First 4,7-oxygenated 1,10-phenanthroline-2,9-diamides: synthesis, tautomerism and complexation with REE nitrates

Nane A. Avagyan,^a Pavel S. Lemport,^a Vitaly A. Roznyatovsky,^a Alexei D. Averin,^a Alexei A. Yakushev,^a Konstantin A. Lyssenko,^a Pavel D. Perfilyev,^a Ksenia L. Isakovskaya,^b Svetlana A. Aksenova,^{b,c} Yulia V. Nelyubina,^b Mikhail F. Vokuev,^a Igor A. Rodin,^a Igor P. Gloriozov,^a Yuri A. Ustynyuk,^a Valentine G. Nenajdenko^{a*}

^a Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow, Russia; nenajdenko@gmail.com (V.N.)

^b A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Moscow, Russia

Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9,
Dolgoprudny, 141700 Moscow Region, Russia

* Correspondence to: nenajdenko@gmail.com (V.N.)

Supplementary Materials

Table of contents

1. NMR and IR spectra of synthesized compounds	S2-S33
2. NMR spectra of hydrolysis experiments	S34-S35
3. NMR titration	S36-S53
4. UV-vis titration	S54
5. Theoretical computations	

1. NMR and IR spectra of synthesized compounds

 $N^2, N^2, N^9, N^9 - tetrabutyl - 7 - chloro - 4 - oxo - 1, 4 - dihydro - 1, 10 - phenanthroline - 2, 9 - dicarboxamide (4a)$

S3

Figure S3. Solid-state IR spectrum at 25°C

N²,N⁹-bis(4-butylphenyl)-7-chloro-N²,N⁹-diethyl-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (4d)

Figure S6. Solid-state IR spectrum at 25°C

N²,N⁹,N⁹-tetrabutyl-7-hydroxy-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (5a)

Figure S15. Solid-state IR spectrum at 25°C

N²,N⁹-diethyl-7-hydroxy-4-oxo-N²,N⁹-di-p-tolyl-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (5c)

Figure S17. 13 C NMR spectra in DMSO-d₆

Figure S18. Solid-state IR spectrum at 25°C

N²,N⁹-bis(4-butylphenyl)-N²,N⁹-diethyl-7-hydroxy-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (5d)

Figure S21. Solid-state IR spectrum at 25°C

N²,N⁹,N⁹-tetrabutyl-4,7-dihydroxy-1,10-phenanthroline-2,9-dicarboxamide lanthanum trinitrate 5a•La(NO₃)₃

Figure S23. Solid-state IR spectrum at 25°C

N²,N²,N⁹,N⁹-tetrabutyl-4,7-dihydroxy-1,10-phenanthroline-2,9-dicarboxamide neodymium trinitrate 5a•Nd(NO₃)₃

Figure S24. ¹H and ¹³C NMR spectrum in CD₃CN at 25°C

Figure S25. Solid-state IR spectrum at 25°C

N²,N⁹,N⁹-tetrabutyl-4,7-dihydroxy-1,10-phenanthroline-2,9-dicarboxamide europium trinitrate 5a•Eu(NO₃)₃

Figure S26. Solid-state IR spectrum at 25°C

N²,N²,N⁹,N⁹-tetrabutyl-4,7-dihydroxy-1,10-phenanthroline-2,9-dicarboxamide lutetium trinitrate 5a•Lu(NO₃)₃

Figure S27. Solid-state IR spectrum at 25°C

N²,N⁹-diethyl-4,7-dihydroxy-N²,N⁹-di-p-tolyl-1,10-phenanthroline-2,9-dicarboxamide lanthanum trinitrate 5c•La(NO₃)₃

Figure S28. Solid-state IR spectrum at 25°C

N²,N⁹-diethyl-4,7-dihydroxy-N²,N⁹-di-p-tolyl-1,10-phenanthroline-2,9-dicarboxamide neodymium trinitrate 5c•Nd(NO₃)₃

Figure S29. Solid-state IR spectrum at 25°C

N²,N⁹-diethyl-4,7-dihydroxy-N²,N⁹-di-p-tolyl-1,10-phenanthroline-2,9-dicarboxamide europium trinitrate 5c•Eu(NO₃)₃

Figure S30. ¹H NMR spectrum in CD₃CN at 60°C

Figure S31. Solid-state IR spectrum at 25°C

N²,N⁹-diethyl-4,7-dihydroxy-N²,N⁹-di-p-tolyl-1,10-phenanthroline-2,9-dicarboxamide lutetium trinitrate 5c•Lu(NO₃)₃

Figure S32. Solid-state IR spectrum at 25°C

2. NMR spectra of hydrolysis experiments

Figure S33. Hydrolysis of **1a** (1) after 0.3h (2), 1.5h (3), 2h (4), 2.5h (5), 3h (6), 3.5h (7), 4h (8), 4.5h(9), 5h (10), 5.5h (11), 8.3h (12), 9.2h (13), 10.2h (14), 12.2h (15), 16.2h (16), 20h (17)

Figure S34. Hydrolysis of **3a** (1) after 1.5h (2), 2h (3), 3h (4), 4h (5), 5h (6), 6.5h (7), 7.5h (8), 9.5h(9), 13.5h (10), 16.5h (11), 19.5h (12), 22.5h (13), 26.5h (14), 30.5h (15), 72h (16)

3. NMR titration

N²,N⁹,N⁹-tetrabutyl-4,7-difluoro-1,10-phenanthroline-2,9-dicarboxamide (1a) with lutetium trinitrate

N²,N⁹,N⁹-tetrabutyl-7-fluoro-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (2a) with neodymium trinitrate

N²,N²,N⁹,N⁹-tetrabutyl-7-fluoro-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (2a) with lutetium trinitrate

N²,N⁹-bis(p-tolyl)-4,7-difluoro-N²,N⁹-diethyl-1,10-phenanthroline-2,9-dicarboxamide (1c) with lanthanum trinitrate

N²,N⁹-bis(p-tolyl)-4,7-difluoro-N²,N⁹-diethyl-1,10-phenanthroline-2,9-dicarboxamide (1c) with neodymium trinitrate

N²,N⁹-bis(p-tolyl)-4,7-difluoro-N²,N⁹-diethyl-1,10-phenanthroline-2,9-dicarboxamide (1c) with europium trinitrate

N²,N⁹-bis(p-tolyl)-4,7-difluoro-N²,N⁹-diethyl-1,10-phenanthroline-2,9-dicarboxamide (1c) with lutetium trinitrate

N²,N⁹-bis(p-tolyl)-N²,N⁹-diethyl-7-fluoro-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (2c) with lanthanum trinitrate

N²,N⁹-bis(p-tolyl)-N²,N⁹-diethyl-7-fluoro-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (2c) with neodymium trinitrate

N²,N⁹-bis(p-tolyl)-N²,N⁹-diethyl-7-fluoro-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (2c) with europium trinitrate

N²,N⁹-bis(p-tolyl)-N²,N⁹-diethyl-7-fluoro-4-oxo-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (2c) with lutetium trinitrate

N²,N²,N⁹,N⁹-tetrabutyl-4,7-dihydroxy-1,10-phenanthroline-2,9-dicarboxamide (5a) with neodymium trinitrate

N²,N²,N⁹,N⁹-tetrabutyl-4,7-dihydroxy-1,10-phenanthroline-2,9-dicarboxamide (5a) with europium trinitrate

Lu : L 1.2:1 1.1:1 1:1 0.9:1 a man 0.8:1 1A manymen 0.7:1 Annapational 0.6:1 Prost Paral 0.5: 1 0.4: 1 0.3:1 U. 0.2:1 0.1:1 0:1 Г Т).5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.

N²,N²,N⁹,N⁹-tetrabutyl-4,7-dihydroxy-1,10-phenanthroline-2,9-dicarboxamide (5a) with lutetium trinitrate

N²,N⁹-diethyl-7-hydroxy-4-oxo-N²,N⁹-di-p-tolyl-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (5c) with neodymium trinitrate

Figure S50. Fragmental view of NMR titration of 5c with Nd(NO₃)₃.6H₂O in CD₃CN

N²,N⁹-diethyl-7-hydroxy-4-oxo-N²,N⁹-di-p-tolyl-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (5c) with europium trinitrate

N²,N⁹-diethyl-7-hydroxy-4-oxo-N²,N⁹-di-p-tolyl-1,4-dihydro-1,10-phenanthroline-2,9-dicarboxamide (5c) with lutetium trinitrate

4. UV-vis titration

5. Theoretical computations

Figure S58. DFT optimized geometry of 5c•Eu(NO₃)₃

Cartesian Coordinates

Eu	1.272052	2.073416	5.146673
0	3.529477	2.003227	4.047808
0	-1.188142	1.776782	5.595258
0	2.471614	-0.258486	8.297168
0	0.526920	1.638627	2.849710
0	0.907337	-0.084570	4.113131
Ν	5.454310	3.207699	4.154906
0	0.957777	0.940539	7.257781
Ν	2.060017	4.120033	3.531412
Ν	-2.907579	2.852090	6.619393
0	0.669357	3.907362	6.819370
Ν	2.128260	0.403694	7.339155
Ν	-0.507321	3.946161	4.236746
0	0.170867	-0.377002	2.069463
Ν	0.519430	0.358192	2.971858
0	2.069754	5.420024	7.560881
0	2.892535	0.627374	6.335876
Ν	1.847082	4.387557	6.947366
0	2.783868	3.719291	6.378643
С	-3.473902	4.112307	7.017833

С	4.140003	3.071028	3.864000
С	7.873506	6.035940	3.904033
Н	8.780889	6.280768	3.357144
С	-0.192670	4.851857	3.291513
С	3.348850	4.191161	3.222878
С	-4.864765	4.278456	7.032649
Н	-5.508396	3.458774	6.724833
С	1.199779	4.956806	2.920849
С	7.242493	4.816118	3.667636
Н	7.649375	4.118683	2.940069
С	6.179603	2.010085	4.658582
Н	7.210851	2.102318	4.304599
Н	5.724127	1.1419370	4.180727
С	-1.766972	3.851582	4.635563
С	0.600872	6.734925	1.323822
Н	0.920606	7.448857	0.572553
С	2.975001	5.956769	1.634056
С	-0.718244	6.628118	1.666755
Н	-1.464609	7.254583	1.191968
С	-2.805282	4.614031	4.069055
Н	-3.827441	4.495651	4.411823
С	6.074680	4.487964	4.366342
С	3.857313	5.099933	2.278291
Н	4.918508	5.125928	2.054503
С	-3.085396	1.697068	7.539160
Н	-2.894127	0.795392	6.955176
Н	-4.137928	1.701244	7.837966
С	-1.142488	5.688646	2.660998
С	7.358931	6.950613	4.835677
С	1.588510	5.904188	1.944874
С	-5.413845	5.496446	7.426190
Н	-6.495088	5.616847	7.430272
С	-1.943413	2.761716	5.672119
С	6.188766	6.602886	5.523338
Н	5.773057	7.290786	6.255719

С	5.550429	5.380671	5.308785
Н	4.661014	5.111903	5.874026
С	-3.209078	6.380138	7.802874
Н	-2.555000	7.192271	8.109603
С	-2.641974	5.161990	7.421703
Н	-1.563086	5.023424	7.434512
С	-2.494064	5.528457	3.072558
С	-4.596148	6.571419	7.812074
С	8.068604	8.254403	5.114543
Н	7.375602	9.016100	5.483720
Н	8.558689	8.645818	4.217399
С	-2.167720	1.751518	8.760883
Η	-1.118866	1.661800	8.468587
Η	-2.4082810	0.915634	9.426670
Н	-2.309440	2.681546	9.321076
С	-5.205401	7.889610	8.229303
Н	-5.862098	7.766860	9.098557
Η	-5.814875	8.320121	7.425403
С	6.132875	1.870458	6.179870
Η	6.542827	2.756695	6.674120
Η	6.736951	1.007031	6.478003
Η	5.110184	1.703094	6.523433
Н	8.846151	8.122682	5.877726
Η	-4.435473	8.619807	8.492191
0	3.361470	6.854769	0.700206
Н	4.318930	6.806086	0.571439
0	-3.418829	6.302932	2.460672
Н	-4.295250	6.118980	2.826027