PAPER

Supplementary information

Received 21th October 2023, Accepted 19th December 2023 DOI: 10.1039/d3dt03511e

Lanthanide complexes with a new luminescent iminophosphonamide ligand bearing phenylbenzothiazole substituents

Dmitry K. Sinitsa,^a Ekaterina K. Pylova,^{a,b,c} Olga A. Mironova,^{a,*} Denis A. Bashirov,^a

Alexey A. Ryadun,^a Taisiya S. Sukhikh,^a and Sergey N. Konchenko^{a,**}

^aNikolaev Institute of Inorganic Chemistry SB RAS, Akademika Lavrentieva Ave. 3, 630090 Novosibirsk, Russia.

E-mail: *mironovaoa.nsk@gmail.com **konch@niic.nsc.ru

^bDepartment of Natural Sciences, National Research University—Novosibirsk State University, 630090 Novosibirsk, Russia

^cInstitute Charles Gerhardt Montpellier, National School of Chemistry Montpellier, University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France

Table of contents:

- Crystallographic data
- Spectroscopy & PXRD data
- Photophysical measurements
- Additional information

Nikolaev Institute of Inorganic Chemistry SB RAS, Akademika Lavrentieva Ave. 3, 630090 Novosibirsk, Russia.

E-mail: *mironovaoa.nsk@gmail.com **konch@niic.nsc.ru

[†] Electronic supplementary information (ESI) available: crystallographic data, NMR spectra, PXRD data for 1, electronic absorption and luminescence spectra of the compounds, scheme of the extraction apparatus, and additional figures of structures. CCDC 2292469-2292473, 2293519 and 2312448. For ESI and crystallographic data in CIF or another electronic format see DOI: See DOI: 10.1039/d3dt03511e

Please do not adjust margins

PAPER

Dalton Transactions

Crystallographic data

Table S1. Crystal data and structure refinement for the compounds

Identification code	1	1 ·CH₃CN	3 ∙0.5thf•1.5tol	3*·0.4hexane·1.2tol	4·0.5thf·2tol	5·3thf·3tol	6 ∙4thf∙2tol
CCDC Number	2292469	2293519	2292470	2312448	2292473	2292471	2292472
Empirical formula	$C_{38}H_{27}N_4PS_2$	C ₄₀ H ₃₀ N ₅ PS ₂	$C_{126.5}H_{94}N_{12}O_{0.5}P_3S_6Y$	$C_{124.8}H_{93.0}N_{12}P_3S_6Y$	$C_{130}H_{98}N_{12}O_{0.5}P_3S_6Sm$	$C_{147}H_{126}GdN_{12}O_{3}P_{3}S_{6}$	$C_{144}H_{126}DyN_{12}O_4P_3S_6$
Formula weight	634.72	675.78	2164.31	2134.96	2271.82	2551.11	2536.33
Temperature/K	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
Space group	P2 ₁ /n	P21/n	P2 ₁ /c	P21/c	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c
a/Å	9.1902(15)	9.8197(15)	19.092(2)	19.093(2)	19.211(2)	22.7279(6)	22.7471(15)
b/Å	28.224(5)	14.331(2)	14.6554(16)	14.6218(18)	14.6820(14)	14.4740(5)	14.4532(10)
c/Å	11.9753(19)	23.996(3)	38.107(4)	38.215(5)	38.175(4)	38.0128(12)	37.979(3)
β/°	90.930(5)	90.960(5)	94.156(3)	94.667(3)	94.110(3)	93.4490(10)	93.482(3)
Volume/Å ³	3105.8(9)	3376.4(8)	10634(2)	10633(2)	10739.5(18)	12482.2(7)	12463.2(15)
Z	4	4	4	4	4	4	4
$\rho_{calc}g/cm^3$	1.357	1.329	1.352	1.334	1.405	1.358	1.352
μ/mm ⁻¹	0.258	0.243	0.771	0.769	0.768 0.731		0.800
F(000)	1320.0	1408.0	4484.0	4423.0	4676.0	5284.0	5252.0
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.462 to 50.048	3.31 to 50.086	3.622 to 49.604	3.622 to 41.63	3.7 to 48.908	3.91 to 54.248	2.882 to 55.848
Index ranges	$-10 \le h \le 10, -33 \le k$ $\le 33, 0 \le l \le 14$	-11 ≤ h ≤ 11, -16 ≤ k ≤ 17, -28 ≤ l ≤ 28	-22 ≤ h ≤ 21, -17 ≤ k ≤ 17, -39 ≤ l ≤ 44	-18 ≤ h ≤ 19, -14 ≤ k ≤ 14, -38 ≤ l ≤ 38	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-29 ≤ h ≤ 29, -19 ≤ k ≤ 19, -42 ≤ l ≤ 50
Reflections collected	5436	39932	94414	47109	104935	223237	109716
Independent reflections	5436 [$R_{int} = 0.0613$, $R_{\sigma} = 0.0570$]	$5951 [R_{int} = 0.1156, R_{\sigma} = 0.0763]$	$18182 [R_{int} = 0.1600, R_{\sigma} = 0.1473]$	11109 [R _{int} = 0.1596, R _{sigma} = 0.1325]	$\begin{bmatrix} 17657 & [R_{int} = 0.1170, R_{\sigma} \\ = 0.0812 \end{bmatrix} = \begin{bmatrix} 27557 & [R_{int} = 0.0827, R_{\sigma} \\ = 0.0448 \end{bmatrix}$		29622 [R _{int} = 0.0577, R _σ = 0.0596]
Restraints/parameters	1/410	1/437	18/1280	11109/195/1333	131/1364	11/1414	10/1398
Goodness-of-fit on F ²	1.127	1.044	1.031	1.017	1.184	1.038	1.019
Final R indexes [I>=2σ (I)]	R ₁ = 0.0817, wR ₂ = 0.2339	R1 = 0.0549, wR2 = 0.1289	R ₁ = 0.0902, wR ₂ = 0.1956	R ₁ = 0.0718, wR ₂ = 0.1527	$\begin{array}{c} R_1 = 0.0841, \ wR_2 = \\ 0.1753 \end{array} \qquad \begin{array}{c} R_1 = 0.0454, \ wR_2 = \\ 0.1080 \end{array}$		R ₁ = 0.0517, wR ₂ = 0.1305
Final R indexes [all data]	R ₁ = 0.0969, wR ₂ = 0.2433	R1 = 0.0773, wR2 = 0.1444	$R_1 = 0.1637, wR_2 = 0.2303$	R ₁ = 0.1349, wR ₂ = 0.1838	R ₁ = 0.1113, wR ₂ = 0.1860	R ₁ = 0.0578, wR ₂ = 0.1157	R ₁ = 0.0701, wR ₂ = 0.1419
Largest diff. peak/hole / e Å ⁻³	0.37/-0.55	0.31/-0.37	1.33/-1.10	0.74/-0.60	1.92/-1.36	1.06/-0.93	1.80/-0.92

Spectroscopy & PXRD data

PAPER

Figure S2. ¹H NMR spectrum of **1** in benzene- d_6 .

Dalton Transactions

1-

5-8

9-16

5-8 6H m,p-(P)C₆H₅ 9-16 6H m,p-(P)C₆H₅ resonance

Figure S3. ¹H NMR spectrum of **1** in thf- d_8 .

Figure S4. ¹H NMR spectrum of **2** in benzene- d_6 .

Figure S5. An approximate assignment of signals in the ¹H NMR and ³¹P spectra of **3** in thf- d_8 .

PAPER

Figure S6. An approximate assignment of signals in the ¹H NMR and ³¹P spectra of **4** in thf-*d*₈. Another ratio coordinated : outer-sphere ligand may be caused by solvation or ligand redistribution effects.

Dalton Transactions

Figure S7. An approximate assignment of signals in the NMR experiment *a*) ³¹P (green: two days, 55°C; vinous: three days more, 70°C) and *b*) ¹H NMR spectrum in thf- d_8 .

Figure S8. Powder pattern of 1.

PAPER

Figure S9. Powder patterns of compounds **3-6** (MoK α radiation, $\lambda = 0.70932$ Å) measured for crystalline powders placed into perfluorinated oil. The halo at angles of 8–10° is due to the contribution of oil. Peaks below 2.4° are hidden by the beamstop, no prominent peaks are observed above 16° in the simulated and obtained powder patterns. Theoretical powder patterns for **3** and **4**, **5** and **6** are pairwise similar. The theoretical powder pattern for **3*** is given with FWHM = 0.2 for illustrative purposes, for **3** and **6** FWHM = 0.1.

Photophysical measurements

Table S2. Absorption maxim	a and molar extinction	coefficients of 1, 2, 5	6, and 6 in thf solution.
----------------------------	------------------------	-------------------------	---------------------------

Compound	λ, nm	ε, 10 ⁻⁴ M ⁻¹ cm ⁻¹	Compound	λ <i>,</i> nm	ε, 10 ⁻⁴ M ⁻¹ cm ⁻¹
1	230 258 283(sh) 296 309(sh) 361(br)	7.37 3.21 2.77 3.04 2.41 2.85	2	232 260 284(sh) 297 369(br) 422(br)	6.24 3.33 3.10 3.11 1.51 2.08
4	230 262 299 312(sh) 375(sh) 403(br) 427(sh)	20.17 10.78 9.25 8.06 4.68 4.92 4.02	5	232 261 299 314(sh) 381(sh) 406(br) 423(sh)	15.40 8.25 7.33 5.85 3.57 4.06 3.82
6	230 261 298 312(sh) 368(br) 405 424(br, sh)	16.64 8.31 7.41 6.21 4.13 3.01 2.64]	
Excitation $C = 10^{-5}$, $\lambda_{em} = 420 \text{ nm}$	\frown	418	Emission C = 10^{-5} , $\lambda_{ex} = 370$ nm		Emission $C = 10^{-4}$, $\lambda_{ex} = 370 \text{ nm}$

Figure S10. Luminescence and excitation spectra of 1 in thf (green) and toluene (vine red) solutions of different concentrations.

Table S3. Coordinates* of HL luminescence colour at the chromaticity diagram upon thecorresponding excitation. *The calculation accuracy may be decreased for the 410-430 nm rangeof excitation because of the overlay of excitation and emission regions.

λ _{ex} , nm	350	360	370	380	390	400	410	420	430
х	0.34517	0.32682	0.31654	0.30838	0.28227	0.27166	0.27267	0.23561	0.19947
	0.23201	0.21736	0.2051	0.19173	0.16487	0.1553	0.16615	0.17701	0.21675

Figure S11. Luminescence spectra of thf solutions of compounds 2, 4, 5, 6, measured on Cary Eclipse. Slit wides 2.5×2.5 , C(2, 6) = $1.2 \cdot 10^{-4}$ M, C(4) = $1.3 \cdot 10^{-4}$ M, C(5) = $9.9 \cdot 10^{-5}$ M.

Figure S12. Positions of 2, 4-6 luminescence colour coordinates on CIE 1931 diagram.

Figure S13. Decay curves of 2, 4-6 luminescence.

Additional information

Figure S15. Packing of **1**, conditioned by π -stacking.

Figure S18. Comparison of a fragment of the structures of *a*) 3.0.5thf.1.5tol and *b*)
 3*.0.4hexane.1.2tol revealing a slight variation in the positions of disordered solvent molecules.
 The different positions are shown as grey and blue spheres; the closest to them Pbt moieties are bolded. H atoms are omitted except for those in the solvent molecules.

According to single-crystal XRD analysis, the compounds reveal the presence of a cavity that can accommodate up to one toluene and one thf or hexane molecule disordered over proximate positions. This brings a slight variation in the crystal composition. By the example of the Y compound, we traced that the dried sample (Figure S18b) comprises approximately the same number of solvent molecules as in the as-synthesized crystal (Figure S18a). Notably, the closest to the cavity Pbt moieties can also show some disorder caused by a variation in nature and/or the number of solvent molecules.

According to ¹H NMR spectroscopy, the sample of **3** contains hexane but not thf molecules. Thus, we speculate that the thf is replaced with hexane upon isolation of the products.