Intensity and Lifetime Ratiometric Luminescent Thermometer based on a Tb(III) Coordination Polymer

Augusto Iwashita Costa,^a Rafaela M.R. da Silva,^a Luckerman D.G. Botelho,^a Sergio F.N. Coelho,^b Fernando Sigoli,^b João H. de Araujo-Neto,^c Javier Ellena,^c Felipe T. Martins,^d Angelo M.S. Gomes,^e Wallace C. Nunes,^f Francesc Lloret,^g Miguel Julve,^g and Maria Vanda Marinho.^{a*}

^{*a*}Instituto de Química, Universidade Federal de Alfenas, Campus Santa Clara, Alfenas, MG, 37133-840, Brazil.

^bInstituto de Química, Universidade Estadual de Campinas, Cidade Universitária, Campinas, SP 13083-970, Brazil.

^cInstituto de Física, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil.

^dInstituto de Física, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO 74690-900, Brazil.

^eInstituto de Física, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941972, Brazil

^fInstituto de Física, Universidade Federal Fluminense, Rio de Janeiro, RJ 24210-346, Brazil. ^gInstituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, 46980 Paterna, València, Spain.

*E-mail: <u>maria.marinho@unifal-mg.edu.br</u>

Table S1. Selected data about the coordination networks based on deprotonated forms of the H_4 bttb and H_2 -2,5-pzdc acids in the last decade (2012-2022) and this year (2023)*

H₄bttb					
Metal Ion/ CN	Experimental Approach	Coordination mode of the carboxylate group	Database Identifier	Ref.	Year
Ni ^{II} /6	Solvothermal 100 °C - 4 days		MIFMIZ	1	2013
Zn ^{II} /6	Solvothermal 100 °C - 4 days		MIFBAG, MIFJOC	1	2013
Mg ^{II} /6	Solvothermal 100 °C - 4 days		MIFBEK, MIFKIX	1	2013
Co ^{II} /5	Solvothermal 100 °C - 4 days		ONULOA	2	2014
Ce ^{III} /9	Solvothermal	M ^{PO} , O, M	FOFCIO	3	2014
	Metal Ion/ CN Ni ^{II} /6 Zn ^{II} /6 Mg ^{II} /6 Co ^{II} /5 Ce ^{III} /9	H4bttbMetal Ion/ CNExperimental ApproachNi ^{II} /6Solvothermal 100 °C - 4 daysZn ^{II} /6Solvothermal 100 °C - 4 daysMg ^{II} /6Solvothermal 100 °C - 4 daysCo ^{II} /5Solvothermal 100 °C - 4 daysCe ^{III} /9Solvothermal 100 °C - 4 days	H4bttbMetal Ion/ CNExperimental ApproachCoordination mode of the carboxylate groupNi ^{II} /6Solvothermal 100 °C - 4 days $- + + + + + + + + + + + + + + + + + + +$	H4bttbMetal Ion/ CNExperimental ApproachCoordination mode of the carboxylate groupDatabase IdentifierNi ^{II} /6Solvothermal 100 °C - 4 days $-\downarrow \downarrow $	H4bttbMetal Ion/ CNExperimental ApproachCoordination mode of the carboxylate groupDatabase IdentifierRef.Ni ^{II} /6Solvothermal 100 °C - 4 days $-\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ MIFMIZ1Zn ^{II} /6Solvothermal 100 °C - 4 days $i \downarrow \downarrow$ MIFBAG, MIFDOC1Mg ^{II} /6Solvothermal 100 °C - 4 days $i \downarrow \downarrow$

$[Nd(Hbttb) \cdot (EtOH)_{0.28}(H_2O)_{2.75}]_n$	Nd ^{III} /9	Solvothermal	FOCYUT	3	2014
${[Co_3(\mu_6-bttb)(\mu_4-H_2bttb)(ade)_2] \cdot H_2O}_n$	Co ^{II/5}	Hydrothermal (water) 100 °C - 2 days	QUFKEJ	4	2015
$(C_{34}H_{20}CaO_8)_n \cdot 2.66(H_2O)$	Ca ^{II} /6	-	YUNJIC	5	2015
$(C_{34}H_{20}CaO_8)_n$	Ca ^{II} /6	-	YUNJOI	5	2015
$(C_{34}H_{20}CaO_8)_n \cdot 1.45(Xe)$	Ca ^{II} /6	-	YUNJUO	5	2015
$(C_{34}H_{20}CaO_8)_n \cdot 0.51(Kr)$	Ca ^{II} /6	-	YUNKAV	5	2015

•	Y-shp-MOF-5 100% humidity	Y ^{III}	Solvothermal		HEJGIP	12	2017
[$[Zn_2(bttb)(L2)]$ ·2DMF	Zn ^{II/5}	Solvothermal 80 °C – 48 hr		OCINAS	13	2017
]	$[Co_2(bttb)(L2)(H_2O)(\mu-H_2O)(DMF)] \cdot 2.7DMF$	Co ^{II} /6	Solvothermal 80 °C – 48 hr		OCINEW	13	2017
	$[Cd(H_2bttb)]_n \cdot 0.5nH_2O$	Cd ^{II} /8	Solvothermal 180 °C – 72 hr		FENHIS	14	2018
	${[Bi_2(H_2bttb)(bttb)(H_2O)_2] \cdot xH_2O}_n$	Bi ^{III} /8	Solvothermal 80 °C - 12 hr		MIHMEY	15	2018
	$\{H_2N(CH_3)_2[Bi(bttb)(H_2O)]\cdot xH_2O\}_n$	Bi ^{III} /9	Solvothermal 100 °C - 12 hr		MIHMIC	15	2018
]	$\{[Bi_4(O)_2(OH)_2(H_2bttb)(bttb)(H_2O)_2] \cdot x \\ H_2O\}_n$	Bi ^{III} /5	Solvothermal 120 °C - 12 hr	M_0	MIHMOI	15	2018

${Cu(cyclam)(H_2bttb)(DMF)_2}_n$	Cu ^{II} /6	Solvothermal	но он	ATICUE	20	2021
IRH-4-as synthesized ^b	Cu /o	90 °C - 3 days				
IRH-5-dichloromethane ^b	Zn ^{II/6}	Solvothermal 90 °C - 3 days		ATIBUD	20	2021
IRH-5-activated ^b	Zn ^{II/6}	Solvothermal 90 °C - 3 days		ATICAK	20	2021
IRH-4-activated ^b	Cu ^{II} /6	Solvothermal 90 °C - 3 days		ATICIS	20	2021
IRH-4-dichloromethane ^b	Cu ^{II} /6	Solvothermal 90 °C - 3 days		ATICOY	20	2021
[In ₂ (bttb)(OH) ₂]	In ^{III} /6	Solvothermal 100 °C – 48 hr		ODAXEA	21	2021

^aAbbreviations: CN: coordination number; H₄bttb = 1,2,4,5-tetrakis(4'-carboxyphenyl)benzene; DIOX = dioxane, DMF= dimethylformamide; DMBPY: 2,2'-dimethyl-4,4'-bipyridine; DEF = N,N'-diethylformamide; PO = propylene oxide; DMA = dimethylammonium cation, solv = solvent; cyclam = 1,4,8,11-tetraazacyclotetradecane; BDC = 1,4benzenedicarboxylic acid; BPY = bipyridine; AZPY = azopyridine; IRH = Institut de Recherche sur l'Hydrogène; shp = square hexagonal-prism; RH = relative humidity; L2= 1,7-bis{(pyridin-4'-yl)methanol}-1,7-dicarba-closododecaboranes; CAU = Christian-Albrechts-University; BPDPNDI = N,N'--bis(4-pyridyl)-2,6-dipyrrolidyl naphthalenediimide. ^b: as denoted in the reference paper.

*The revision for 2,5-pzdc²⁻ involved only coordination compounds with Ln^{III} ions. ^aAbbreviations: H₂-2,5-pzdc = 2,5-pyrazinedicarboxylic acid; NMP = *N*-methyl-2-pyrrolidone.

Tb1-O1	2.356(2)	Tb1- O5 ^{iv}	2.517(2)
Tb1-O1 ⁱⁱ	2.383(2)	Tb1- O6 ^{iv}	2.358(3)
Tb1-O3	2.279(3)	Tb1-N1	2.624(3)
Tb1- O4 ⁱ	2.305(3)	Tb1-Tb1 ⁱ	3.7557(2)
Tb1- O5 ⁱⁱⁱ	2.381(2)	Tb1- Tb1 ⁱⁱ	3.7557(2)
O1 - Tb1 - O1 ⁱ	157.70(6)	O3 -Tb1 - O5 ⁱⁱⁱ	119.20(12)
O1 -Tb1 - O5 ⁱⁱⁱ	132.79(8)	O3 -Tb1 - O5 ^{iv}	73.60(11)
O1 - Tb1 - O5 ^{iv}	71.84(8)	O3 - Tb1 - O6 ⁱⁱⁱ	73.16(12)
O1 ¹ -Tb1 - O5 ⁱⁱⁱ	69.01(7)	O3 -Tb1 - N1	124.01(11)
O1 -Tb1 - O6 ⁱⁱⁱ	99.56(11)	04 ⁱ -Tb1 - O1 ⁱ	95.49(11)
O1 ⁱ -Tb1 - N1	132.13(8)	O4 ⁱ -Tb1 - O5 ⁱⁱⁱ	100.30(11)
O1 -Tb1 - N1	65.00(8)	O4 ⁱ -Tb1 - O5 ^{iv}	70.57(10)
O3 - Tb1 - O1 ⁱ	98.00(11)	04 ⁱ -Tb1 - O6 ⁱⁱⁱ	140.43(13)
O3 - Tb1 - O1	76.02(12)	O5 ^{iv} -Tb1 - O1 ⁱ	85.87(8)
O3 - Tb1 - O4 ⁱ	140.50(14)	O5 ^{iv} -Tb1 - O5 ⁱⁱⁱ	152.64(7)
O6 ⁱⁱⁱ -Tb1 - O5 ^{iv}	146.76(10)	O5 ⁱⁱⁱ -Tb1 - N1	70.68(8)
O6 ⁱⁱⁱ -Tb1 - O5 ⁱⁱⁱ	52.81(9)	O6 ⁱⁱⁱ -Tb1 - O1 ⁱ	99.13(12)
O6 ⁱⁱⁱ -Tb1 - N1	75.46(13)	Ol -Tbl - Tbl ⁱ	156.01(6)

Table S2. Main bond distances (Å) and angles (deg) for 1^*

*Symmetry codes: (i) = -x + 3/2, y + 1/2, -z + 1/2; (ii) = -x + 3/2, y - 1/2, -z + 1/2; (iii) = -x + 3/2, -y + 1/2, -z + 1; (iv) = x, -y, z - 1/2; (v) = -x + 3/2, -y + 1/2, -z; (vi) = -x + 1, -y + 1, -z + 1; (vii) = x, -y, z + 1/2.

Figure S1. FTIR spectra of 1 (black trace), Na₄bttb (red trace), and Na₂2,5-pzdc salt (blue trace). The amplification shows the $v_{as}(COO^{-})$ and $v_{s}(COO^{-})$ stretching vibrations of the carboxylate groups aiming at getting a better visualization of Δv in cm⁻¹.

Figure S2. (a) TGA curve for **1** and TGA curves of **1** and H_4 bttb (inside); (b) TGA curves for H_2 -2,5-pzdc and H_4 bttb acids.

Figure S3. Experimental (red) and calculated (black) PXRD patterns for **1**. The inset shows an overlay between the patterns for a better comparison.

SHAPE details

Figure S4. Distorted triangular dodecahedron geometry around the Tb^{III} center in 1. *Symmetry code*: (ii) = -x + 3/2, y - 1/2, -z + 1/2; (iii) -x + 3/2, -y + 1/2, -z + 1; (iv) = x, -y, $z - \frac{1}{2}$.

Table S3. Geometric analysis of the coordination environment of the terbium(III) ion in **1**, showing the site symmetry approximation derived from continuous shape measures (CShM; via SHAPE³⁰.

Label	Symmetry	Shape	CShM*
TDD-8	D_{2d}	Triangular dodecahedron	3.162
BTPR-8	C_{2v}	Biaugmented trigonal prism	3.696
JBTPR-8	C_{2v}	Biaugmented trigonal prism J50	3.796
SAPR-8	D _{4d}	Square antiprism	5.324

*The approach is incorporated into the program SHAPE, which is readily available for public use³⁰. The values of SHAPE measures relative to other reference polyhedra of **1** are significantly larger. The lower limit corresponds to structures that exactly match the shape of symmetry, and increasing values result in increasingly distorted structures.³¹

Each Tb^{III} ion in **1** is eight-coordinated and its environment has been evaluated as a triangular dodecahedron with a CShM value of 3.162 (Table S3). This geometry also was

observed in the compound $[Dy_4(HL)_2(\mu_3-OH)_2(piv)_4(MeOH)_2]\cdot 4MeOH\cdot 2H_2O$ (for Dy2) and $[Dy_{21}(L)_7(HL)_7(tfa)_7]Cl_7\cdot 15H_2O\cdot 7MeOH\cdot 12CHCl_3$ (for Dy7)

 $(H_4L = 6-((bis(2-hydroxyethyl)amino)methyl)-N'-((8-hydroxyquinolin-2-$

yl)methylene)picolinohydrazide; piv = pivalate); tfa =1,1,1-trifluoroacetylacetonate).³²

Figure S5. Environment of the terbium(III) ion in **1** showing the values of the O-Tb-O and O-Tb-N bond angles to illustrate their deviations from those of the ideal geometry.

 Table S4. C-O bond lengths of bttb⁴⁻in 1.

C-O bond	Bond length (Å)
C ₁ -O ₁	1.288(4)
C ₁ -O ₂	1.198(5)
C ₂₁ -O ₃	1.243(6)
C ₂₁ -O ₄	1.244(6)
C ₂₀ -O ₅	1.273(5)
C ₂₀ -O ₆	1.242(5)

Tb ^{III 5} D ₄ state lifetime (ms)	Average ⁵ D ₄ state lifetime (ms)
$ au_1 = 0.178 \ au_2 = 0.736$	$ au_1 = 0.176 \ au_2 = 0.734$
$ au_1 = 0.179 \\ au_2 = 0.736$	Standard deviation
$ au_1 = 0.172 \\ au_2 = 0.732$	0.003 0.002

Table S5. Tb^{III 5}D₄ state lifetime (298 K, $\lambda_{exc} = 320$ nm) calculated from the emission decay curves represented in Figure S7.

Table S6. Tb^{III 5}D₄ state lifetime (77 K, $\lambda_{exc} = 320$ nm) calculated from the emission decay curves represented in Figure S8.

Tb ^{III 5} D ₄ state lifetime	Average ⁵ D ₄ state lifetime
(ms)	(ms)
$ au_1 = 0.172 \\ au_2 = 0.689$	$ au_1 = 0.174 \ au_2 = 0.690$
$ au_1 = 0.181 \\ au_2 = 0.696$	Standard deviation
$\tau_1 = 0.169$	0.006
$\tau_2 = 0.687$	0.004

Temperature/ K	Time/ ms (Tb ^{III} 545)	Time/ ns (L ₄₀₀)		
10	$\tau_1\!=\!0.67\pm 0.026$	$\tau_1\!=\!0.269\pm0,\!01$		
10	$\tau_2\!=\!0.77\pm 0.01$	$\tau_2 \!= 1.88 \pm 0.043$		
20	$\tau_1\!=0.719\pm 0.077$	$\tau_1\!=\!0.269\pm 0.0123$		
20	$\tau_2\!=\!0.756\pm 0.005$	$\tau_1{=}2.15667\pm 0.400$		
40	$\tau_1\!=\!0.769\pm 0.075$	$\tau_1\!=\!0.235\pm 0.014$		
70	$\tau_2\!=\!0.743\pm 0.011$	$\tau_1{=}2.51333\pm 0.547$		
60	$\tau_1\!=\!0.779\pm 0.067$	$\tau_1\!=\!0.229\pm 0.004$		
00	$\tau_2\!=\!0.736\pm 0.005$	$\tau_2 \!=\! 2.58 \pm 0.566$		
80	$\tau_1\!=0.819\pm 0.097$	$\tau_1\!=\!0.228\pm 0.008$		
00	$\tau_2\!=\!0.733\pm 0.005$	$\tau_2\!=\!3.11\pm1.045$		
100	$\tau_1\!=\!0.749\pm 0.093$	$\tau_1\!=\!0.213\pm 0.006$		
100	$\tau_2\!=\!0.726\pm 0.005$	$\tau_2\!=\!2.443\pm 0.560$		
120	$\tau_1\!=0.747\pm 0.069$	$\tau_1\!=\!0.212\pm 0.011$		
120	$\tau_2\!=\!0.726\pm 0.005$	$\tau_2\!=\!2.443\pm 0.490$		
1/0	$\tau_1\!=\!0.647\pm 0.041$	$\tau_1\!=\!0.222\pm 0.009$		
140	$\tau_2 \!=\! 0.73 \pm 0$	$\tau_2 \!= 1.92 \pm 0.144$		
160	$\tau_1\!=\!0.578\pm 0.056$	$\tau_1\!=\!0.214\pm 0.001$		
100	$\tau_2\!=\!0.72\pm0$	$\tau_2 \!= 1.75 \pm 0.166$		
180	$\tau_1\!=\!0.560\pm 0.018$	$\tau_1\!=\!0.224\pm 0.021$		
100	$\tau_2\!=\!0.723\pm 0.011$	$\tau_2\!=1.713\pm 0.066$		
200	$\tau_1\!=\!0.585\pm 0.052$	$\tau_1 \!= 0.211 \pm 0.01$		
200	$\tau_2\!=\!0.716\pm 0.005$	$\tau_2 \!= 1.81 \pm 0.185$		
220	$\tau_1\!=\!0.528\pm 0.062$	$\tau_1\!=\!0.219\pm 0.018$		
220	$\tau_2\!=\!0.72\pm 0.01$	$\tau_2 \!= 1.64 \pm 0.165$		
240	$\tau_1\!=\!0.508\pm 0.022$	$\tau_1\!=\!0.194\pm 0.008$		
240	$\tau_2\!=\!0.706\pm 0.004$	$\tau_2\!=\!1.61333\pm 0.070$		
260	$\tau_1\!=\!0.524\pm 0.053$	$\tau_1\!=\!0.193\pm 0.003$		
200	$\tau_2\!=\!0.713\pm 0.005$	$\tau_2\!=\!1.57333\pm 0.023$		
280	$\tau_1\!=\!0.465\pm 0.021$	$\tau_1\!=\!0.204\pm 0.113$		
280	$\tau_2\!=\!0.736\pm 0.005$	$\tau_2 \!= 1.51 \pm 0.079$		
200	$\tau_1\!=\!0.476\pm 0.016$	$\tau_1\!=\!0.249\pm 0.057$		
300	$\tau_2\!=\!0.74667\pm 0.020$	$\tau_2\!=1.58\pm 0.0556$		
320	$\tau_1\!=\!0.427\pm 0.021$	$\tau_1\!=\!0.258\pm 0.028$		
520	$\tau_2\!=\!0.723\pm 0.011$	$\tau_2\!=1.44\pm 0.0818$		

Table S7. Tb^{III 5}D₄ state (λ_{exc} = 320 nm) and ligand in 400 nm (λ_{exc} = 335 nm) time-dependent lifetime calculated from the emission decay curves represented in Figure S11.

Figure S6 (a) Excitation ($\lambda_{em} = 545 \text{ nm}$) and (b) emission ($\lambda_{exc} = 275 \text{ and } 320 \text{ nm}$) spectra of 1 monitored at 77 K.

In addition, the data are shown in Tables S5 and S6 [Figures S7 and S8)] show the Tb^{III} lifetime emission of the ${}^{5}D_{4}$ emitting state at two different temperatures (298 K and 77 K). The results illustrate that its luminescent properties stay prominent even through temperature variation.

Time-resolved luminescence

Figure S7. Intensity decay curves for 1 which were obtained with $\lambda_{exc} = 275$ or 320 nm and, $\lambda_{em} = 545$ nm, at 298 K.

Figure S8. Intensity decay curves for 1 which were obtained with $\lambda_{exc} = 275$ or 320 nm and $\lambda_{em} = 545$ nm at 77 K.

Figure S9. Excitation spectra of 1 at λ_{em} = 545 nm for temperature-dependent luminescent.

Figure S10. Temperature dependence of the thermometric parameter (Δ), relative thermal sensitivity (S_r), and temperature uncertainty (δ T) by considering the thermometric parameter as $\Delta \tau_{400(L)} \tau_{545(Tb)}$ using their longer emission lifetimes.

Figure S11. Emission decay curves of (a) the ligand at 400 nm and (b) the ${}^{5}D_{4}$ state (monitoring ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ at 545 nm) at temperatures below 320 K.

REFERENCES

- (1) J. R. Karra, Y. G. Huang, K. S. Walton, Cryst. Growth Des. 2013, 13, 1075–1081.
- (2) H. Jasuja, Y. Jiao, N. C. Burtch, Y. G. Huang, K. S. Walton, *Langmuir* 2014, **30**, 14300–14307.
- J. E. Warren, C. G. Perkins, K. E. P. Jelfs, P. Boldrin, P. A. Chater, G. J. Miller, T. D. Manning, M. E. Briggs, K. C. Stylianou, J. B. Claridge, M. J. Rosseinsky, *Angew. Chem., Int. Ed.* 2014, 53, 4592–4596.
- (4) I. Burneo, K. C. Stylianou, S. Rodríguez-Hermida, J. X. Juanhuix, Fontrodona, I. Imaz, D. Maspoch, *Cryst. Growth Des.* 2015, **15**, 3182–3189.
- (5) X. Chen, A. M. Plonka, D. Banerjee, R. Krishna, H. T. Schaef, S. Ghose, P. K. Thallapally, J. B. Parise, J. Am. Chem. Soc. 2015, 137, 22, 7007–7010.
- (6) Z. Guo, D. K. Panda, K. Maity, D. Lindsey, T.G. Parker, T. E. Albrecht-Schmitt, J. L. Barreda-Esparza, P. Xiong, W. Zhou, S. Saha, *J. Mater. Chem. C. Mater.* 2016, 4, 894–899.
- (7) J. R. Karra, H. Jasuja, Y.G. Huang, K.S. Walton, J. Mater. Chem. A. Mater. 2015, 3, 1624– 1631.
- (8) W. Cheng, T. Wang, W. Xu, Y. Zhang, J. Zhang, M. Fang, J. Coord. Chem. 2016, 69, 2220–2230.
- (9) M. Lammert, H. Reinsch, C.A. Murray, M.T. Wharmby, H. Terraschke, N. Stock, *Dalton Trans.* 2016, **45**, 18822–18826.
- (10) A. M. Plonka, X. Chen, H. Wang, R. Krishna, X. Dong, D. Banerjee, W. R. Woerner, Y. Han, J. Li, J. B. Parise, *Chem. Mat.* 2016, 28, 1636–1646.
- (11) F. Yuan, C. Yuan, H. Hu, T. Wang, C. Zhou, Polyhedron 2018, 139, 257–261.
- (12) R. G. Abdulhalim, P. M. Bhatt, Y. Belmabkhout, A. Shkurenko, K. Adil, L.J. Barbour, M. Eddaoudi, J. Am. Chem. Soc. 2017, **139**, 10715–10722.
- (13) M. Y. Tsang, S. Rodríguez-Hermida, K. C. Stylianou, F. Tan, D. Negi, F. Teixidor, C. Viñas, D. Choquesillo-Lazarte, C. Verdugo-Escamilla, M. Guerrero, J. Sort, J. Juanhuix, D. Maspoch, J. G. Planas, *Cryst. Growth Des.* 2017, **17**, 846–857.
- (14) F. Yuan, C. M. Yuan, H. M. Hu, T.T. Wang, C.S. Zhou, Polyhedron 2018, 139, 257-261.
- (15) M. Köppen, V. Meyer, J. Ångström, A. K. Inge, N. Stock, Cryst. Growth Des. 2018, 18, 4060– 4067.
- (16) D. Banerjee, X. Chen, S.S. Lobanov, A.M. Plonka, X. Chan, J.A. Daly, T. Kim, P.K. Thallapally, J. B. Parise, *ACS Appl. Mater. Interfaces* 2018, **10**, 10622–10626.
- (17) S. S. Dhankhar, C.M. Nagaraja, New J. Chem. 2019, 43, 2163–2170.
- (18) S. E. Gilson, P. Li, J. E. S. Szymanowski, J. White, D. Ray, L. Gagliardi, O.K. Farha, P. C. Burns, J. Am. Chem. Soc. 2019, 141, 11842–11846.

- (19) P. Rönfeldt, H. Reinsch, M.P.M. Poschmann, H. Terraschke, N. Stock, *Cryst. Growth Des.* 2020, **20**, 4686–4694.
- (20) N. Dissem, M. Essalhi, N. Ferhi, A. Abidi, T. Maris, A. Duong, *Dalton Trans.* 2021, **50**, 8727– 8735.
- (21) H.Q. Yin, K. Tan, S. Jensen, S. J. Teat, S. Ullah, X. Hei, E. Velasco, K. Oyekan, N. Meyer, X.Y. Wang, T. Thonhauser, X. B. Yin, J. Li, *Chem. Sci.* 2021, **12**, 14189–14197.
- (22) D. H. Le, R.P. Loughan, A. Gładysiak, N. Rampal, I. A. Brooks, A.H.A. Park, D. Fairen-Jimenez, K.C. Stylianou, J. Mater. Chem. A. Mater. 2022, 10, 1442–1450.
- (23) D. F. Sava Gallis, K.S. Butler, C. J. Pearce, N. Valdez, M. A. Rodriguez, ACS Appl. Mater. Interfaces 2022, 14, 10566–10576.
- (24) B. C. Chen, C. Q. Xiao, J. J. Hu, Y. Peng, H. R. Wen, S. J. Liu, *Inorg. Chem.* 2023, 62, 6255-6262.
- (25) J. Z. Gu, Z. Q. Gao, J. Chem. Crystallogr. 2012, 42, 283–289.
- (26) Y. Pan, D. Ma, H. Liu, H. Wu, D. He, Y. Li, J. Mater. Chem. 2012, 22, 10834–10839.
- (27) J. Cepeda, S. Pérez-Yáñez, G. Beobide, O. Castillo, J.A. García, A. Luque, *Eur. J. Inorg. Chem.* 2015, **2015**, 4318–4328.
- (28) M. V. Marinho, D. O. Reis, W.X.C. Oliveira, L.F. Marques, H.O. Stumpf, M. Déniz, J. Pasán, C. Ruiz-Pérez, J. Cano, F. Lloret, M. Julve. *Inorg. Chem.* 2017, 56, 2108–2123.
- (29) M. O. Barsukova, S. V. Cherezova, A.A. Sapianik, O. V. Lundovskaya, D. G. Samsonenko, V.P. Fedin, *RSC Adv.* 2020, **10**, 38252–38259.
- (30) M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, SHAPE: Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools, v2.1, Eletronic Structure Group, Universitat de Barcelona. 2013.
- (31) S. Alvarez, M. Llunell, J. Chem. Soc., Dalton Trans. 2000, 3288–3303.
- (32) S. Biswas, S. Das, J. Acharya, V. Kumar, J. van Leusen, P. Kögerler, J.M. Herrera, E. Colacio, V. Chandrasekhar, *Chem. A Eur. J.* 2017, **23**, 5154–5170.