A strategy for the preparation of super-hydrophilic molybdenum disulfide composites applied to remove uranium from wastewater

De-Bin Ji,^{a, b*} Shao-Xian Hao,^{a, b} Xue-Qi Fan,^{a, b} Rui-Long Liang,^{a, b} Zhi-Qiang Qiao,^{a,}

^b Zi-Heng Bai,^c De-Qiang Ji,^{a, b*} Qing-He Gao,^{d,*} Hong-Jun Wu^{a, b}

^a National Key Laboratory of Continental Shale Oil, Northeast Petroleum University,

Daqing, Heilongjiang 163318, P. R. China

^b College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China

^c State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, P. R. China

^d Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, Daqing Normal University, Daqing 163712, P. R. China

> *Corresponding author. Email: jidebin900302@163.com (D. B. Ji) Email: jideqiang1990@126.com (D. Q. Ji) Email: gao5510113@163.com (Q. H. Gao) NUMBER OF PAGES: 5 NUMBER OF FIGURES: 4 NUMBER OF TABLES: 3

*Corresponding author.

Email: jidebin900302@163.com (D. B. Ji)

Email: jideqiang1990@126.com (D. Q. Ji)

Email: gao5510113@163.com (Q. H. Gao)

Contents

Batch adsorption experiments

XRD pattern of MoS ₂ , NiCo-LDH and NiCo-LDH/MoS ₂ Fig. S1
Spectrum of total element distribution of NiCo-LDH/MoS ₂ Fig. S2
Uranyl ions exist in different pH forms ······Fig. S3
Solution after desorption ••••••••••••••••••••••••••••••••••••
Adsorption kinetic model parameters Table. S1
Parameters of the Intra-particle Diffusion Model······ Table. S2
Parameters of adsorption isotherm model ••••••••••••••••••••••••••••••••••••

Fig.S1 The XRD pattern of MoS_2, NiCo-LDH and NiCo-LDH/MoS_2 $\,$

Fig.S2 Spectrum of total element distribution of NiCo-LDH/MoS $_{\rm 2}$

Fig.S3 Uranyl ions exist in different pH forms

Fig.S4 Solution after desorption

Adsorbent	Q _e (mg/g)	Pseudo-first-order models			Pseudo-second-order models			
		Qe (mg/g)	k ₁ (min ⁻¹)	R ²	Q _e (mg/g)	k₂ (g/mg∙min)	R ²	
MoS_2	112.57	9.31	0.00906	0.61819	112.74	0.00466	0.99998	
MoS ₂ /NiCo-LDH	309.68	59.11	0.01812	0.94004	312.50	0.00095	0.99995	
NiCo-LDH	238.89	116.32	0.00555	0.66049	240.38	0.00014	0.99280	
Table S2 Parameters of the Intra-particle Diffusion Model								
Adsorbent		k _{p1}	R_1^2	k _{p2}	R_2^2	k _{p3}	R_3^2	
MoS_2		7.28	0.94492	1.26	0.66703	0.05	0.18833	
MoS ₂ /NiCo-LDH		20.35	0.99996	5.4	0.99253	0.2	0.6298	
				3		8		
NiCo-LDH		30.64	0.98538	5.4	0.98416	0.3	0.99448	
				0		6		
Table S3 Parameters of adsorption isotherm model								
Isothermal model		Parameter		25°C	35°C		45°C	
Langmuir		$Q_m(mg \cdot g^{-1})$		492.61	755.80		908.45	
		$b(L \cdot mg^{-1})$		0.11849	0.11316		0.11171	
		R ²		0.98487	0.98223		0.98122	
		$K_{f}(L \cdot g^{-1})$		139.9119	178.8	521	200.7739	
Freundlich		n		3.96557	3.339	946	3.08938	
		R ²		0.83546	0.81	592	0.85225	
		$Q_m (mg \cdot g^{-1})$		492.83	703.	24	851.01	
Sips		K		0.11837	0.133	342	0.13032	
		m		0.99836	1.313	326	1.23051	
		\mathbb{R}^2		0.98609	0.992	203	0.98341	