Electronic Supplementary Information (ESI)

A dinuclear Cd^{II} cluster-based stable luminescent metal-organic framework for the consecutive and visual detection of $H_2PO_4^-$ and OCN^-

Na Lu, Li Wang, Teng-Fei Zheng,* Yan Peng, Sui-Jun Liu* and He-Rui Wen

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China

*Corresponding authors. E-mail: sjliu@jxust.edu.cn (S.-J. Liu), zhengtengfei0628@163.com (T.-F. Zheng).

Materials and instrumentations

All chemical reagents were obtained from commercial sources and used without further purification. Notably, H₂BTDB was purchased by Jilin Chinese Academy of Sciences -Yanshen Technology Co., Ltd. Thermogravimetric analysis (TGA) was performed under a N₂ flow at a heating rate of 10 °C min⁻¹ from 25 to 1000 °C on a NETZSCH STA2500 thermal analyzer. The powder X-ray diffraction (PXRD) patterns were recorded by Rigaku MiniFlex 600. The simulated PXRD pattern of single-crystal data was obtained using the Mercury (Hg) software, which is freely available on the Internet at http://www.iucr.org. IR spectra in the range of 4000-400 cm⁻¹ were collected with KBr particles on a Bruker Alpha FT-IR spectrometer. X-ray photoelectron spectrum (XPS) was obtained with an Axis Ultra DLD spectrometer. The fluorescence measurements were carried out on an F4600 (Hitachi) fluorescence spectrophotometer. The UV-vis absorption spectra for all samples were collected on a UV-2550 (SHIMADZU) spectrophotometer.

Crystal Description

X-ray single-crystal diffraction data of **JXUST-47** were recorded on a Bruker D8 QUEST with ω -scan pattern and Mo-K α radiation ($\lambda = 0.71073$ Å). The structure is solved by using direct methods with SHELXTL software and refined using full-matrix least-squares.^{S1} The anisotropic thermal parameters on non-hydrogen atoms are refined by F^2 . This structure is based on weak and highly inconsistent data. Fig. S1 shows that there exist electrons or unresolved atoms in **JXUST-47**. As shown in Fig. S2, **JXUST-47** there exist numerous outliers. The *R* merge rises above 15% at about 1.4 (Fig. S3). As shown in Fig. S4, the I/σ drops below 3 at $2\theta = 41$. The ORTEP drawing of **JXUST-47** is shown in Fig. S5. During the collection of crystal data, scan width is 0.50 and exposure time is 10 s. The exposure time of 10 s may not be optimal, and the reason for the weak data is merely the limited crystal quality and the short exposure time.

Fig. S1 The residual density map of JXUST-47.

Fig. S2 The F obs vs F calc plot of JXUST-47.

Fig. S3 The plot of *R* merge vs resolution of JXUST-47.

Fig. S4 The plot of $I/\sigma(I)$ vs resolution of JXUST-47.

Fig. S5 The ORTEP drawing of JXUST-47.

Fig. S6 The IR spectra of 2,6-BBIP and H₂BTDB.

Fig. S7 The ellipsoid diagrams of (a) JXUST-47, (b) 2,6-BBIP and (c) H₂BTDB.

Fig. S8 The TGA curve of JXUST-47.

Fig. S9 The solid-state excitation and emission spectra of JXUST-47.

Fig. S10 CIE chromaticity diagram displaying the color coordinate of JXUST-47.

Fig. S11 Competitive experiments of **JXUST-47** in sensing (a) $H_2PO_4^-$, (b) OCN⁻, and (c) $H_2PO_4^-$ and OCN⁻ with the other interfering substance.

Fig. S12 Emission spectra of **JXUST-47** dispersed in DMF suspension with different concentrations for (a) $H_2PO_4^-$ and (c) OCN⁻ ions, and the linear relationship in a low concentration range between the fluorescence intensity of **JXUST-47** and the concentration of (b) $H_2PO_4^-$ and (d) OCN⁻ ions.

Fig. S13 Time-dependent emission spectra of the suspension after adding 0.2 M (a) $H_2PO_4^-$ and (b) OCN⁻.

Fig. S14 The emission spectra of **JXUST-47** (a) in DMF aqueous solution with different pH values and (b) at different temperatures.

Fig. S15 Relative luminescent intensity of JXUST-47 after seven cycles for (a) $H_2PO_4^-$ and (b) OCN⁻.

Fig. S16 The IR spectra of as-synthesized JXUST-47 and JXUST-47 after sensing $H_2PO_4^{-}/OCN^{-}$.

Fig. S17 The PXRD patterns of as-synthesized JXUST-47 and JXUST-47 after sensing $H_2PO_4^-/OCN^-$.

Fig. S18 The luminescence decay curves of (a) JXUST-47, (b) JXUST-47@ $H_2PO_4^-$, (c) JXUST-47@ OCN⁻ and (d) JXUST-47@ $H_2PO_4^-$ +OCN⁻ at room temperature.

Fig. S19 The UV-vis absorption spectra of JXUST-47 dispersed in DMF solution and JXUST-47 dispersed in DMF solution after adding $H_2PO_4^-$ and OCN⁻.

Compound	JXUST-47	
Formula	C ₃₉ H ₂₃ N ₇ O ₄ SCd	
$M_{ m r}$	798.10	
Temperature (K)	293(2)	
Crystal system	triclinic	
Space group	$P\overline{1}$	
<i>a</i> (Å)	9.4237(11)	
<i>b</i> (Å)	11.6946(13)	
<i>c</i> (Å)	16.1030(17)	
α (°)	82.624(5)	
β (°)	83.013(5)	
γ (°)	68.067(4)	
$V(Å^3)$	1627.3(3)	
Ζ	2	
<i>F</i> (000)	804.0	
D_{calc} (g cm ⁻³)	1.629	
$\mu \text{ (mm}^{-1}\text{)}$	0.792	
Reflections collected/unique	19017/5584	
R _{int}	0.1686	
$R_1^{a}/wR_2^{b} [I > 2\sigma(I)]$	0.1032/0.1275	
R_1^{a}/wR_2^{b} (all data)	0.1708/0.1453	
GOF on F^2	1.074	

 Table S1. Crystal data and structure refinements for JXUST-47.

Table S2. Selected bond lengths (Å) and angles (°) for JXUST-47 ^a .						
Cd1—O1	2.211(6)	Cd1—N3	2.325(7)			
Cd1—O2	2.643(6)	Cd1—O4 ⁱⁱ	2.388(6)			
Cd1—O3 ⁱ	2.268(5)	Cd1—N7 ⁱⁱⁱ	2.483(7)			
O3 ⁱ —Cd1—O2	139.3(2)	O3 ⁱ —Cd1—N7 ⁱⁱⁱ	78.8(2)			
O3 ⁱ —Cd1—N3	81.6(2)	N3—Cd1—O2	138.3(2)			
O3 ⁱ —Cd1—O4 ⁱⁱ	102.9(2)	N3—Cd1—O4 ⁱⁱ	82.1(2)			
O1—Cd1—O2	53.6(2)	N3—Cd1—N7 ⁱⁱⁱ	117.7(3)			
$O1$ — $Cd1$ — $O3^i$	159.3(2)	O4 ⁱⁱ —Cd1—O2	80.4(2)			
O1—Cd1—N3	90.8(2)	O4 ⁱⁱ —Cd1—N7 ⁱⁱⁱ	160.0(2)			
O1—Cd1—O4 ⁱⁱ	95.1(2)	N7 ⁱⁱⁱ —Cd1—O2	85.6(2)			
O1—Cd1—N7 ⁱⁱⁱ	88.0(2)					

^aSymmetry codes: (i) *x*-1, *y*, *z*-1; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*; (iv) *x*+1, *y*, *z*+1.

MOFs	Sensing medium	LOD	Interferences	Bio-imaging	Reference
UiO-66-NH ₂	H ₂ O	0.73 μΜ	I ⁻ , Br ⁻ , Cl ⁻ , ClO ₄ ⁻ , AcO ⁻ , SO ₄ ²⁻ , HSO ₄ ⁻	_	S2
F-MOF	CH ₃ OH–H ₂ O	3.903 µM	P ₂ O ₇ ⁴⁻ , SCN ⁻ , AsO ₄ ³⁻ , IO ₃ ⁻ , AsO ³⁻ , SO ₄ ²⁻ , F ⁻ , Br ⁻ , NO ₃ ⁻ , CH ₃ COO ⁻ , PO ₄ ³⁻ , HF ₂ ⁻ , AsO ₂ ⁻ , CN ⁻ , HPO ₄ ²⁻	WI-38 cell	S3
Zn-DMBI	CH ₃ OH	1.3 μM	F ⁻ , SO ₄ ²⁻ , ClO ₄ ⁻ , NO ₃ ⁻ , I ⁻ , TfO ⁻ , BF ₄ ⁻ , AcO ⁻ , Br ⁻ , OH ⁻ , HCO ₃ ⁻ , HSO ₄ ⁻	_	S4
JXUST-44	DMF	0.121 μM	F ⁻ , Br ⁻ , Cl ⁻ , I ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ , WO ₄ ²⁻ , HPO ₄ ²⁻ , PO ₄ ³⁻	_	S5
JXUST-47	DMF	0.106 mM	HPO4 ²⁻ , HCO3 ⁻ , CO3 ²⁻ , WO4 ²⁻ , Br ⁻ , SO4 ²⁻ , AcO ⁻ , NO3 ⁻	_	This work

Table S3. Comparison of others work with JXUST-47 for the fluorescence detection of $H_2PO_4^-$.

References

- S1. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- S2 R. Dalapati and S. Biswas, Sen. Actuators B: Chem., 2017, 251, 250-255.
- S3. K. Naskar, A. K. Bhanja, S. Paul, K. Pal and C. Sinha, Cryst. Growth Des., 2020, 20, 6453–6460.
- S4. S. Jindal and J. N. Moorthy, Inorg. Chem., 2022, 61, 3942–3950.
- S5. Y. P. Li, J. H. Zhang, X. X. Zhang and S. J. Liu, *CrystEngComm*, 2023, 25, 6424–6423.