Supporting Information

Ni-Co-Mn complexed 3,4,9,10-perylene tetracarboxylic acid complexes as novel organic electrode material for lithium-ion batteries

¹Wenfeng Yuan^[a], ¹Mengqian Xu^[a], Lucheng Li^[a], Nei Chen^[a], Jun Chen^{*[a]}, Qian Zhang^[a, b]

^[a] Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry,

Jiangxi University of Sciences and Technology, Ganzhou 341000. China, E-mail: chenjun@jxust.edu.cn

¹ Co-first author

Fig. S1 (a) AC impedance curve of PTCDA-NiCoMn after 3 turns of polarization; (b) AC impedance curve of

PTCDA-NiCoMn-G after 3 turns of polarization

	Samples	$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$
3 Cycles	PTCDA-NiCoMn	4.257	3.501	42.86
	PTCDA-NiCoMn-G	2.376	3.889	7.545

\mathbf{x}

Fig. S2 (a) charge/discharge curves of PTCDA-NiCoMn electrode at 2000 mA g⁻¹ current density; (b) charge/discharge curves of PTCDA-NiCoMn-G electrode at 2000mA g⁻¹ current density; (c) cycling performance of PTCDA-NiCoMn and PTCDA-NiCoMn-G electrodes at 2000mA g⁻¹ current density

Fig. S3 (a) AC impedance curves of PTCDA-NiCoMn and PTCDA-NiCoMn-G electrodes after 100 cycles; (b)

AC impedance curves of both electrodes after 500 cycles

	Samples	$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$
100 Cyclos	PTCDA-NiCoMn	15.98	19.68	46.06
100 Cycles	PTCDA-NICoMn-G	16.89	3.67	9.60
500 Cycles	PTCDA-NiCoMn	47.10	53.01	18.27
	PTCDA-NiCoMn-G	25.83	22.28	25.66

Table S2 Impedance fitting data for PTCDA-NiCoMn and PTCDA-NiCoMn-G electrodes

Table S3 Discharge capacity contributed from PTCDA-NiCoMn at different potentials (The voltage window

PTCDA-NiCoMn								
4 th cycle		50 th	cycle	125 th cycle		200 th cycle		
С	V	С	V	С	V	С	V	
0	3.0	0	3.0	0	3.0	0	3.0	
0	2.9	0	2.9	0	2.9	0	2.9	
0	2.8	0	2.8	0	2.8	0	2.8	
0	2.7	1.9	2.7	0	2.7	0	2.7	
1.1	2.6	5.5	2.6	0.3	2.6	0.3	2.6	
2.5	2.5	10.8	2.5	2.2	2.5	2.5	2.5	
4.2	2.4	17.2	2.4	5.8	2.4	6.2	2.4	
6.7	2.3	23.3	2.3	10.5	2.3	11.3	2.3	
10	2.2	29.1	2.2	15.8	2.2	16.4	2.2	
15	2.1	34.6	2.1	21.1	2.1	22.1	2.1	
21.6	2.0	40.2	2.0	26.6	2.0	27.8	2.0	
29.9	1.9	45.7	1.9	32.1	1.9	33.7	1.9	
39.3	1.8	51.8	1.8	38.5	1.8	40.3	1.8	
48.8	1.7	58.4	1.7	46	1.7	47.4	1.7	
58.5	1.6	66.2	1.6	54	1.6	55.9	1.6	
70.4	1.5	75.9	1.5	63.1	1.5	65.5	1.5	
87.8	1.4	88.3	1.4	74.5	1.4	77.4	1.4	
113.3	1.3	105.8	1.3	89.5	1.3	91.6	1.3	
151	1.2	129.9	1.2	109.4	1.2	109.7	1.2	
196.4	1.1	164.3	1.1	132.1	1.1	131	1.1	
250.2	1.0	209.7	1.0	161.4	1.0	156.8	1.(
314.2	0.9	260.6	0.9	196.1	0.9	185.1	0.9	
382	0.8	314.9	0.8	231.2	0.8	216.3	0.8	
445.8	0.70	0.7	0.7	264.2	0.7	249	0.7	
509.5	0.6	442.9	0.6	316.8	0.6	285.8	0.6	
572.6	0.5	513.5	0.5	367.8	0.5	326.1	0.5	
642.2	0.4	585.2	0.4	422.3	0.4	371.2	0.4	
723.1	0.3	658.6	0.3	486.8	0.3	420.2	0.3	

is 0.01-3 V at 0.1 V intervals, C: discharge capacity, mAh·g⁻¹, V: voltage, V)

828.4	0.2	755.2	0.2	558.6	0.2	475.9	0.2
976.3	0.1	874.6	0.1	645.8	0.1	541.2	0.1
1218.8	0.01	1051.20	0.01	761	0.01	622.6	0.01

Table S4 Total capacity attenuation over different cyclic ranges and the attenuation ratio of C=O, C=C , benzene

ring correspondence								
Cycle range	Total capacity attenuation, mAh·g ⁻¹	Capacity attenuation (C=O), mAh·g ⁻¹	Percentag e	Capacity attenuation (C=C), mAh·g ⁻¹	Percentag e	Capacity attenuation (benzene ring), mAh·g ⁻¹	Percentage	
20-50	167.6	51.52	30.74%	38.64	23.05%	77.3	46.21 %	
50-125	290.2	89.28	30.76%	67.32	23.19%	133.92	46.14%	
125-200	138.4	42.57	30.76%	31.59	22,82%	63.89	46.16%	