700	-2.44455600	-2.11533800
Н	1.55792200	-3.14648600	-2.22279600
С	-3.24390700	-1.98174700	0.49325500

С	-2.83085900	-3.30254600	0.70487800
Н	-1.80743900	-3.59998700	0.47146300
С	-3.73058000	-4.23942700	1.19660100
Н	-3.41005500	-5.26669200	1.35673300
С	-5.04381600	-3.86487900	1.47009200
Н	-5.74962500	-4.60073200	1.85018800
С	-5.45935600	-2.55493700	1.25132600
Н	-6.48817000	-2.26721000	1.45742300
С	-4.56325700	-1.61046100	0.76291300
Н	-4.89665800	-0.58925700	0.58027600
С	-2.87652600	0.64159100	-0.77985700
С	-3.01580700	0.73229400	-2.16881400
Н	-2.59758000	-0.04355000	-2.81027400
С	-3.68882000	1.81103700	-2.73131300
Н	-3.79904400	1.87717100	-3.81159700
С	-4.21574600	2.80449500	-1.91172100
Н	-4.73790600	3.65110500	-2.35327500
С	-4.08189400	2.71781200	-0.52793800
Н	-4.49279000	3.49599300	0.11214800
С	-3.41652200	1.63836800	0.03998000
Н	-3.32090700	1.57850200	1.12468500
С	0.08528400	2.18851900	0.42496400
С	-0.39458400	3.05834200	1.41259800
С	0.10907400	2.60659200	-0.90849000
С	-0.82960200	4.33142100	1.06812700
Н	-0.41480800	2.74606700	2.45796200
С	-0.34150000	3.87773000	-1.25195100
Н	0.47277800	1.92189600	-1.67758000
С	-0.80295600	4.74100600	-0.26422000
Η	-1.18976500	5.00870600	1.84021800
Η	-0.32313300	4.19617400	-2.29234600
Η	-1.14390600	5.73952100	-0.53109300
С	1.53827800	0.56428500	2.37149300
С	1.64420700	-0.57850300	3.17419700
С	2.31253300	1.68836100	2.67666100
С	2.48533100	-0.58430500	4.27939900
Η	1.08290300	-1.48169600	2.92959800
С	3.15916500	1.67550600	3.78117700
Н	2.25398300	2.58222600	2.05605600
С	3.24299100	0.54391100	4.58489600
Н	2.55246300	-1.47395200	4.90230600
Н	3.75368700	2.55648000	4.01443300
Н	3.90269800	0.53763800	5.45008300

8. References

- S1. S. Kimura, E. Bill, E. Bothe, T. Weyhermüller and K. Wieghardt, J. Am. Chem. Soc., 2001, 123, 6025-6039.
- S2. N. Khiar, R. Navas and I. Fernández, *Tetrahedron Lett.*, 2012, 53, 395-398.
- S3. G. Courtois and L. Miginiac, *Tetrahedron Lett.*, 1987, 28, 1659-1660.
- S4. (a) J. Bresien, C. Hering, A. Schulz and A. Villinger, *Chem. Eur. J.*, 2014, 20, 12607-12615; (b)
 A. H. Cowley, J. E. Kilduff, T. H. Newman and M. Pakulski, *J. Am. Chem. Soc.*, 1982, 104, 5820-5821.
- S5. T. G. Schenck, J. M. Downes, C. R. C. Milne, P. B. Mackenzie, H. Boucher, J. Whelan and B. Bosnich, *Inorg. Chem.*, 1985, 24, 2334-2337.
- S6. Y. Ma, F. Chen, J. Bao, H. Wei, M. Shi and F. Wang, *Tetrahedron Lett.*, 2016, 57, 2465-2467.
- S7. K. Xu, N. Thieme and B. Breit, Angew. Chem., Int. Ed., 2014, 53, 2162-2165.
- S8. (a) P. Pertici, F. D. Arata and C. Rosini, J. Organomet. Chem., 1996, 515, 163-171; (b) R. Uson, L.
 A. Oro, C. Claver and M. A. Garralda, J. Organomet. Chem., 1976, 105, 365-370.
- M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo,
 A. Mazzone and G. Polidori, *J. Appl. Cryst.*, 2015, 48, 306-309.
- S10. G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- S11. C. Kabuto, S. Akine, T. Nemoto and E. Kwon, J. Cryst. Soc. Jpn., 2009, 51, 218-224.
- S12. G. M. Sheldrick, *Acta Cryst.*, 2015, C71, 3-8.
- S13. M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587-4589.
- S14. R. C. Smith, E. Urnezius, K.-C. Lam, A. L. Rheingold and J. D. Protasiewicz, *Inorg. Chem.*, 2002, 41, 5296-5299.
- S15. A. Tsurusaki, R. Ura and K. Kamikawa, Dalton Trans., 2018, 47, 4437-4441.
- S16. M. Ingleson, N. J. Patmore, G. D. Ruggiero, C. G. Frost, M. F. Mahon, M. C. Willis and A. S. Weller, *Organometallics*, 2001, 20, 4434-4436.
- S17. D. H. Nguyen, H. Lauréano, S. Jugé, P. Kalck, J.-C. Daran, Y. Coppel, M. Urrutigoity and M. Gouygou, *Organometallics*, 2009, 28, 6288-6292.
- S18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision E.01*, Gaussian, Inc., Wallingford CT, 2013.

- S19. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- S20. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, 77, 123-141.
- S21. NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2018.
- S22. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- S23. M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chem. Phys. Lett., 1996, 255, 327-335.