Supporting Information

Ordering by substitution: the case of Na_{2-x}Li_xGa₇

Chia-Chi Yu,^a Yurii Prots,^a Alim Ormeci,^a Mitja Krnel,^a Marcus Schmidt,^a Lev Akselrud,^{a,b} Frank R. Wagner,^a Yuri Grin^a and Michael Baitinger^{*a}

^aMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany ^bIvan Franko Lviv National University, Kyryla i Mefodia St. 6, 29005 Lviv, Ukraine

Table of content:

Crystallographic data for NaLiGa7	S1
Atomic coordinates and displacement parameters for NaLiGa7	S2
Selected interatomic distances in NaLiGa ₇	S3
Selected bond angles in NaLiGa7	S4
DTA measurements of Na ₂ Ga ₇ , Na _{1.8} Li _{0.2} Ga ₇ and NaLiGa ₇	S5
Structure model of NaLiGa7 with large ADPs of Na1 atoms	S6
Crystallographic data from PXRD for Na _{2-x} Li _x Ga ₇	S7
Ga framework in NaLiGa ₇	S10
Distortion of the Ga icosahedron in NaLiGa ₇	S11
Cation occupancies in NaLiGa ₇ and Na ₂ Ga ₇	S12
Experimental cation occupancies in Na _{2-x} Li _x Ga ₇	S13
Depth of C1 hollow	S14
Susceptibility measurement of NaLiGa7	S15
References	S16

Table S1 Crystallographic data for NaLiGa7.

Composition	NaLiGa ₇
Molar mass / g mol ⁻¹	517.991
Crystal system; space group	orthorhombic <i>, Cmce</i> (no. 64)
a / Å	8.562(1)
<i>b</i> / Å	14.822(2)
c / Å	11.454(2)
V/Å ³	1453.6(4)
Z; $ ho_{calc}$ / g cm ⁻³	8; 4.719
Diffractometer	Rigaku AFC7, Saturn 724+CCD detector
λ/Å	0.71073 (ΜοΚα)
Temperature / K	293
Crystal shape	irregular
Crystal size / mm	$0.12 \times 0.08 \times 0.06$
μ / mm ⁻¹	25.51
Absorption correction	multi-scan
heta range / deg.	2.75–37.00
Indexes ranges	$-14 \le h \le 12, -23 \le k \le 25, -10 \le l \le 19$
<i>F</i> (000) / e	1848
Independent reflections	1949
Reflections $F_{o} > 4\sigma F$	1760
Parameters refined	49
GooF	1.123
$R_1, F_0 > 4\sigma F_0$	0.0343
R ₁ , all data	0.0414

Atom	Site	Occupancy	x/a	y / b	z / c	U _{eq} /U _{iso}	U 11	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ga1	8f	1	0	0.10624(5)	0.81844(7)	0.0133(2)	0.0166(3)	0.0113(3)	0.0119(3)	0	0	0.0018(2)
Ga2	8f	1	0	0.17692(5)	0.04241(7)	0.0132(2)	0.0169(3)	0.0075(2)	0.0151(3)	0	0	-0.0016(2)
Ga3	16 <i>g</i>	1	0.15421(6)	0.05125(3)	0.16733(4)	0.0118(1)	0.0145(2)	0.0104(2)	0.0105(2)	-0.0001(1)	-0.0010(2)	-0.0002(1)
Ga4	16 <i>g</i>	1	0.24534(7)	0.08882(3)	0.95650(4)	0.0121(1)	0.0137(2)	0.0104(2)	0.0123(2)	-0.0009(2)	0.0001(2)	0.0004(1)
Ga5	8f	1	0	0.15956(5)	0.60329(7)	0.0124(2)	0.0139(3)	0.0074(2)	0.0159(3)	0	0	0.0006(2)
Li1	8f	1	0	0.039(1)	0.390(2)	0.034(5)	0.055(11)	0.023(7)	0.026(7)	0	0	0.008(6)
Na1a	8 <i>e</i>	0.5	1⁄4	0.2451(5)	1⁄4	0.0202(9)	-	-	-	-	-	-
Na1b	16g	0.25	0.211(2)	0.2411(9)	0.289(1)	0.0341(12)	-	-	-	-	-	-

Table S2 Atomic coordinates and displacement parameters (in $Å^2$) for NaLiGa₇.

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor, which is exp $(-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}])$

Ga–Ga	<i>d </i> Å		
Ga1–Ga5	2.588(1)	1×	exo
–Ga4	2.6419(8)	2×	endo
–Ga3	2.6868(8)	2×	endo
–Ga5	2.7710(1)	1×	endo
Ga2–Ga5	2.522(1)	1×	exo
–Ga4	2.6619(7)	2×	endo
–Ga3	2.6945(8)	2×	endo
–Ga1	2.771(1)	1×	endo
Ga3–Ga3	2.5054(7)	1×	exo
–Ga4	2.5981(8)	1×	endo
–Ga4	2.6326(7)	1×	endo
–Ga3	2.6407(8)	1×	endo
–Ga1	2.6868(8)	1×	endo
–Ga2	2.6945(8)	1×	endo
Ga4–Ga5	2.5145(7)	1×	exo
–Ga3	2.5981(8)	1×	endo
–Ga3	2.6326(7)	1×	endo
–Ga1	2.6419(8)	1×	endo
–Ga2	2.6619(7)	1×	endo
–Ga4	2.8152(7)	1×	endo
Ga5–Ga4	2.5145(7)	2×	
–Ga2	2.522(1)	1×	4b
–Ga1	2.588(1)	1×	

Table S3 Ga–Ga interatomic distances in NaLiGa₇.The distances are classified in exo- and endo-bonds of the Ga₁₂ icosahedron (Ga1–Ga4) and the 4-bonded atom (Ga5).

∡Ga−Ga−Ga	Deg / °		≰Ga−Ga−Ga	Deg / °	
Ga2– Ga1 –Ga3	105.80(1)	4×	Ga1– Ga2 –Ga3	103.31(1)	4×
Ga2– Ga1 –Ga4	58.86(1)	4×	Ga1– Ga2 –Ga4	58.15(1)	4×
Ga3– Ga1 –Ga3	58.87(1)	2×	Ga3– Ga2 –Ga3	58.68(1)	2×
Ga3– Ga1 –Ga4	59.21(2)	4×	Ga3– Ga2 –Ga4	58.03(2)	4×
Ga3– Ga1 –Ga4	105.64(2)	4×	Ga3– Ga2 –Ga4	104.12(2)	4×
Ga4– Ga1 –Ga4	105.33(2)	2×	Ga4– Ga2 –Ga4	104.21(2)	2×
Ga1– Ga3 –Ga2	113.08(2)	4×	Ga1– Ga4 –Ga2	62.99(1)	4×
Ga1– Ga3 –Ga3	60.57(1)	4×	Ga1– Ga4 –Ga3	61.25(2)	4×
Ga1– Ga3 –Ga4	59.55(2)	4×	Ga1– Ga4 –Ga3	109.79(3)	4×
Ga1– Ga3 –Ga4	112.97(2)	4×	Ga1– Ga4 –Ga4	107.65(2)	4×
Ga2– Ga3 –Ga3	60.66(2)	4×	Ga2– Ga4 –Ga3	61.61(2)	4×
Ga2– Ga3 –Ga4	60.36(2)	4×	Ga2– Ga4 –Ga3	110.62(3)	4×
Ga2– Ga3 –Ga4	113.85(2)	4×	Ga2– Ga4 –Ga4	109.14(2)	4×
Ga3– Ga3 –Ga4	107.24(2)	4×	Ga3– Ga4 –Ga3	104.05(2)	4×
Ga3– Ga3 –Ga4	107.48(3)	4×	Ga3– Ga4 –Ga4	56.85(2)	4×
Ga4– Ga3 –Ga4	65.12(2)	4×	Ga3– Ga4 –Ga4	58.03(2)	4×

Table S4 Ga–Ga–Ga bond angles in the Ga_{12} icosahedron of NaLiGa₇.

Table S5 Ga–Ga–Ga bond angles for the 4-bonded Ga atoms of NaLiGa7.

4Ga−Ga−Ga	Deg / °	
Ga1– Ga5 –Ga2	123.83(4)	1×
Ga1– Ga5 –Ga4	97.59(1)	2×
Ga2– Ga5 –Ga4	108.99(1)	2×
Ga4– Ga5 –Ga4	120.26(2)	1×

Table S6 DTA measurements of Na₂Ga₇, Na_{1.8}Li_{0.2}Ga₇ and NaLiGa₇. Presented are endothermal effects on heating and products after cooling identified by PXRD. Temperatures for the first effect represent the onset temperature, those for the second effect are estimated. The experimental error for the first effect is lower than 2 °C.

Composition	1 st effect <i>T</i> / °C	2 nd effect T / °C	Final products
Na ₂ Ga ₇ ¹	501	515	Na ₇ Ga ₁₃ , ² NaGa ₄ , ³ Ga
Na _{1.8} Li _{0.2} Ga ₇	498	509	Na _{2-x} Li _x Ga ₇ , NaGa ₄ , unknown
NaLiGa7	489	505	$Na_{2-x}Li_xGa_7$ and $LiGa_2^4$

Fig. S1 Structure model of NaLiGa₇, view along [100]. The ADPs of Na1 (yellow, 95 % probability) show a large and cigar-shaped ellipsoid. Li1 atoms (red) occupy caves between three icosaheda.

Fig. S2 Orientation of the Na1 ellipsoids (yellow, 95 % probability) aligning to the walls.

Table S7a Crystallograph	hic data for Na _{1.8} Li _{0.2} Ga ₇	obtained from PXRD data.
--------------------------	--	--------------------------

Crystal system; space group	orthorhombic <i>, Pnma</i> (no. 62)
a / Å	14.847(3)
b / Å	8.646(2)
c / Å	11.558(3)
V / Å ³	1483.7(6)
Ζ	8
Diffractometer	Guinier-Huber Image Plate Camera G670
λ / Å	1.54056 (CuKα1)
Temperature / K	293
2θ ; sin θ/λ (max)	100.30; 0.498
Reflections used for refinement	839
Parameters refined	137
R ₁ ; R _p	0.0604; 0.0352

The lattice parameters were refined from individual peak positions extracted from the powder diffraction pattern by using LaB_6 as internal standard. Standard deviations were calculated considering the Berar factor of 5.09.

Atom	Site	Occupancy	x/a	y / b	z / c	U iso
Ga1	4 <i>c</i>	1	0.6521(2)	1⁄4	0.8241(4)	0.0079(3)
Ga2	4 <i>c</i>	1	0.8624(2)	1⁄4	0.1835(4)	0.0099(3)
Ga3	4 <i>c</i>	1	0.9253(3)	1⁄4	0.9501(4)	0.0139(3)
Ga4	4 <i>c</i>	1	0.5761(3)	1⁄4	0.0420(4)	0.0113(3)
Ga5	8d	1	0.8043(2)	0.0928(3)	0.8348(3)	0.0095(3)
Ga6	8d	1	0.7056(2)	0.0966(3)	0.1685(3)	0.0094(3)
Ga7	8d	1	0.6654(2)	0.0028(5)	0.9577(2)	0.0138(3)
Ga8	8d	1	0.8444(2)	0.0031(5)	0.0477(2)	0.0091(3)
Ga9	4 <i>c</i>	1	0.0871(3)	1⁄4	0.8811(3)	0.0093(3)
Ga10	4 <i>c</i>	1	0.4120(3)	1⁄4	0.1032(3)	0.0122(3)
Na1	4 <i>c</i>	0.48(2)	0.291(1)	1⁄4	0.895(2)	0.01867(7)
Li1	4 <i>c</i>	0.52(2)	0.291(1)	1⁄4	0.895(2)	0.01867(7)
Na2	4 <i>c</i>	0.79(1)	0.0964(9)	1⁄4	0.133(1)	0.01867(7)
Na3	8d	1	0.4909(5)	0.0349(7)	0.8159(6)	0.034(2)

Table S7b Atomic coordinates and displacement parameters (in Å²) for Na_{1.8}Li_{0.2}Ga₇.

Table S8a Crystallographic data for	Na _{1.5} Li _{0.5} Ga ₇ obtained from PXRD data.
-------------------------------------	--

Crystal system; space group	orthorhombic <i>, Pnma</i> (no. 62)
a / Å	14.834(1)
<i>b</i> / Å	8.5956(9)
c / Å	11.488(2)
V / Å ³	1464.8(3)
Ζ	8
Diffractometer	Guinier-Huber Image Plate Camera G670
λ/Å	1.54056 (CuKα1)
Temperature / K	293
2θ ; $\sin\theta/\lambda$ (max)	100.30; 0.498
Reflections used for refinement	826
Parameters refined	147
R _l ; R _p	0.0940; 0.0581

The lattice parameters were refined from individual peak positions extracted from the powder diffraction pattern by using LaB_6 as internal standard. Standard deviations were calculated considering the Berar factor of 6.65.

Atom	Site	Occupancy	x/a	y/b	z / c	U iso
Ga1	4 <i>c</i>	1	0.6544(3)	1⁄4	0.8219(4)	0.0099(4)
Ga2	4 <i>c</i>	1	0.8594(3)	1⁄4	0.1862(4)	0.0159(4)
Ga3	4 <i>c</i>	1	0.9266(3)	1⁄4	0.9532(4)	0.0177(4)
Ga4	4 <i>c</i>	1	0.5772(3)	1⁄4	0.0437(4)	0.0150(4)
Ga5	8d	1	0.8065(2)	0.0928(4)	0.8275(3)	0.0111(3)
Ga6	8d	1	0.7062(2)	0.0955(4)	0.1664(3)	0.0122(3)
Ga7	8d	1	0.6675(2)	0.9987(4)	0.9557(3)	0.0107(3)
Ga8	8d	1	0.8482(2)	0.0062(4)	0.0440(3)	0.0109(4)
Ga9	4 <i>c</i>	1	0.0857(3)	1⁄4	0.8846(3)	0.0077(4)
Ga10	4 <i>c</i>	1	0.4152(3)	1⁄4	0.0992(4)	0.0137(4)
Na1a	4 <i>c</i>	0.69(2)	0.088(1)	1⁄4	0.139(2)	0.01376(9)
Na1b	4 <i>c</i>	0.31(2)	0.027(2)	1⁄4	0.141(4)	0.01385(9)
Li1	4 <i>c</i>	0.38(5)	0.858(9)	1⁄4	0.64(1)	0.01382(9)
Na2	8d	1	0.4910(5)	0.0497(8)	0.8235(8)	0.028(2)

Table S8b Atomic coordinates and displacement parameters (in $Å^2$) for Na_{1.5}Li_{0.5}Ga₇.

Table S9a Crystallographic c	data for Na _{1.2} Li _{0.8} Ga ₇ obtained from PXRD data.
------------------------------	---

Crystal system; space group	orthorhombic, <i>Cmce</i> (no. 64)
a / Å	8.5692(9)
b / Å	14.836(2)
<i>c</i> / Å	11.466(2)
<i>V</i> / Å ³	1457.7(4)
Ζ	8
Diffractometer	Guinier-Huber Image Plate Camera G670
λ/Å	1.54056 (CuKα1)
Temperature / K	293
2θ ; sin θ/λ (max)	100.40; 0.499
Reflections used for refinement	413
Parameters refined	63
R _I ; R _p	0.0529; 0.0248

The lattice parameters were refined from individual peak positions extracted from the powder diffraction pattern by using LaB_6 as internal standard. Standard deviations were calculated considering the Berar factor of 4.03.

Atom	Site	Occupancy	x/a	y / b	z / c	U _{iso}
Ga1	8f	1	0	0.1077(2)	0.8218(3)	0.018(1)
Ga2	8f	1	0	0.1782(3)	0.0440(2)	0.0089(7)
Ga3	16 <i>g</i>	1	0.1560(3)	0.0491(2)	0.1669(2)	0.0139(5)
Ga4	16 <i>g</i>	1	0.2471(2)	0.0890(2)	0.9573(1)	0.0111(4)
Ga5	8f	1	0	0.1618(3)	0.6056(2)	0.0128(6)
Li1	8f	0.44(4)	0	0.025(8)	0.391(7)	0.02*
Na1a	8e	0.44(2)	1⁄4	0.235(2)	1⁄4	0.0238(6)
Na1b	16 <i>g</i>	0.56(2)	0.196(2)	0.232(2)	0.333(2)	0.0238(6)

Table S9b Atomic coordinates and displacement parameters (in Å²) for Na_{1.2}Li_{0.8}Ga₇.

* The parameter was fixed in the final refinement cycle.

Fig. S3 In the Ga framework in NaLiGa₇, the centers of the Ga₁₂ icosahedra exhibit an *fcc*-like arrangement.

Fig. S4 Distorted Ga icosahedron in NaLiGa₇ with different distances of atoms in *trans*-position. Atoms connected with 4-bonded Ga atoms are drawn in blue, atoms connected to an adjacent icosahedron in black.

Fig. S5 Schlegel graph of the Ga₁₂ icosahedron in NaLiGa₇ with distances normalized to the shortest Ga–Ga bond. Atoms connected with 4-bonded Ga atoms are drawn in blue, atoms forming exohedral bonds to neighboring icosahedra in black.

Compound	Wyckoff and occupancy					
Compound	C1	C2	С3			
	8f	8 <i>e</i>	8f			
NaLiGa ₇ <i>Cmce</i>	(0, y, z)	$(\frac{1}{4}, y, \frac{1}{4})$	(0, y, z)			
	0	Na	Li			
	4 <i>c</i> 4 <i>c</i>	8 <i>d</i>	4c 4c			
Na₂Ga ₇ <i>Pnma</i>	$(x, \frac{1}{4}, z)$	(x, y, z)	$(x, \frac{1}{4}, z)$			
	Na O	Na	Na O			

Table S10 Wyckoff symbols and occupancy of the cation sites C1, C2 and C3 in NaLiGa₇ and Na₂Ga₇.

Table S11 Results of structure refinements for samples with composition of $Na_{2-x}Li_xGa_7$ (x = 0, 0.2, 0.5, 0.8, 1). The gray shaded data originate from single-crystal diffraction, while the remaining data are from powder diffraction data. The challenge in determining partially occupied Na and Li positions allows only a qualitative interpretation of the powder data.

Compound		Wyckoff and occupancy					Sum occup.
(Z = 8)	X	C1		C2	C	3	of cations
Na ₂ Ga ₇		4 <i>c</i>	4 <i>c</i>	8 <i>d</i>	4 <i>c</i>	4 <i>c</i>	16
Pnma	0	1 Na	0	1 Na	1 Na	0	10
Na _{1.8} Li _{0.2} Ga ₇	0.2	4 <i>c</i>	4 <i>c</i>	8 <i>d</i>	4 <i>c</i>	4 <i>c</i>	15 16
Pnma	0.2	0.79 Na	0	1 Na	0.48 Na	0.52 Li	15.10
Na _{1.5} Li _{0.5} Ga ₇		4 <i>c</i>	4 <i>c</i>	8 <i>d</i>	4 <i>c</i>	4 <i>c</i>	12 52
Pnma	0.5	1 Na	0	1 Na	0.38 Li	0	13.52
Na _{1.2} Li _{0.8} Ga ₇		8f	•	8 <i>e</i>	8	f	11 50
Стсе	0.8	Ō		1 Na	0.44 Li		11.52
NaLiGa ₇	1	8f		8e	8	<i>f</i>	16
Стсе	T	Ó		1 Na	1 Li		10

Fig. S6 Depth of **C1** hollow in the hexagonal gallium planes of the Na_{2-x}Li_xGa₇ crystal structure (x < 1) depends on the occupancy of **C1**. The distortion Δd was determined by measuring the shortest distance of the bottom Ga atom (8*d*) and the plane intersecting the three neighboring Ga atoms (8*d*, 8*d*, 4*c*) above.

Fig. S7 (a) Temperature dependence of the magnetic susceptibility $\chi(T)$ of NaLiGa₇ in the temperature range T = 1.8 K - 400 K in magnetic fields $\mu_0 H = 0.002$ T, 0.1 T, 3.5 T and 7 T. (b) Zoomed temperature range from T = 1.8 K - 10 K.

(a)

(b)

References

- 1. C.-C. Yu, A. Ormeci, I. Veremchuk, X.-J. Feng, Yu. Prots, M. Krnel, P. Koželj, M. Schmidt, U. Burkhardt, B. Böhme, L. Akselrud, M. Baitinger and Yu. Grin, *Inorg. Chem.*, 2023, **62**, 9054.
- 2. U. Frank-Cordier, G. Cordier and H. Schäfer, Z. Naturforsch. B, 1982, 37, 119.
- 3. G. Bruzzone, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, B25, 1206.
- 4. J. Sappl and C. Hoch, Inorg. Chem., 2020, 59, 6566.