Supplementary Data for:

Boron diamide derivatives containing N-N and N-P molecular fragments

Christopher Major, Shi-Ming Chen, and Douglas W. Stephan

Contents

General Considerations	2
$Preparation of Br_{3}B \cdot PPh_{3}$	2
Synthesis of (HCN(Dipp))2BBr 1	4
Synthesis of (HCN(Dipp)) ₂ BOSO ₂ CF ₃ 3	4
Synthesis of (H ₂ CN(Dipp)) ₂ BOSO ₂ CF ₃ 4	8
Synthesis of (H ₂ CN(Dipp)) ₂ BNH ₂ 6	
Synthesis of [(HCN(Dipp))₂B(NHNH₃)][O₃SCF₃] 7	12
Synthesis of [(H ₂ CN(Dipp)) ₂ B(NHNH ₃)][O ₃ SCF ₃] 8	14
Synthesis of (HCN(Dipp)) ₂ B(NHNH ₂) 9	16
Synthesis of (H ₂ CN(Dipp)) ₂ B(NHNH ₂) 10:	
Synthesis of (H ₂ CN(Dipp)) ₂ B(N ₃) 11	21
Synthesis of (HCN(Dipp)) ₂ B(NHPCl ₂) 12	22
Synthesis of (HCN(Dipp)) ₂ B(N(SiMe ₃)PCl ₂) 15	25
Synthesis of [(HCN(Dipp)) ₂ BNPCI] ₂ 17	

General Considerations

All reactions and work-up procedures were performed under an inert atmosphere of dry, oxygenfree N₂, using standard Schlenk techniques or a glovebox (Innovative Technology, equipped with a -25 °C freezer) unless otherwise specified. CH₂Cl₂, n-pentane, n-hexane, Et₂O, and toluene (Sigma-Aldrich) were dried using a Grubbs-type Innovative Technologies solvent purification system, degassed, and stored over activated 3 or 4 Å molecular sieves. Deuterated solvents (C₆D₆, CDCl₃) were purchased from Cambridge Isotope Laboratories, Inc. or Sigma-Aldrich, and stored over activated 4Å molecular sieves prior to use, unless otherwise specified. All other reagents were purchased from Sigma-Aldrich. (HCN(Dipp))₂BBr 1,¹ (H₂CN(Dipp))₂BBr **2**,² (CN(Dipp))₂BNH₂ **5**, (HCN(Dipp))₂BNH(SiMe₃) **13**, and (HCN(Dipp))₂BNK(SiMe₃) **14** were generated according to literature procedures.³Routine NMR spectra were obtained on a Varian MercuryPlus 300 MHz, Bruker Avance III 400 MHz, Agilent DD2 500 MHz, or Agilent DD2 600 MHz spectrometer and spectra were referenced to residual solvent of CDCl₃ (1 H = 7.26; 13 C = 77.2), C₆D₆ (1 H = 7.16 ppm; ${}^{13}C = 128.06$ ppm), C₆D₅Br (¹H most downfield shift = 7.30 ppm) or externally (¹¹B, BF₃·OEt₂; ¹⁹F, CFCl₃; ³¹P, 85% H₃PO₄). ¹³C spectra were primarily obtained on a 500 MHz Agilent DD2 NMR Spectrometer, equipped with a cryogenically cooled probe. Chemical shifts (δ) are reported in ppm and coupling constants are listed in Hz. High-resolution mass spectra (HRMS) were obtained on an Agilent 6538 Q-TOF (ESI), JEOL AccuTOF Plus 4G (DART) and Bruker Autoflex Speed (MALDI).

Preparation of Br₃B·PPh₃

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.79 (m, 6H), 7.69 – 7.62 (m, 3H), 7.57 – 7.47 (m, 6H). ¹¹B NMR (128 MHz, CDCl₃) δ -14.7 (d, ¹*J*_{*P*-B} = 146 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -4.9 (q, ¹*J*_{*P*-B} = 146 Hz).

Figure S1. ¹H NMR spectrum of Br₃B·PPh₃ in CDCl₃ at 298 K.

Figure S2. ¹¹B NMR spectrum of Br₃B·PPh₃ in CDCl₃ at 298 K.

Figure 1. ³¹P NMR spectrum of Br₃B·PPh₃ in CDCl₃ at 298 K.

Synthesis of (HCN(Dipp))₂BBr 1

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 1H), 7.26 – 7.20 (m, 2H), 6.31 (s, 1H), 2.97 (hept, ${}^{3}J_{H-H}$ = 7 Hz, 2H), 1.22 (d, ${}^{3}J_{H-H}$ = 7 Hz, 24H). ¹¹B NMR (128 MHz, CDCl₃) δ 20.3.

Figure S4. ¹H NMR spectrum of **1** in CDCl₃ at 298 K.

Figure S5. ¹¹B NMR spectrum of 1 in CDCl₃ at 298 K.

Synthesis of (HCN(Dipp))₂BOSO₂CF₃ 3

¹H NMR (400 MHz, C₆D₆) δ 7.24 – 7.17 (m, 2H), 7.13 – 7.08 (m, 4H), 6.01 (s, 2H), 3.16 (hept, ³J_{H-H} = 7 Hz, 4H), 1.33 (d, ³J_{H-H} = 7 Hz, 12H), 1.16 (d, ³J_{H-H} = 7 Hz, 12H). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 2H), 7.26 – 7.20 (m, 4H), 6.20 (s, 2H), 2.98 (hept, ³J_{H-H} = 7 Hz, 4H), 1.25 (d, ³J_{H-H} = 7 Hz, 12H), 1.21 (d, ³J_{H-H} = 7 Hz, 12H). ¹¹B NMR (128 MHz, C₆D₆) δ 19.2. ¹¹B NMR (128 MHz, CDCl₃) δ 18.9. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 146.3, 134.8, 128.4, 123.7, 118.4, 28.7, 25.3, 23.3. ¹⁹F NMR (376 MHz, C₆D₆) δ -76.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -76.4. *HRMS* (TOF, DART+) m/z 537.25672 (high res., calc. for protonated molecular ion, [C₂₇H₃₇BN₂O₃F₃S]⁺: 537.25646).

Figure S5. ¹H NMR spectrum of **3** in C_6D_6 at 298 K.

Figure S6. ¹H NMR spectrum of **3** in CDCl₃ at 298 K.

Figure S7. ¹¹B NMR spectrum of **3** in C_6D_6 at 298 K.

Figure S8. ¹¹B NMR spectrum of 3 in CDCl₃ at 298 K.

Figure S9. $^{13}C{^{1}H}$ NMR spectrum of **3** in CDCl₃ at 298 K.

Figure S10. ¹⁹F NMR spectrum of **3** in C_6D_6 at 298 K.

Figure S11. ¹⁹F NMR spectrum of **3** in CDCl₃ at 298 K.

DART IONIZATION

AccuTOF 4G

AIMS Mass Spectrometry Laboratory, University of Toronto

2023-04-06

Figure S12. HR-MS (TOF DART+) data for 3.

Synthesis of (H₂CN(Dipp))₂BOSO₂CF₃ 4

¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 7.21 – 7.16 (m, 4H), 3.73 (s, 4H), 3.37 (hept, ${}^{3}J_{H-H}$ = 7 Hz, 4H), 1.31 (d, ${}^{3}J_{H-H}$ = 7 Hz, 12H), 1.28 (d, ${}^{3}J_{H-H}$ = 7 Hz, 12H). ¹¹B NMR (128 MHz, CDCl₃) δ 22.8. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 147.4, 135.7, 127.7, 124.0, 117.7 (q, ${}^{1}J_{C-F}$ = 318 Hz, 1C), 77.4, 76.9, 51.2, 28.7, 25.7, 23.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -76.7. *HRMS* (TOF, DART+) m/z 539.27243 (high res., calc. for protonated molecular ion, [C₂₇H₃₉BN₂O₃F₃S]⁺: 539.27211)

Figure S13. ¹H NMR spectrum of 4 in CDCl₃ at 298 K.

Figure S14. ¹¹B NMR spectrum of 4 in CDCl₃ at 298 K.

Figure S16. ¹⁹F NMR spectrum of 4 in CDCl₃ at 298 K.

Figure S17. HR-MS (TOF, DART+) for 4.

Synthesis of (H₂CN(Dipp))₂BNH₂ 6

¹H NMR (400 MHz, C₆D₆) δ 7.27 – 7.18 (m, 2H), 7.20 – 7.13 (m, 4H), 3.56 (hept, ³J_{H-H} = 7 Hz, 4H), 3.44 (s, 4H), 1.31 (d, J = 7 Hz, 12H), 1.31 (d, ³J_{H-H} = 7 Hz, 12H), 1.05 (s, 2H). ¹¹B NMR (128 MHz, C₆D₆) δ 25.4. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ 148.8, 143.8, 140.0, 127.0, 52.0, 28.6, 25.1, 24.7. HRMS (TOF, DART+) m/z 406.33901 (high res., calc. for protonated molecular ion, $[C_{26}H_{41}BN_3]^+$: 406.33881)

Figure S18. ¹H NMR spectrum of **6** in C_6D_6 at 298 K.

Figure S19. ^{11}B NMR spectrum of 6 in C_6D_6 at 298 K.

Figure S20. ${}^{13}C{}^{1}H$ NMR spectrum of 6 in C₆D₆ at 298 K.

AccuTOF 4G

AIMS Mass Spectrometry Laboratory, University of Toronto

2023-08-25

Figure S21. HR-MS data (TOF, DART+) for 6.

Synthesis of [(HCN(Dipp))₂B(NHNH₃)][O₃SCF₃] 7

¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 3H), 7.34 – 7.27 (m, 3H), 7.23 – 7.12 (m, 4H), 5.99 (s, 2H), 4.47 (s, 1H), 3.00 (hept, ${}^{3}J_{H-H} = 7$ Hz, 4H), 1.18 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H), 1.13 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H). ¹¹B NMR (128 MHz, CDCl₃) δ 20.7. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 147.0, 135.4, 128.8, 124.4, 118.1, 28.5, 24.6, 23.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.4.

Figure S22. ¹H NMR spectrum of 7 in CDCl₃ at 298 K.

Figure S23. ¹¹B NMR spectrum of 7 in CDCl₃ at 298 K.

Figure S24. $^{13}C{^{1}H}$ NMR spectrum of 7 in CDCl₃ at 298 K.

.00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(11 (ppm)

Figure S25. ¹⁹F NMR spectrum of 7 in CDCl₃ at 298 K.

Synthesis of [(H₂CN(Dipp))₂B(NHNH₃)][O₃SCF₃] 8

¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 3H), 7.29 – 7.22 (m, 3H), 7.20 – 7.13 (m, 4H), 4.22 (s, 1H), 3.60 (s, 4H), 3.33 (hept, ${}^{3}J_{H-H} = 7$ Hz, 4H), 1.27 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H), 1.17 (d, ${}^{3}J_{H-H} = 7$ Hz, 12H). ¹¹B NMR (128 MHz, CDCl₃) δ 23.3. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.3, 136.5, 128.2, 124.7, 52.3, 28.4, 25.0, 24.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.4.

Figure S25. ¹H NMR spectrum of 8 in CDCl₃ at 298 K.

Figure S26. ¹¹B NMR spectrum of 8 in CDCl₃ at 298 K.

Figure S27. $^{13}C{^{1}H}$ NMR spectrum of 8 in CDCl₃ at 298 K.

Synthesis of (HCN(Dipp))₂B(NHNH₂) 9

¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.20 – 7.16 (m, 4H), 5.93 (s, 2H), 3.39 (s, 1H), 3.22 (hept, ${}^{3}J_{H-H} = 7$ Hz, 4H), 2.56 (s, 2H), 1.23 (d, ${}^{3}J_{H-H} = 7$ Hz, 24H). ¹¹B NMR (128 MHz, CDCl₃) δ 22.0. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 147.0, 138.5, 127.2, 123.4, 117.3, 28.4, 24.4, 23.9. *HRMS* (TOF, DART+) m/z 419.33430 (high res., calc. for protonated molecular ion, [C₂₆H₄₀BN₄]⁺: 419.33405)

Figure S29. ¹H NMR spectrum of 9 in CDCl₃ at 298 K.

Figure S30. ¹¹B NMR spectrum of $\mathbf{9}$ in CDCl₃ at 298 K.

Figure S31. $^{13}C{^{1}H}$ NMR spectrum of 9 in CDCl₃ at 298 K.

AccuTOF 4G

AIMS Mass Spectrometry Laboratory, University of Toronto

2023-08-28

Figure S32. HR-MS (TOF DART+) data for 10.

Synthesis of (H₂CN(Dipp))₂B(NHNH₂) 10:

¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.17 (m, 2H), 7.17 – 7.12 (m, 4H), 3.54 (s, 4H), 3.50 (hept, ³J_{H-H} = 7 Hz, 4H), 3.17 (s, 1H), 2.46 (s, 2H), 1.31 (d, ³J_{H-H} = 7 Hz, 12H), 1.26 (d, ³J_{H-H} = 7 Hz, 12H). ¹¹B NMR (128 MHz, CDCl₃) δ 24.6. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.3, 139.9, 126.6, 123.8, 52.3, 28.3, 24.8, 24.6. *HRMS* (TOF, DART+) m/z 421.34915 (high res., calc. for protonated molecular ion, [C₂₆H₄₂BN₄]⁺: 421.34970).

Figure S33. ¹H NMR spectrum of **10** in CDCl₃ at 298 K.

Figure S34. ¹¹B NMR spectrum of 10 in CDCl₃ at 298 K.

AccuTOF 4G

AIMS Mass Spectrometry Laboratory, University of Toronto

2023-08-25

Figure S36. HR-MS (TOF DART+) data for 10.

Synthesis of (H₂CN(Dipp))₂B(N₃) 11

¹H NMR (400 MHz, Toluene-*d*₈) δ 7.18 – 7.10 (m, 2H), 7.08 – 7.03 (m, 4H), 3.46 (hept, ³*J*_{H-H} = 7.0 Hz, 4H), 3.41 (s, 4H), 1.33 (d, ³*J*_{H-H} = 7 Hz, 12H), 1.27 (d, ³*J*_{H-H} = 7 Hz, 12H). ¹¹B NMR (128 MHz, Toluene-*d*₈) δ 24.4. ¹³C{¹H} NMR (101 MHz, Toluene-*d*₈) δ 147.8, 124.0, 52.0, 28.8, 24.8, 24.5, 1.4.

Figure S37. ¹H NMR spectrum of **11** in toluene- d_8 at 298 K.

Figure S38. ¹H NMR spectrum of **11** in toluene- d_8 at 298 K.

Figure S39. ¹H NMR spectrum of **11** in toluene- d_8 at 298 K.

Synthesis of (HCN(Dipp))₂B(NHPCl₂) 12.

¹H NMR (400 MHz, Benzene-*d*₆) δ 7.24 – 7.17 (m, 2H), 7.15 – 7.09 (m, 4H), 5.92 (s, 2H), 4.29 (d, ²*J*_{*P*-*H*} = 11 Hz, 1H), 3.20 (hept, ³*J*_{*H*-*H*} = 7 Hz, 5H), 1.30 (d, ³*J*_{*H*-*H*} = 7 Hz, 13H), 1.18 (d, ³*J*_{*H*-*H*} = 7 Hz, 13H). ¹¹B NMR (128 MHz, C₆D₆) δ 21.1. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ 147.0, 146.9, 146.5, 137.0, 137.0, 128.7, 124.3, 118.2, 28.8, 24.7, 23.9. ³¹P NMR (162 MHz, C₆D₆) δ 164.2.

Figure S40. ¹H NMR spectrum of **12** in C_6D_6 at 298 K.

Figure S41. ¹¹B NMR spectrum of 12 in C₆D₆ at 298 K.

Figure S42. ${}^{13}C{}^{1}H$ NMR spectrum of 12 in C₆D₆ at 298 K.

Figure S43. ^{31}P NMR spectrum of 12 in C_6D_6 at 298 K.

Figure S44. Raw 31 P NMR DOSY spectrum of **12** in C₆D₆ at 298 K.

Figure S45. Processed ³¹P NMR DOSY spectrum of **12** in C₆D₆ at 298 K.

Synthesis of (HCN(Dipp))₂B(N(SiMe₃)PCl₂) 15.

¹H NMR (500 MHz, C₆D₆) δ 7.25 – 7.19 (m, 2H), 7.15 – 7.09 (m, 4H), 6.10 (s, 2H), 3.36 (br, 2H), 3.14 (br, 2H), 1.40 (br, 6H), 1.31 (br, 6H), 1.12 (d, ³*J*_{*H*-*H*} = 7 Hz, 12H), 0.19 (s, 9H). ¹¹B NMR (128 MHz, C₆D₆) δ 22.6. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ 147.1, 145.9, 137.67, 124.2, 119.9, 29.7, 28.4, 26.5, 23.1, 22.6, 3.0, 3.0. ³¹P NMR (162 MHz, C₆D₆) δ 175.7. *HRMS* (TOF, DART+) m/z 576.26719 (calc. for protonated molecular ion, [C₂₉H₄₆BN₃SiPCl₂]⁺: 576.26632) *MS* (TOF, DART+) m/z 540.3 (calc. for Cl⁻ loss, [C₂₉H₄₅BN₃SiPCl]⁺: 540.29). *MS* (TOF, DART+) m/z 404.3 (calc. for hydrolysis and protonation *i.e.* –N(PCl₂)(SiMe₃) to –NH₃⁺, [C₂₆H₃₉BN₃]⁺: 404.32).

Figure S46. ¹H NMR spectrum of 15 in C₆D₆ at 298 K.

Figure S47. ^{11}B NMR spectrum of 15 in C_6D_6 at 298 K.

Figure S48. ${}^{13}C{}^{1}H$ NMR spectrum of 15 in C₆D₆ at 298 K.

280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)

Figure S49. ³¹P NMR spectrum of 15 in C₆D₆ at 298 K.

179.5 179.0 178.5 178.0 177.5 177.0 176.5 176.0 175.5 175.0 174.5 174.0 173.5 173.0 172.5 172.0 171.5 171.0 170.5 fl (ppm)

Figure S51. Processed ³¹P NMR DOSY spectrum of 15 in C₆D₆ at 298 K.

AccuTOF 4G

Figure S52. HR-MS (TOF DART+) data for 15.

Synthesis of (HCN(Dipp))₂B(N(SiMe₃)PCl(O₃SCF₃)) 16¹H NMR (400 MHz, C₆D₆) δ 7.35 – 7.26 (m, 1H), 7.21 – 7.17 (m, 2H), 7.11 – 7.04 (m, 1H), 6.05 (s, 2H), 3.28 (br, m, 2H), 3.07 (br, m, 1H), 2.96 (br, m, 1H), 1.47 (d, ³J_{H-H} = 7 Hz, 3H), 1.38 (d, ³J_{H-H} = 7 Hz, 3H), 1.32 (d, ³J_{H-H} = 7 Hz, 3H), 1.21 (d, ³J_{H-H} = 7 Hz, 3H), 1.17 – 0.99 (br, m, 12H), 0.07 (s, 9H). ¹¹B NMR (128 MHz, C₆D₆) δ 22.1. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ 147.0, 146.9, 146.5, 137.0, 137.0, 128.7, 124.3, 118.2, 28.8, 24.7, 23.9, 0.0. ¹⁹F NMR (377 MHz, C₆D₆) δ -75.7. ³¹P NMR (162 MHz, C₆D₆) δ 181.1.

Figure S53. ¹H NMR spectrum of **16** in C_6D_6 at 298 K.

Figure S54. ¹¹B NMR spectrum of 16 in C₆D₆ at 298 K.

Figure S55. $^{13}C{^{1}H}$ NMR spectrum of **16** in C₆D₆ at 298 K.

Figure S56. ¹⁹F NMR spectrum of 16 in C₆D₆ at 298 K.

Figure S57. ³¹P NMR spectrum of 16 in C₆D₆ at 298 K.

Synthesis of [(HCN(Dipp))₂BNPCl]₂ 17

¹H NMR (300 MHz, C₆D₆) δ 7.22 – 7.18 (m, 4H), 7.10 – 7.03 (m, 8H), 5.91 (s, 4H), 3.15 (hept, ${}^{3}J_{H-H}$ = 7 Hz, 8H), 1.27 (d, ${}^{3}J_{H-H}$ = 7 Hz, 24H), 1.14 (d, ${}^{3}J_{H-H}$ = 7 Hz, 24H). ¹¹B NMR (128 MHz, C₆D₆) δ 20.1. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ 146.8, 137.7, 128.5, 123.9, 119.3, 29.0, 25.8, 23.2. ³¹P NMR (121 MHz, C₆D₆) δ 228.3.

Figure S58. ¹H NMR spectrum of **17** in C_6D_6 at 298 K.

Figure S59. ¹¹B NMR spectrum of 17 in C₆D₆ at 298 K.

Figure S60. ${}^{13}C{}^{1}H$ NMR spectrum of **17** in C₆D₆ at 298 K.

Figure S61. ³¹P NMR spectrum of 17 in C₆D₆ at 298 K.

234.0 233.5 233.0 232.5 232.0 231.5 231.0 230.5 230.0 229.5 229.0 228.5 228.0 227.5 227.0 226.5 226.0 225.5 225.0 224.5 224.0 223.5 223.0 222.5 222.0 fl (ppm)

Figure S62. Raw ³¹P NMR DOSY spectrum of 17 in C₆D₆ at 298 K.

Figure S63. Processed ³¹P NMR DOSY spectrum of **17** in C₆D₆ at 298 K.

- 1. Y. Segawa, Y. Suzuki, M. Yamashita and K. Nozaki, *J. Am. Chem. Soc.*, 2008, **130**, 16069-16079.
- 2. D. Herrmannsdörfer, M. Kaaz, O. Puntigam, J. Bender, M. Nieger and D. Gudat, *Eur. J. Inorg. Chem.*, 2015, **2015**, 4819-4828.
- 3. T. J. Hadlington, J. A. B. Abdalla, R. Tirfoin, S. Aldridge and C. Jones, *Chem. Commun.*, 2016, **52**, 1717-1720.

S35