Electronic supplementary information (ESI)

Oxidation-driven SnS conversion to two-dimensional porous

SnO₂ flakes towards NO₂ gas sensing

Zhiwei Lu,^a Xiaoxiao Pei,^a Tingting Wang,^a Kewei Gu,^a Nan Yu,^a Mingsong Wang^{a,*} and Junli Wang^{a,b,*}

^aSchool of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China

^bSchool of Emergency Management, Jiangsu University, Zhenjiang 212013, PR China

*Corresponding authors: <u>wangjl@ujs.edu.cn</u>; <u>wangms@ujs.edu.cn</u>.

Fig. S1 SEM images of (a,b) SnS flakes (as-prepared) and (c,d) $SnS-SnS_2-SnO_2$ flakes (400 °C).

Fig. S2 Sn 3d core-level XPS spectra of as-prepared SnS flakes and the products obtained at different oxidation temperatures (°C) as labeled. The binding energies for the different chemical states of Sn 3d from various samples are detailed in Table S1.

Materials	Binding energy			
SnS	° Sn-O (SnO) Sn(II)3d _{3/2} : 495.3 eV Sn(II)3d _{5/2} : 486.8 eV		SnS-Sn ²⁺ Sn(II)3d _{3/2} : 494.0 eV Sn(II)3d _{5/2} : 485.6 eV	
SnS-SnS ₂ -SnO ₂ (400 °C)	^b SnS ₂ -Sn ⁴⁺ Sn(IV)3d _{3/2} : 495.8 eV Sn(IV)3d _{5/2} : 487.5 eV	^b SnO <u>;</u> Sn(IV)3d _{3/2} Sn(IV)3d _{5/2}	₂ -Sn ⁴⁺ 2: 495.2 eV 2: 486.8 eV	SnS-Sn ²⁺ Sn(II)3d _{3/2} : 494.0 eV Sn(II)3d _{5/2} : 485.6 eV
SnS₂-SnO₂ (600 °C)	^b SnS ₂ -Sn ⁴⁺ Sn(IV)3d _{3/2} : 496.1 eV Sn(IV)3d _{5/2} : 487.7 eV		^b SnO ₂ -Sn ⁴⁺ Sn(IV)3d _{3/2} : 495.2 eV Sn(IV)3d _{5/2} : 486.8 eV	
SnO ₂ (800 °C)	^b SnO ₂ -Sn ⁴⁺ Sn(IV)3d _{3/2} : 494.9 eV Sn(IV)3d _{5/2} : 486.5 eV			
SnO₂ (800 °C)	^b SnO ₂ -Sn ⁴⁺ Sn(IV)3d _{3/2} : 494.9 eV Sn(IV)3d _{5/2} : 486.5 eV			

 Table S1 The binding energies (BEs) for different oxidation states of Sn 3d from various samples.

Notes: ^{*a*}The shoulder peaks are usually considered from the surface oxidation of SnS, namely, SnO, which is found to have similar BEs to that of Sn(IV) of SnS₂ (refer to: *Chem. Mater.* 2016, *28*, 3718–3726; *Phys. Rev. Mater.* 2020, *4*, 074602).

^{*b*}The BEs of SnS₂ are higher than that of SnO₂. The reason may be due to the existence of oxygen vacancies that reduce the oxidation state of Sn⁴⁺ to Sn^{(4-x)+} in SnO₂ (*Phys. Rev. Lett.* 2002, **88**, 095501).

Fig. S3 The N_2 sorption isotherms of pore SnO₂ (800 °C) and SnO₂ (1000 °C) measured at 77 K.

Fig. S4 Respose/recovery times of NO₂ sensors made of (a) SnS_2 - SnO_2 flakes (600 °C) and (b) SnO_2 flakes (800 °C).