Electronic Supplementary Information

Synthesis and luminescent properties of Ru(II)/Au(I) or Ir(III)/Au(I) hetero-bimetallic and hetero-trimetallic complexes

Richard C. Knighton^a and Simon J. A. Pope^{a*}

^a School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/ Wales, UK. E-mail: popesj@cardiff.ac.uk

Figure S1. ¹ H NMR spectrum (300 MHz, 293 K, CDCl ₃) of dimeric [Ir(Me ₃ quinox) ₂ (µ ₂ -Cl)] ₂ .	3
Figure S2. ¹ H NMR spectrum of [Ir(Me ₃ quinox) ₂ (MeCN) ₂][PF ₆] (500 MHz, 293 K, CD ₃ CN)	3
Figure S3. ¹³ C{ ¹ H} NMR spectrum of [Ir(Me ₃ quinox) ₂ (MeCN) ₂][PF ₆] (500 MHz, 293 K, CD ₃ CN).	4
Figure S4. HRMS of [Ir(Me ₃ quinox) ₂ (MeCN) ₂][PF ₆] (ES+). (Top - theoretical; bottom - experimental).	4
Figure S5. ¹ H NMR spectrum of [Ir(Me ₃ quinox) ₂ (bipy-Im1)][PF ₆] ₂ (500 MHz, 293 K, CD ₃ CN).	5
Figure S6. ¹³ C{ ¹ H} NMR spectrum of [Ir(Me ₃ quinox) ₂ (bipy-Im1)][PF ₆] ₂ (126 MHz, 293 K, CD ₃ CN).	5
Figure S7. HRMS of [Ir(Me ₃ quinox) ₂ (bipy-Im1)][PF ₆] ₂ (ES+). (Top - theoretical; bottom – experimental)	6
Figure S8. ¹ H NMR spectrum of [Ir(Me₃quinox)₂(bipy-Im2)][PF₀]₃ (500 MHz, 293 K, CD₃CN).	6
Figure S9. ¹³ C{ ¹ H} NMR spectrum of [Ir(Me ₃ quinox) ₂ (bipy-Im2)][PF ₆] ₃ (126 MHz, 293 K, CD ₃ CN).	7
Figure S10. HRMS of [Ir(Me ₃ quinox) ₂ (bipy-Im2)][PF ₆] ₃ (ES+). (Top - theoretical; bottom - experimental).	7
Figure S11. ¹ H NMR spectrum of [Ru-Au][PF ₆] ₃ (500 MHz, 293 K, CD ₃ CN).	8
Figure S12. $^{13}C{1H}$ NMR spectrum of [Ru-Au][PF ₆] ₃ (126 MHz, 293 K, CD ₃ CN).	8
Figure S13. ³¹ P{ ¹ H} NMR spectrum of [Ru-Au][PF ₆] ₃ (202 MHz, 293 K, CD ₃ CN).	9
Figure S14. HRMS of [Ru-Au][PF ₆] ₃ (ES+). (Top - theoretical; bottom - experimental).	9
Figure S15. ¹ H NMR spectrum of [Ru-Au ₂][PF ₆] ₄ (500 MHz, 293 K, CD ₃ CN).	10
Figure S16. ¹³ C{ ¹ H} NMR spectrum of [Ru-Au ₂][PF ₆] ₄ (126 MHz, 293 K, CD ₃ CN).	10
Figure S17. ³¹ P{ ¹ H} NMR spectrum of [Ru-Au ₂][PF ₆] ₄ (202 MHz, 293 K, CD ₃ CN).	11
Figure S18. HRMS of [Ru-Au ₂][PF ₆] ₄ (ES+). (Top - theoretical; bottom - experimental)	11
Figure S19. ¹ H NMR spectrum of [Ir-Au][PF ₆] ₂ (500 MHz, 293 K, CD ₃ CN).	12
Figure S20. ¹³ C{ ¹ H} NMR spectrum of [Ir-Au][PF ₆] ₂ (126 MHz, 293 K, CD ₃ CN).	12
Figure S21. ³¹ P{1H} NMR spectrum of [Ir-Au][PF6]2 (202 MHz, 293 K, CD3CN).	13
Figure S22. HRMS of [Ir-Au][PF6]2 (ES+). (Top - theoretical; bottom - experimental).	13
Figure S23. ¹ H NMR spectrum of [Ir-Au ₂][PF ₆] ₃ (500 MHz, 293 K, CD ₃ CN).	14
Figure S24. ¹³ C{ ¹ H} NMR spectrum of [Ir-Au ₂][PF ₆] ₃ (126 MHz, 293 K, CD ₃ CN).	14
Figure S25. ³¹ P{ ¹ H} NMR spectrum of [Ir-Au ₂][PF ₆] ₃ (202 MHz, 293 K, CD ₃ CN).	15
Figure S26. HRMS of [Ir-Au ₂][PF ₆] ₃ (ES+). (Top - theoretical; bottom - experimental).	15
Table S1. Crystals data and structure refinement for [Ir(Me ₃ quinox) ₂ (MeCN) ₂][BF ₄]	16
Figure S28. Single crystal X-ray structure of [Ir(Me ₃ quinox) ₂ (MeCN) ₂][BF ₄] (ellipsoids plotted at the 50%	17
probability level; H-atoms and counter anions omitted for clarity)	
Figure S29. Single crystal X-ray structure of [Ir(Me ₃ quinox) ₂ (MeCN) ₂][BF ₄] (ellipsoids plotted at the 50%	17
probability level; counter anions omitted for clarity)	
Figure S30. Unit cell packing of [Ir(Me ₃ quinox) ₂ (MeCN) ₂][BF ₄] (ellipsoids plotted at the 50% probability	18
level)	

Table S2. Crystals data and structure refinement for [Ir(Me ₃ quinox) ₂ (bipy-Im2)][PF ₆] ₃	18
Figure S32. Single crystal X-ray structure of [Ir(Me3quinox)2(bipy-Im2)][PF6]3 (ellipsoids plotted at the	19
50% probability level; counter anions omitted for clarity)	
Figure S33. Single crystal X-ray structure of [Ir(Me3quinox)2(bipy-Im2)][PF6]3 (ellipsoids plotted at the	19
50% probability level)	
Figure S34. Unit cell packing of [Ir(Me ₃ quinox) ₂ (bipy-Im2)][PF ₆] ₃ (ellipsoids plotted at the 50% probability	20
level)	
Figure S35. Single crystal X-ray structure of [Ru-Au][PF ₆] ₃ (ellipsoids plotted at the 50% probability level;	21
counter anions and disorder omitted for clarity)	
Figure S36. Single crystal X-ray structure of [Ru-Au][PF6]3 (ellipsoids plotted at the 50% probability level;	21
counter anions omitted for clarity)	
Figure S37. Unit cell packing of [Ru-Au][PF6]3 (ellipsoids plotted at the 50% probability level)	22
Table S3. Crystal data and structure refinement for [Ru-Au)][PF ₆] ₃	22
Table S5. Bond metrics for [Ru-Au]-PF ₆] ₃	23
Figure S38. Absorption spectra for the polycationic iridium complexes (293 K, aerated MeCN, 10 ⁻⁵ M).	23
Table S6. Electrode oxidation potentials of the family of homo- and heterometallic complexes (mV shifts	24
presented in parentheses)	
Figure S39. Cyclic voltammograms for the family of monometallic Ir/Ru heteropolymetallic Ir/Ru-Au	24
complexes	
References	25
	25

S1 NMR and high-resolution mass spectra

S1.1 [Ir(Me₃quinox)₂(µ₂-CI)]₂

Figure S1. ¹H NMR spectrum (300 MHz, 293 K, CDCl₃) of dimeric [Ir(Me₃quinox)₂(µ₂-Cl)]₂.

Figure S2. ¹H NMR spectrum of [Ir(Me₃quinox)₂(MeCN)₂][PF₆] (500 MHz, 293 K, CD₃CN).

Figure S3. ¹³C{¹H} NMR spectrum of [Ir(Me₃quinox)₂(MeCN)₂][PF₆] (500 MHz, 293 K, CD₃CN).

Figure S4. HRMS of [Ir(Me₃quinox)₂(MeCN)₂][PF₆] (ES+). (Top - theoretical; bottom - experimental).

S1.3 [Ir(Me₃quinox)₂(bipy-Im1)][PF₆]₂

Figure S5. ¹H NMR spectrum of [Ir(Me₃quinox)₂(bipy-Im1)][PF₆]₂ (500 MHz, 293 K, CD₃CN).

Figure S7. HRMS of $[Ir(Me_3quinox)_2(bipy-Im1)][PF_6]_2$ (ES+). (Top - theoretical; bottom - experimental).

Figure S8. ¹H NMR spectrum of [Ir(Me₃quinox)₂(bipy-Im2)][PF₆]₃ (500 MHz, 293 K, CD₃CN).

Figure S9. ¹³C{¹H} NMR spectrum of [Ir(Me₃quinox)₂(bipy-Im2)][PF₆]₃ (126 MHz, 293 K, CD₃CN).

Figure S10. HRMS of [Ir(Me₃quinox)₂(bipy-Im2)][PF₆]₃ (ES+). (Top - theoretical; bottom - experimental).

Figure S11. ¹H NMR spectrum of [Ru-Au][PF₆]₃ (500 MHz, 293 K, CD₃CN).

Figure S12. ¹³C{¹H} NMR spectrum of [Ru-Au][PF₆]₃ (126 MHz, 293 K, CD₃CN).

Figure S13. ³¹P{¹H} NMR spectrum of [Ru-Au][PF₆]₃ (202 MHz, 293 K, CD₃CN).

Figure S14. HRMS of [Ru-Au][PF₆]₃ (ES+). (Top - theoretical; bottom - experimental).

Figure S15. ¹H NMR spectrum of [Ru-Au₂][PF₆]₄ (500 MHz, 293 K, CD₃CN).

Figure S17. ³¹P{¹H} NMR spectrum of [Ru-Au₂][PF₆]₄ (202 MHz, 293 K, CD₃CN).

Figure S18. HRMS of [Ru-Au₂][PF₆]₄ (ES+). (Top - theoretical; bottom - experimental).

Figure S19. ¹H NMR spectrum of [Ir-Au][PF₆]₂ (500 MHz, 293 K, CD₃CN).

Figure S20. ¹³C{¹H} NMR spectrum of [Ir-Au][PF₆]₂ (126 MHz, 293 K, CD₃CN).

Figure S21. ³¹P{¹H} NMR spectrum of [Ir-Au][PF₆]₂ (202 MHz, 293 K, CD₃CN).

Figure S22. HRMS of [Ir-Au][PF₆]₂ (ES+). (Top - theoretical; bottom - experimental).

Figure S23. ¹H NMR spectrum of [Ir-Au₂][PF₆]₃ (500 MHz, 293 K, CD₃CN).

Figure S25. ³¹P{¹H} NMR spectrum of [Ir-Au₂][PF₆]₃ (202 MHz, 293 K, CD₃CN).

Figure S26. HRMS of [Ir-Au₂][PF₆]₃ (ES+). (Top - theoretical; bottom - experimental).

S2. Single-crystal X-ray crystallography

A suitable crystal was mounted on a glass fibre with Fomblin oil and collected at 150(2) K. The structure was solved using Olex2¹ and the ShelXT² structure solution program using Direct Methods and refined with the ShelXL³ refinement package using Least Squares refinement.

S2.1 Structure of [Ir(Me₃quinox)₂(MeCN)₂][PF₆]

Identification code	[Ir(Me ₃ quinox) ₂ (MeCN) ₂][PF ₆]
Empirical formula	$C_{38}H_{36}BF_4IrN_6$
Formula weight	855.74
Temperature/K	150
Crystal system	triclinic
Space group	P-1
a/Å	8.6524(4)
b/Å	12.6306(8)
c/Å	16.5547(10)
α/°	77.983(6)
β/°	78.821(5)
γ/°	85.964(5)
Volume/Å ³	1735.11(18)
Z	2
ρ _{calc} g/cm³	1.638
µ/mm ⁻¹	7.943
F(000)	848.0
Crystal size/mm ³	0.08 × 0.02 × 0.01
Radiation	Cu Kα (λ = 1.54178)
20 range for data collection/	² 5.552 to 140.11
Index ranges	$-10 \leq h \leq 8, -15 \leq k \leq 15, -20 \leq l \leq 20$
Reflections collected	27371
Independent reflections	6455 [R _{int} = 0.1101, R _{sigma} = 0.0902]
Data/restraints/parameters	6455/0/460
Goodness-of-fit on F ²	1.071
Final R indexes [I>=2σ (I)]	R ₁ = 0.0750, wR ₂ = 0.1838
Final R indexes [all data]	$R_1 = 0.1124$, $wR_2 = 0.2050$
Largest diff_peak/hole / e Å-3	2 08/-3 47

Table S1. Crystals data and structure refinement for [Ir(Me₃quinox)₂(MeCN)₂][PF₆]

Figure S28. Single crystal X-ray structure of [Ir(Me₃quinox)₂(MeCN)₂][BF₄] (ellipsoids plotted at the 50% probability level; H-atoms and counter anions omitted for clarity)

Figure S29. Single crystal X-ray structure of [Ir(Me₃quinox)₂(MeCN)₂][BF₄] (ellipsoids plotted at the 50% probability level; counter anions omitted for clarity)

Figure S30. Unit cell packing of [Ir(Me₃quinox)₂(MeCN)₂][BF₄] (ellipsoids plotted at the 50% probability level)

S2.2 Structure of [Ir(Me₃quinox)₂(bipy-Im2)][PF₆]₃

Table S2. (Crystals o	data and	structure	refinement f	or [lr(Me₃q	uinox)	2(bip	oy-Im2)][PF6]	3
					L \	-		- \		/ 1 6 7 /	-

Identification code	[Ir(Me ₃ quinox) ₂ (bipy-Im2)][PF ₆] ₃
Empirical formula	C54H52F18IrN10P3
Formula weight	1468.16
Temperature/K	100.15
Crystal system	triclinic
Space group	P-1
a/Å	16.5187(2)
b/Å	18.7439(3)
c/Å	22.3271(3)
α/°	105.1570(10)
β/°	108.1430(10)
γ/°	94.9750(10)
Volume/Å ³	6233.35(16)
Z	4
ρ _{calc} g/cm ³	1.564
µ/mm⁻¹	2.317
F(000)	2920.0
Crystal size/mm ³	0.12 × 0.1 × 0.025
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection/°	4.406 to 57.398
Index ranges	$-22 \leq h \leq 22, -25 \leq k \leq 25, -30 \leq l \leq 30$
Reflections collected	170000
Independent reflections	32116 [R _{int} = 0.0806, R _{sigma} = 0.0667]
Data/restraints/parameters	32116/264/1628
Goodness-of-fit on F ²	1.032
Final R indexes [I>=2σ (I)]	R ₁ = 0.0525, wR ₂ = 0.1192
Final R indexes [all data]	$R_1 = 0.0848$, w $R_2 = 0.1312$
Largest diff. peak/hole / e Å-3	3.72/-1.20

Figure S32. Single crystal X-ray structure of $[Ir(Me_3quinox)_2(bipy-Im2)][PF_6]_3$ (ellipsoids plotted at the 50% probability level; counter anions omitted for clarity)

Figure S33. Single crystal X-ray structure of [Ir(Me₃quinox)₂(bipy-Im2)][PF₆]₃ (ellipsoids plotted at the 50% probability level)

Figure S34. Unit cell packing of [Ir(Me₃quinox)₂(bipy-Im2)][PF₆]₃ (ellipsoids plotted at the 50% probability level)

S2.3 Structure of [Ru-Au][PF₆]₃

Figure S35. Single crystal X-ray structure of $[Ru-Au][PF_6]_3$ (ellipsoids plotted at the 50% probability level; counter anions and disorder omitted for clarity)

Figure S36. Single crystal X-ray structure of [Ru-Au][PF₆]₃ (ellipsoids plotted at the 50% probability level)

Figure S37. Unit cell packing of $[Ru-Au][PF_6]_3$ (ellipsoids plotted at the 50% probability level)

Table S	3. Crvstals	data and	structure	refinement	for [Ru-A	u)][PF6]3
			• • . • . • . •			

Identification code	[Ru-Au)][PF ₆] ₃
Empirical formula	$C_{53}H_{45}AuF_{18}N_8P4Ru$
Formula weight	1557.88
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P1 21/n1
a/Å	13.5010(3)
b/Å	21.5970(4)
c/Å	20.6880(5)
α/°	90
β/°	98.515(2)
γ/°	90
Volume/Å ³	5965.70 (2)
Z	4
ρ _{calc} g/cm ³	1.735
µ/mm ⁻¹	2.917
F(000)	2920.0
Crystal size/mm ³	0.46 × 0.21 × 0.07
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection/	6.864 to 59.83
Index ranges	$-18 \le h \le 18, -29 \le k \le 29, -28 \le l \le 28$
Reflections collected	62240
Independent reflections	32116 [R _{int} = 0.0806, R _{sigma} = 0.0667]
Data/restraints/parameters	15106/180/867
Goodness-of-fit on F ²	1.041

Final R indexes [I>=2σ (I)]	R ₁ = 0.0373, wR ₂ = 0.0735
Final R indexes [all data]	R ₁ = 0.0738, wR ₂ = 0.0874
Largest diff. peak/hole / e Å ⁻³	0.828/-0.820

Atom numbers	[lr(Me ₃ quinox) ₂ (bipy-Im2)][PF ₆] ₃	[lr(Me3quinox)2(bipy)][PF6]4
	Bond lengths (Å)	/Bond angles (°)
Ir1-N _{bipy1}	2.207	2.176
Ir1-N _{bipy2}	2.166	2.168
Ir1-N _{quinox1}	2.064	2.090
Ir1-N _{quinox2}	2.077	2.067
Ir1-C _{quinox1}	1.982	1.991
Ir1-C _{quinox2}	2.006	2.014
Nbipy1-Ir1-Cquinox1	172.53	170.08
Nbipy2-Ir1-Cquinox2	167.16	170.96
Nquinox1-Ir1-Nquinox2	172.53	175.08

Table S4. Bond metrics for [Ir(Me₃quinox)₂(bipy-Im2)][PF₆]₃ and [Ir(Me₃quinox)₂(bipy)][PF₆]

Table S5. Bond metrics for $[Ru-Au]-PF_6]_3$

_

Atom numbers	[Ru-Au][PF ₆] ₃	[Ru(bipy) ₂ (bipy-Im2)][PF ₆] ₄ ⁵
	Bond le	ngths (Å) /Bond angles (°)
Ru1-N2	2.071(3)	2.071
Ru1-N13	2.065(3)	2.086
Ru1-N14	2.057(3)	2.071
Ru1N25	2.051(3)	2.054
Ru1-N26	2.064(3)	2.060
Ru1-N37	2.039(3)	2.065
Au45-P46	2.2884(9)	
Au45-C43	2.034(3)	
N2-Ru1-N37	174.88(10)	175.66
N13-Ru1-N-14	173.68(11)	176.72
N25-Ru1-N26	173.17(11)	170.30
C43-Au-45-P-46	177.94(12)	

S3. Spectroscopy

Figure S38. Absorption spectra for the polycationic iridium complexes (293 K, aerated MeCN, 10⁻⁵ M).

S4. Cyclic Voltammetry

Cyclic voltammetry was performed using a PalmSens4 potentiostat. Experiments were performed using HPLC grade MeCN with an analyte concentration of 1 mM at 293 K, using triply recrystallised [ⁿBu₄N][PF₆] as the supporting electrolyte at 0.25 M concentration. A three-electrode setup was used, consisting of a platinum disc working electrode, a platinum wire counter-electrode and a silver wire pseudo-reference. Solutions were spared for 10 minutes with MeCN saturated stream of nitrogen gas. Voltammograms were referenced to the ferrocene/ferrocenium redox couple measured using the same conditions.

Table S6. Electrode oxidation potentials of the family of homo- and heterometallic complexes (mV shifts presented in parentheses)

Complex	Ox
[Ir(Me ₃ quinox) ₂ (bipy-Im1)][PF ₆] ₂	0.98 (100)
[Ir(Me ₃ quinox) ₂ (bipy-Im2)][PF ₆] ₃	0.99 (110)
[Ir-Au][PF ₆] ₂	1.01 (110)
[lr-Au ₂][PF ₆] ₃	1.04 (140)
[Ru-Au][PF ₆]₃	0.93 (110)
[Ru-Au ₂][PF ₆] ₄	0.94 (110)

Figure S39. Cyclic voltammograms for the family of monometallic Ir/Ru heteropolymetallic Ir/Ru-Au complexes

S5. References

- ¹ O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- ² G.M. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3-8.
 ³ G.M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8
- ⁴ K.A. Phillips, T.M. Stonelake, K. Chen, Y. Hou, J. Zhao, S.J. Coles, P.N. Horton, S.J. Keane, E.C. Stokes, I.A. Fallis, A.J. Hallett, S.P. O'Kell, J.B. Beames, S.J.A. Pope, Chem. Eur. J., 2018, 24, 8577
- ⁵ R.C. Knighton, J.M. Beames, S. J. A. Pope, *Inorg. Chem.* 2023, **62**, 48, 19446–19456.