Supporting Information

Well-defined Cu(I) complexes based on [N,P]-pyrrole ligands catalyzed a highly *endo*-selective 1,3-dipolar cycloaddition

Miguel A. Alvarado-Castillo,^{a,b} Salvador Cortés-Mendoza,^a José E. Barquera-Lozada,^a Francisco Delgado,^b Ruben A. Toscano,^a M. Carmen Ortega-Alfaro,^c and José G. López-Cortés^{*,a}

а.	Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,
b.	Coyoacan, C.P. 04500 Camx, Mexico. E-mail: E-mail: Jgicvaw@unam.mx Departamento de Ouímica Organica. Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional
	Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico.
с.	Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad
	Universitaria, Coyoacán, C.P. 04510 CdMx, Mexico.
Ta	ble of contents
1.	GENERAL CONSIDERATIONS2
2.	GENERAL SYNTHESIS OF LIGAND BIDENTATE [N,P] BASED ON PYRROLE2
3.	CHARACTERIZATION DATA OF LIGAND BIDENTATE [N,P] BASED ON PYRROLE2
4.	GENERAL PROCEDURE FOR SYNTHESIS OF PHOSPHINE SELENIDES4
5.	CHARACTERIZATION DATA OF PHOSPHINE SELENIDES4
6.	GENERAL PROCEDURE FOR COMPLEXATION REACTION5
7.	CHARACTERIZATION DATA OF DINUCLEAR CU(I) COMPLEXES
8.	X-RAY DIFFRACTION DATA FOR COMPLEX 4A-D7
9.	GENERAL SYNTHESIS OF IMINO ESTERS14
10 DI	GENERAL PROCEDURE FOR THE 1,3-DIPOLAR CYCLOADDITION OF IMINO ESTERS AND POLAROPHILES
11	CHARACTERIZATION DATA OF PYRROLIDINE DERIVATIVES
12	NMR SPECTRA OF THE COMPOUNDS SYNTHESIZED
13	UV-VIS SPECTROSCOPY79
14	FOLLOW-UP OF THE 1,3-DIPOLAR CYCLOADDITION BY 31P NMR96
15	THEORETICAL DATA

1. General Considerations

All operations were carried out under an inert atmosphere of nitrogen or argon gas using standard Schlenk techniques. Anhydrous THF was obtained by distillation under an inert atmosphere over sodium and benzophenone. Column chromatography was performed using 70–230 mesh silica gel. All reagents and solvents were obtained from commercial suppliers and used without further purification. All compounds were characterized by IR spectra, recorded on a Perkin-Elmer 283B or 1420 spectrophotometer, by means of film and KBr techniques, and all data are expressed in wave numbers (cm-1). Melting points were obtained on a Melt-Temp II apparatus and are uncorrected. NMR spectra were measured with a JEOL Eclipse +300 and a Varian Gemini (200 MHz), using CDCl₃ as solvent. Chemical shifts are in ppm (δ), relative to TMS. The MS-FAB⁺ and MS-EI spectra were obtained on a JEOL SX 102A, the values of the signals are expressed in mass/charge units (m/z), followed by the relative intensity with reference to a 100% base peak.

2. General synthesis of ligand bidentate [N,P] based on pyrrole.

In a Schlenk flask, a solution of N,N-dimethyl-1H-pyrrol-1-amine (8.3 mmol, 1 equiv) in dry THF (15 ml) was prepared under a nitrogen atmosphere. The reaction mixture was cooled to -78 °C, and then n-butyl lithium (9.9 mmol, 1.2 equivalents of 2.5 M solution in n-hexane) was slowly added dropwise using a syringe. The temperature of the mixture was gradually raised to room temperature. After reaching this temperature, the reaction mixture was cooled to 0 °C, followed by the addition of various chlorophosphines (8.3 mmol, 1 equiv), and it was stirred at room temperature for 2 hours. The solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography using different hexane/ethyl acetate mixtures as eluents. (Scheme S1).

Scheme S1. General synthesis of bidentate [N,P] ligands based on pyrrole 2a-d.

3. Characterization Data of ligand bidentate [N,P] based on pyrrole.

¹ Suarez-Meneses, J.V.; Oukhrib, A.; Gouygou, M.; Urrutigoïty, M.; Daran, J.-C.; Cordero-Vargas, A.; Ortega-Alfaro, M.C.; López-Cortés, J.G. *Dalton Trans.*, **2016**, *23*, 9621–9630.

2-(diphenylphosphaneyl)-*N*,*N***-dimethyl-1***H***-pyrrol-1-amine** (**2a**). White powder, mp 106-108 °C (90%).¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.32 (*m*, 10H, H8, H9, H10); 7.16 (*m*, 1H, H5); 6.19 (*t*, *J*_{*H*-*H*}= 3.3 Hz, 1H, H4); 5.59 (*d*, *J*_{*H*-*H*}=2.66 Hz, 1H, H3); 2.66 (*s*, 6H, H6). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 137.5, 137.4 (*d*, *J*_{*C*-*P*}=.8.3 Hz) (C7); 133.5, 133.7 (*d*, *J*_{*C*-*P*}=20.1 Hz) (C8); 128.5 (C10); 128.2, 128.3 (*d*, *J*_{*C*-*P*}=16.7 Hz) (C9); 128.6, 116.5 (C5); 113.3 (C4); 108.4 (C3); 47.8 (C6). ³¹P NMR (50 MHz, CDCl₃) δ (ppm) -29.2.

2-(di-*tert***-butylphosphaneyl)**-*N*,*N***-dimethyl-**1*H***-pyrrol-1-amine** (**2b**). Colorless oil, (92%). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.17 (*m*, 1H, H5); 6.38-6.36 (*dd*, *J*_{*H*-*H*}= 1.63 Hz, *J*_{*H*-*H*}= 3.95 Hz, 1H, H4); 6.25-6.23 (*t*, *J*_{*H*-*H*}= 2.91 Hz, *J*_{*H*-*H*}= 6.84 Hz, 1H, H3); 2.83 (*s*, 6H, H6); 1.21 (*s*, 9H, H8, H9, H10); 1.17 (*s*, 9H, H11, H12, H13). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm)127.0 (C2); 115.5 (C5); 113.3 (C3); 107.3 (C4); 48.3 (C6); 32.4-32.2 (*d*, *J*_{*C*-*P*}= 16.9 Hz, C7); 30.4-30.2 (*d*,

 J_{C-P} = 15.1 Hz, C8, C9, C10). ³¹P NMR (50 MHz, CDCl₃) δ (ppm) 1.5.

2-(diisopropylphosphaneyl)-*N*,*N*-**dimethyl-**1*H*-**pyrrol-**1-**amine** (**2c**). Colorless oil (86 %). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.11 (*m*, 1H, H5); 6.22 (*t*, 1H, H4, *J*_{*H*-*H*}= 4.0 Hz, *J*=2.7 Hz); 6.13 (*m*, 1H, H3); 2.82 (*s*, 6H, H6); 2.05 (*hept*, 2H, H7, *J*_{*H*-*H*}= 6.9 Hz); 1.12 (*dd*, 6H, H8, *J*_{*H*-*H*}= 6.9 Hz, *J*_{*H*-*H*}= 8.1 Hz); 1.01 (*dd*, 6H, H9, *J*_{*H*-*H*}=5.1 Hz, *J*_{*H*-*H*}= 6.9 Hz). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 126.4 (C2); 115.8 (C5); 112.3 (C3); 107.6 (C4); 48.1 (C6); 23.7, 23.6 (*d*, *J*_{*C*-*P*}= 7.7 Hz, C7);

20.2, 20.0 (d, J_{C-P} = 18.1 Hz, C8); 19.3, 19.2 (d, J_{C-P} = 9.0 Hz). ³¹P NMR (50 MHz, CDCl₃) δ -17.6.

2-(dicyclopentylphosphaneyl)-*N*,*N*-dimethyl-1*H*-pyrrol-1-amine (2d). Colorless oil (60 %). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.06 (*m*, 1H, H5); 6.17 (*t*, *J*_{*H*-*H*} = 2.9 Hz, *J*_{*H*-*H*} = 9.2 Hz 1H, H3); 6.16 (s, 1H, H4); 2.82 (*s*, 6H, H6); 2.26–2.24 (*m*, 2H, H7); 1.93–1.90 (*m*, 2H, H8, 11); 1.67–1.24 (*m*, 14H, H,8,9,10,11). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 1129.0, 28.9 (d, *J*_{*C*-*P*} = 5.9 Hz, C2); 115.5 (C5); 112.3 (C3); 107.6 (C4); 48.1 (C6); 37.0-36.9 (*d*, *J*_{*C*-*P*} = 6.4 Hz, (C7); 31.2 (d, *J*_{*C*-*P*} = 5.2 Hz, (C8); 31.0 (C11); 26.8 (d, *J*_{*C*-*P*} = 7.9 Hz, (C9);

25.8 (*d*, *J*_{*C-P*}= 6.4 Hz, (C10). ³¹P NMR (50 MHz, CDCl₃) δ (ppm) -25.6.

4. General procedure for synthesis of phosphine selenides.

To a ligand solution (0.5 mmol) in CDCl₃, was added the Molecular selenium (5 mmol) reaction mixture was stored under refrigeration for 12 hours, at the end of the time it was filtered and analyzed directly in ³¹P NMR. (Scheme S2)

Scheme S2. General synthesis of pyrrole-based phosphorus selenides 3a-d.

5. Characterization Data of phosphine selenides.

(1-(dimetilamino)-1*H*-pirrol-2-il)difenilfosfin selenuro (73a). NMR ¹H (300.0 MHz, CDCl₃) δ (ppm) 7.91-7.84 (*m*, 4H, H8); 7.46-7.43 (*m*, 6H, H9, H10), 7.20 (*m*, 1H, H5); 6.16-6.14 (*m*,1H, H4); 5.89-5.86 (*m*, 1H, H3); 2.56 (*s*, 6H, H6). ³¹P NMR (50 MHz, CDCl₃) δ 16.2 (*t*, *J*_{P-Se}= 736 Hz).

di-*tert*-butyl(1-(dimethylamino)-1*H*-pyrrol-2-yl)phosphine selenide (3b). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.33 (*m*, 2H, H4,H5), 6.21 (*m*, 1H, H3), 2.86 (*s*, 6H, H6); 1.50 (*s*, 9H, H8, H9, H10), 1.45 (*s*, 9H, H11, H12, H13). ³¹P NMR (50 MHz, CDCl₃, 323 °K) δ -72.4 (*t*, J_{P-Se} = 707 Hz).

(1-(dimethylamino)-1*H*-pyrrol-2-yl)diisopropylphosphine selenide (3c). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.25 (*dd*, *J*_{*H*-*H*= 1.91 Hz, *J*_{*H*-*H*}= 2.81 Hz, 1H, H5); 6.90 (*dt*, *J*_{*H*-*H*}= 0.95 Hz, *J*_{*H*-*H*= 4.5 Hz, 1H, H4); 6.20 (*m*, 1H, H3); 2.83 (*s*, 6H, H6); 2.84-2.78 (*m*, 1H, H7); 1.32-1.23 (*dd*, 6H, H8, *J*_{*H*-*H*}= 6.79 Hz, *J*_{*H*-*H*}= 23.76 Hz), 1.04-0.95 (*dd*, 6H, H9, *J*_{*H*-*H*}= 6.98 Hz, *J*_{*H*-*H*}= 18.84 Hz). ³¹P NMR (50 MHz, CDCl₃) δ 56.4 (*t*, *J*_{*P*-*Se*}= 704 Hz).}}

dicyclopentyl(1-(dimethylamino)-1*H*-pyrrol-2-yl)phosphine selenide (3d). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.21-7.19 (*dd*, *J*_{*H*-*H*}= 2.84 Hz, *J*_{*H*-*H*}= 4.73 Hz, 1H, H5), 6.93-691 (*dd*, *J*_{*H*-*H*}= 1.84 Hz, *J*_{*H*-*H*}= 4.35 Hz, 1H, H4,), 6.21-6.18 (*m*, 1H, H3), 2.95-2.91 (m, 2H, H7)2.09-1.40 (*m*, 19H, H8, H9, H10, H11). ³¹P NMR (50 MHz, CDCl₃) δ 50.2 (*t*, *J*_{*P*-*Se*}= 705 Hz).

6. General procedure for complexation reaction.

In a Schlenk flask, the corresponding ligand (0.5 mmol, 1 eq.) is weighed and then CuBr (0.5 mmol, 1 eq.) is added. The flask is brought to anhydrous conditions with N2, and anhydrous CH2Cl2 (5 ml) is added. The reaction mixture is stirred for approximately 1 hour at room temperature. At the end of the reaction, the solvent is removed under vacuum, leaving a white residue that is washed with hexane to obtain the pure complexes. (Scheme S3).²

Scheme S3. General synthesis of dinuclear Cu(I) complexes 4a-d.

7. Characterization Data of dinuclear Cu(I) complexes.

2-(diphenylphosphaneyl)-*N*,*N***-dimethyl-1***H***-pyrrol-1amine copper(I) bromide (4a)**. solid white (80%). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.65.-7.59 (*m*, 4H, H8, H12); 7.45-7.42 (*m*, 6H, H13, H9, H14, H10); 7.32 (*m*, 1H, H5); 6.35-6.33 (*t*, *J*= 3.6 Hz, 1H, H4); 6.16-6.15 (*d*, *J*= 4.0 Hz, 1H, H3); 2.96 (*s*, 6H, H6). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 133.5-133.4 (*d*, *J*_{C-P}= 15.9 Hz C8,C12); 132.8-132.3 (*d*, *J*_{C-P}= 38.5 Hz C7,C11); 129.8 (C10, C14);

128.6-128.5 (d, J_{C-P} = 10.1 Hz C9,C13); 124.6-123.8 (d, J_{C-P} = 59.0 Hz C2); 117.4 (C5), 114.5 (C3), 109.7-109.6 (d, J_{C-P} = 5.3 Hz C4); 50.6 (C6). ³¹P NMR (50 MHz, CDCl₃) δ (ppm) - 34.26. IR (ATR, cm⁻¹) vmax: 3129.2 (=C-H); 2964.0 (-CH); 1811.6-1660.0 (C=C); 742.0-692.0 (C-H_{pyrrol}). HRMS (MALDI-TOF): calc. for C₃₆H₃₈Br₂Cu₂N₄P₂ [M⁺] 875.5755; found 796.505 [M⁺ -Br].

² Harutyunyan, S. R.; López, F.; Browne, W. R.; Correa, A.; Peña, D.; Badorrey, R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc., **2006**, *128*, 9103-9118.

2-(di-*tert***-butylphosphaneyl)**-*N*,*N***-dimethyl-**1*H*-**pyrrol-1-amine copper(I) bromide (4b)**. solid white (54%). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.30 (*m*, 1H, H5), 6.43 (*d*, *J*= 2.51 Hz, 1H, H4), 6.33-6.32 (*t*, *J*= 3.15 Hz 1H, H3), 3.01 (*s*, 6H, H6), 1.31 (*s*, 18H, H7, H8, H9, H10, H11, H12). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 121.7 (C2), 117.5 (C5), 113.8 (C4), 109.4 (C3), 50.4 (C6), 34.2 (C13, C14), 29.9 (C7, C8, C9, C10, C11, C12). ³¹P NMR (50 MHz,

CDCl₃) δ (ppm) 11.53. IR (ATR, cm⁻¹) vmax: 3098.7 (=C-H); 2998.7-2866.0 (-CH); 1720.7-1653.6 (C=C); 742.2 (C-H_{pyrrol}). HRMS (MALDI-TOF): calc. for C₂₈H₅₄Br₂Cu₂N₄P₂ [M⁺] 792.0782; found 717.142 [M⁺ -Br]. X-Ray data or complex **4a**.

2-(diisopropylphosphaneyl)-*N*,*N*-dimethyl-1*H***pyrrol-1-amine copper(I) bromide (4c)**. solid white (68 %). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.27 (*m*, 1H, H5), 6.31 (*m*, 1H, H4), 6.26 (*m*, 1H, H3), 3.01 (*s*, 6H, H6), 2.24–2.26 (*m*, 2H, H11,12), 1.22–1.17 (*d*,*d*, *J*= 6.7 Hz, *J*= 18.4 Hz 6H, H7,8), 1.10–1.06 (*d*,*d*, *J*= 6.9 Hz *J*= 14.8 Hz 6H, H9,10). ¹³C NMR (75.0

MHz, CDCl₃) δ (ppm) 121.6-121.1 (*d*, J_{C-P} = 48.6 Hz C2), 117.6 (C5), 112.9 (C4), 109.6 (*d*, J_{C-P} = 4.0 Hz C3), 50.6 (C6), 24.4-24.1 (*d*, J_{C-P} = 23.4 Hz C11,C12), 19.7-19.5 (*d*, J_{C-P} = 10.0 Hz C8,C10), 18.3 (C7, C9). ³¹P NMR (50 MHz, CDCl₃) δ (ppm) -9.75. IR (ATR, cm⁻¹) vmax: 3069.7 (=C-H); 2955.0 – 2862.9 (-CH); 733.1 (C-H_{pyrrol}). HRMS (MALDI-TOF): calcd. for C24H46Br2Cu2N4P2 [M⁺] 736.0156; found 661.395 [M⁺ -Br].

2-(dicyclopentylphosphaneyl)-*N*,*N*-**dimethyl-1***H*-**pyrrol-1-amine copper(I) bromide (4d)**. solid white (60 %). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.19 (*s*, 1H, H5), 6.27 (*m*, 2H, H3, H4), 3.01 (*s*, 6H, H6), 2.53-2.27 (m, 1H, H7), 2.07-1.96 (m, 1H, H10), 1.74–1.48 (*m*, 18H, H7, H8, H9, H10, H11, H12). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm)124.8-124.2 (*d*, *J*_{*C*-*P*}= 49.8 Hz C2), 116.9 (C5), 112.2

(C4), 109.5-109.4 (d, J_{C-P} = 4.3 Hz C3), 50.6 (C6), 37.4-37.1 (d, J_{C-P} = 25.7 Hz C7), 30.7-30.9 (d, J_{C-P} = 12.6 Hz C10), 30.6-30.5 (d, J_{C-P} = 4.9 Hz C8, C11), 26.7-26.5 (d, J_{C-P} = 10.0 Hz C12), 25.7-25.6 (d, J_{C-P} = 8.8 Hz C9). ³¹P NMR (50 MHz, CDCl₃) δ (ppm) -17.86. IR (ATR, cm⁻¹) vmax: 3106.9 (=C-H); 2999.9 – 2862.6 (-CH); 717.0 – 705.4 (C-H_{pyrrol}). HRMS (MALDI-TOF): calc. for C32H54Br2Cu2N4P2 [M⁺] 840.0782; found 764.922 [M⁺ -Br].

8. X-Ray diffraction data for complex 4a-d

Figure S1. Crystal structure of complex 4a. Hydrogen atoms are omitted for clarity.

Table S1. Distances	[Å] ar	nd angles	[°] of 4a .
---------------------	--------	-----------	--------------------

Br(1)-Cu(1), 2.4374(9)	C(3)-C(4), 1.406(4)
Br(1)-Cu(1), 2.4437(8)	C(4)-C(5), 1.360(4)
Cu(1)-P(1), 2.1910(9)	C(8)-C(13), 1.384(3)
Cu(1)-N(2), 2.559(2)	C(8)-C(9), 1.404(3)
Cu(1)-Cu(1), 2.8441(10)	C(9)-C(10), 1.383(4)
P(1)-C(2), 1.808(3)	C(10)-C(11), 1.377(4)
P(1)-C(8), 1.822(2)	C(11)-C(12), 1.374(4)
P(1)-C(14), 1.836(2)	C(12)-C(13), 1.380(4)
N(1)-C(5), 1.371(3)	C(14)-C(15), 1.374(4)
N(1)-C(2), 1.373(3)	C(14)-C(19), 1.387(4)
N(1)-N(2), 1.422(3)	C(15)-C(16), 1.387(4)
N(2)-C(7), 1.480(4)	C(16)-C(17), 1.354(5)
N(2)-C(6), 1.481(4)	C(17)-C(18), 1.367(5)
C(2)-C(3), 1.380(4)	C(18)-C(19), 1.393(4)
$C_{\rm P}(1)$ Br(1) $C_{\rm P}(1)$ 71 28(2)	$C(2) \mathbf{P}(1) C_{11}(1) 104 20(8)$
$\mathbf{P}(1) = \mathbf{P}(1) + \mathbf{P}$	C(2)- $F(1)$ - $Cu(1)$, 104.20(8)
P(1)-Cu(1)-Br(1), 126.82(3)	C(8)-P(1)-Cu(1), 110.57(8)
P(1)-Cu(1)-Br(1), 122.39(3)	C(14)-P(1)-Cu(1), 123.67(8)
Br(1)- $Cu(1)$ - $Br(1)$, 108.72(2)	C(5)-N(1)-C(2), 110.3(2)
P(1)-Cu(1)-N(2), 80.63(6)	C(5)-N(1)-N(2), 127.4(2)
Br(1)-Cu(1)-N(2), 100.31(6)	C(2)-N(1)-N(2), 122.3(2)
Br(1)-Cu(1)-N(2), 105.38(6)	N(1)-N(2)-C(7), 110.3(2)
P(1)-Cu(1)-Cu(1), 166.86(3)	N(1)-N(2)-C(6), 109.7(2)
Br(1)-Cu(1)-Cu(1), 54.46(2)	C(7)-N(2)-C(6), 111.5(2)
Br(1)-Cu(1)-Cu(1), 54.26(2)	N(1)-N(2)-Cu(1), 105.55(14)
N(2)-Cu(1)-Cu(1), 112.42(6)	C(7)-N(2)-Cu(1), 105.2(2)

C(2)-P(1)-C(8), 105.70(11)	C(6)-N(2)-Cu(1), 114.38(19)
C(2)-P(1)-C(14), 100.56(11)	N(1)-C(2)-C(3), 106.0(2)
C(8)-P(1)-C(14), 103.72(11)	N(1)-C(2)-P(1), 121.09(18)
C(3)-C(2)-P(1), 132.9(2)	C(2)-C(3)-C(4), 108.5(2)
C(5)-C(4)-C(3), 107.4(3)	C(4)-C(5)-N(1), 107.7(2)
C(13)-C(8)-C(9), 117.8(2)	C(13)-C(8)-P(1), 124.51(19)
C(9)-C(8)-P(1), 117.65(19)	C(10)-C(9)-C(8), 120.7(3)
C(11)-C(10)-C(9), 120.2(3)	C(12)-C(11)-C(10), 119.5(3)
C(11)-C(12)-C(13), 120.7(3)	C(12)-C(13)-C(8), 121.0(3)
C(15)-C(14)-C(19), 118.3(2)	C(15)-C(14)-P(1), 123.2(2)
C(19)-C(14)-P(1), 118.4(2)	C(14)-C(15)-C(16), 120.5(3)
C(17)-C(16)-C(15), 120.9(3)	C(16)-C(17)-C(18), 119.8(3)
C(17)-C(18)-C(19), 120.0(3)	C(14)-C(19)-C(18), 120.4(3)

Figure S2. Crystal structure of complex 4b. Hydrogen atoms are omitted for clarity.

Br(1)-Cu(1), 2.4460(8)	N(2)-C(6), 1.475(8)
Br(1)-Cu(1), 2.4591(8)	C(2)-C(3), 1.385(7)
Cu(1)-P(1), 2.1888(13)	C(3)-C(4), 1.413(11)
Cu(1)-N(2), 2.368(4)	C(4)-C(5), 1.337(12)
P(1)-C(2), 1.809(5)	C(8)-C(9), 1.521(9)
P(1)-C(8), 1.880(5)	C(8)-C(11), 1.526(8)
P(1)-C(12), 1.886(6)	C(8)-C(10), 1.527(8)
N(1)-C(5), 1.350(7)	C(12)-C(13), 1.510(8)
N(1)-C(2), 1.388(7)	C(12)-C(15), 1.522(9)
N(1)-N(2), 1.412(6)	C(12)-C(14), 1.523(10)

Table S2. Distances [Å] and angles [°] of 4b.

N(2)-C(7), 1.462(7)	
Cu(1)-Br(1)-Cu(1), 77.35(3)	C(7)-N(2)-Cu(1), 110.9(4)
P(1)-Cu(1)-N(2), 84.97(12)	C(6)-N(2)-Cu(1), 108.2(4)
P(1)-Cu(1)-Br(1), 124.61(4)	C(3)-C(2)-N(1), 106.0(5)
N(2)-Cu(1)-Br(1), 106.04(11)	C(3)-C(2)-P(1), 134.9(5)
P(1)-Cu(1)-Br(1), 127.33(5)	N(1)-C(2)-P(1), 119.0(4)
N(2)-Cu(1)-Br(1), 104.59(12)	C(2)-C(3)-C(4), 106.5(7)
Br(1)-Cu(1)-Br(1), 102.65(3)	C(5)-C(4)-C(3), 109.4(6)
C(2)-P(1)-C(8), 104.6(2)	C(4)-C(5)-N(1), 107.5(7)
C(2)-P(1)-C(12), 103.9(3)	C(9)-C(8)-C(11), 108.7(6)
C(8)-P(1)-C(12), 114.5(3)	C(9)-C(8)-C(10), 108.4(5)
C(2)-P(1)-Cu(1), 103.22(19)	C(11)-C(8)-C(10), 109.9(6)
C(8)-P(1)-Cu(1), 114.74(19)	C(9)-C(8)-P(1), 105.7(4)
C(12)-P(1)-Cu(1), 114.0(2)	C(11)-C(8)-P(1), 107.6(4)
C(5)-N(1)-C(2), 110.6(6)	C(10)-C(8)-P(1), 116.2(4)
C(5)-N(1)-N(2), 125.5(6)	C(13)-C(12)-C(15), 108.1(6)
C(2)-N(1)-N(2), 123.8(4)	C(13)-C(12)-C(14), 107.8(6)
N(1)-N(2)-C(7), 109.5(5)	C(15)-C(12)-C(14), 111.3(7)
N(1)-N(2)-C(6), 107.7(5)	C(13)-C(12)-P(1), 105.3(4)
C(7)-N(2)-C(6), 111.7(5)	C(15)-C(12)-P(1), 116.7(5)
N(1)-N(2)-Cu(1), 108.6(3)	C(14)-C(12)-P(1), 107.2(5)

Figure S3. Crystal structure of complex 4c. Hydrogen atoms are omitted for clarity.

Br(5)-Cu(5), 2.4364(12)	C(82)-C(83), 1.387(11)
Br(5)-Cu(6), 2.4644(12)	C(83)-C(84), 1.408(12)
Br(6)-Cu(6), 2.4419(13)	C(84)-C(85), 1.360(13)
Br(6)-Cu(5), 2.4677(13)	C(88)-C(90), 1.525(12)
Cu(5)-P(5), 2.189(2)	C(88)-C(89), 1.532(14)
Cu(5)-N(82), 2.523(8)	C(91)-C(92), 1.520(12)
Cu(5)-Cu(6), 2.9686(14)	C(91)-C(93), 1.535(12)
Cu(6)-P(6), 2.193(2)	N(101)-C(105), 1.361(12)
Cu(6)-N(102), 2.450(7)	N(101)-C(102), 1.388(12)
P(5)-C(82), 1.810(8)	N(101)-N(102), 1.452(11)
P(5)-C(91), 1.842(8)	N(102)-C(106), 1.457(14)
P(5)-C(88), 1.846(8)	N(102)-C(107), 1.478(12)
P(6)-C(102), 1.794(9)	C(102)-C(103), 1.401(12)
P(6)-C(111), 1.839(9)	C(103)-C(104), 1.410(15)
P(6)-C(108), 1.848(9)	C(104)-C(105), 1.365(15)
N(81)-C(85), 1.375(10)	C(108)-C(110), 1.518(14)
N(81)-C(82), 1.376(10)	C(108)-C(109), 1.548(14)
N(81)-N(82), 1.411(10)	C(111)-C(112), 1.536(13)
N(82)-C(86), 1.459(11)	C(111)-C(113), 1.541(13)
N(82)-C(87), 1.477(11)	
Cu(5)-Br(5)-Cu(6), 74.56(4)	C(91)-P(5)-C(88), 106.4(4)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4)	C(91)-P(5)-C(88), 106.4(4) C(82)-P(5)-Cu(5), 105.9(3)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4) P(5)-Cu(5)-Br(5), 130.50(7)	C(91)-P(5)-C(88), 106.4(4) C(82)-P(5)-Cu(5), 105.9(3) C(91)-P(5)-Cu(5), 117.7(3)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4) P(5)-Cu(5)-Br(5), 130.50(7) P(5)-Cu(5)-Br(6), 125.96(7)	C(91)-P(5)-C(88), 106.4(4) C(82)-P(5)-Cu(5), 105.9(3) C(91)-P(5)-Cu(5), 117.7(3) C(88)-P(5)-Cu(5), 116.5(3)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4) P(5)-Cu(5)-Br(5), 130.50(7) P(5)-Cu(5)-Br(6), 125.96(7) Br(5)-Cu(5)-Br(6), 98.64(4)	C(91)-P(5)-C(88), 106.4(4) C(82)-P(5)-Cu(5), 105.9(3) C(91)-P(5)-Cu(5), 117.7(3) C(88)-P(5)-Cu(5), 116.5(3) C(102)-P(6)-C(111), 104.0(4)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4) P(5)-Cu(5)-Br(5), 130.50(7) P(5)-Cu(5)-Br(6), 125.96(7) Br(5)-Cu(5)-Br(6), 98.64(4) P(5)-Cu(5)-N(82), 81.81(17)	C(91)-P(5)-C(88), 106.4(4) C(82)-P(5)-Cu(5), 105.9(3) C(91)-P(5)-Cu(5), 117.7(3) C(88)-P(5)-Cu(5), 116.5(3) C(102)-P(6)-C(111), 104.0(4) C(102)-P(6)-C(108), 103.1(4)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4) P(5)-Cu(5)-Br(5), 130.50(7) P(5)-Cu(5)-Br(6), 125.96(7) Br(5)-Cu(5)-Br(6), 98.64(4) P(5)-Cu(5)-N(82), 81.81(17) Br(5)-Cu(5)-N(82), 101.58(17)	C(91)-P(5)-C(88), 106.4(4) C(82)-P(5)-Cu(5), 105.9(3) C(91)-P(5)-Cu(5), 117.7(3) C(88)-P(5)-Cu(5), 116.5(3) C(102)-P(6)-C(111), 104.0(4) C(102)-P(6)-C(108), 103.1(4) C(111)-P(6)-C(108), 107.2(4)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4) P(5)-Cu(5)-Br(5), 130.50(7) P(5)-Cu(5)-Br(6), 125.96(7) Br(5)-Cu(5)-Br(6), 98.64(4) P(5)-Cu(5)-N(82), 81.81(17) Br(5)-Cu(5)-N(82), 101.58(17) Br(6)-Cu(5)-N(82), 112.58(17)	C(91)-P(5)-C(88), 106.4(4) C(82)-P(5)-Cu(5), 105.9(3) C(91)-P(5)-Cu(5), 117.7(3) C(88)-P(5)-Cu(5), 116.5(3) C(102)-P(6)-C(111), 104.0(4) C(102)-P(6)-C(108), 103.1(4) C(111)-P(6)- C(108), 107.2(4) C(102)-P(6)-Cu(6), 103.9(3)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4) P(5)-Cu(5)-Br(5), 130.50(7) P(5)-Cu(5)-Br(6), 125.96(7) Br(5)-Cu(5)-Br(6), 98.64(4) P(5)-Cu(5)-N(82), 81.81(17) Br(5)-Cu(5)-N(82), 101.58(17) Br(6)-Cu(5)-N(82), 112.58(17) P(5)-Cu(5)-Cu(6), 139.73(7)	C(91)-P(5)-C(88), 106.4(4) C(82)-P(5)-Cu(5), 105.9(3) C(91)-P(5)-Cu(5), 117.7(3) C(88)-P(5)-Cu(5), 116.5(3) C(102)-P(6)-C(111), 104.0(4) C(102)-P(6)-C(108), 103.1(4) C(111)-P(6)-C(108), 107.2(4) C(102)-P(6)-Cu(6), 103.9(3) C(111)-P(6)-Cu(6), 116.2(3)
Cu(5)-Br(5)-Cu(6), 74.56(4) Cu(6)-Br(6)-Cu(5), 74.40(4) P(5)-Cu(5)-Br(5), 130.50(7) P(5)-Cu(5)-Br(6), 125.96(7) Br(5)-Cu(5)-Br(6), 98.64(4) P(5)-Cu(5)-N(82), 81.81(17) Br(5)-Cu(5)-N(82), 101.58(17) Br(6)-Cu(5)-N(82), 112.58(17) P(5)-Cu(5)-Cu(6), 139.73(7) Br(5)-Cu(5)-Cu(6), 53.15(3)	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(101), 104.0(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 52.40(3) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(111), 104.0(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 52.40(3) \\ N(82)-Cu(5)-Cu(6), 138.33(17) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(101), 104.0(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ C(85)-N(81)-N(82), 127.3(7) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 52.40(3) \\ N(82)-Cu(5)-Cu(6), 138.33(17) \\ P(6)-Cu(6)-Br(6), 133.86(8) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(101), 104.0(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ C(85)-N(81)-N(82), 127.3(7) \\ C(82)-N(81)-N(82), 123.2(7) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 52.40(3) \\ N(82)-Cu(5)-Cu(6), 138.33(17) \\ P(6)-Cu(6)-Br(6), 133.86(8) \\ P(6)-Cu(6)-N(102), 84.1(2) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(101), 104.0(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ C(85)-N(81)-N(82), 127.3(7) \\ C(82)-N(81)-N(82), 123.2(7) \\ N(81)-N(82)-C(86), 110.6(7) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 138.33(17) \\ P(6)-Cu(6)-Br(6), 133.86(8) \\ P(6)-Cu(6)-N(102), 84.1(2) \\ Br(6)-Cu(6)-N(102), 105.00(18) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(101), 104.0(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ C(85)-N(81)-N(82), 127.3(7) \\ C(82)-N(81)-N(82), 123.2(7) \\ N(81)-N(82)-C(86), 110.6(7) \\ N(81)-N(82)-C(87), 109.4(7) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 138.33(17) \\ P(6)-Cu(6)-Br(6), 133.86(8) \\ P(6)-Cu(6)-N(102), 84.1(2) \\ Br(6)-Cu(6)-Br(5), 123.38(7) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(101), 104.0(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ C(85)-N(81)-N(82), 127.3(7) \\ C(82)-N(81)-N(82), 123.2(7) \\ N(81)-N(82)-C(86), 110.6(7) \\ N(81)-N(82)-C(87), 109.4(7) \\ C(86)-N(82)-C(87), 109.6(8) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 138.33(17) \\ P(6)-Cu(6)-Br(6), 133.86(8) \\ P(6)-Cu(6)-Br(6), 123.38(7) \\ Br(6)-Cu(6)-Br(5), 123.38(7) \\ Br(6)-Cu(6)-Br(5), 98.58(4) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(105), 103.1(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ C(85)-N(81)-N(82), 127.3(7) \\ C(85)-N(81)-N(82), 123.2(7) \\ N(81)-N(82)-C(86), 110.6(7) \\ N(81)-N(82)-C(87), 109.4(7) \\ C(86)-N(82)-C(87), 109.6(8) \\ N(81)-N(82)-Cu(5), 108.0(5) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 53.40(3) \\ N(82)-Cu(5)-Cu(6), 138.33(17) \\ P(6)-Cu(6)-Br(6), 133.86(8) \\ P(6)-Cu(6)-N(102), 105.00(18) \\ P(6)-Cu(6)-Br(5), 123.38(7) \\ Br(6)-Cu(6)-Br(5), 98.58(4) \\ N(102)-Cu(6)-Br(5), 104.1(2) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(101), 104.0(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ C(85)-N(81)-N(82), 127.3(7) \\ C(82)-N(81)-N(82), 123.2(7) \\ N(81)-N(82)-C(86), 110.6(7) \\ N(81)-N(82)-C(87), 109.4(7) \\ C(86)-N(82)-Cu(5), 108.0(5) \\ C(86)-N(82)-Cu(5), 107.7(6) \\ \end{array}$
$\begin{array}{c} Cu(5)-Br(5)-Cu(6), 74.56(4) \\ Cu(6)-Br(6)-Cu(5), 74.40(4) \\ P(5)-Cu(5)-Br(5), 130.50(7) \\ P(5)-Cu(5)-Br(6), 125.96(7) \\ Br(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-Br(6), 98.64(4) \\ P(5)-Cu(5)-N(82), 81.81(17) \\ Br(5)-Cu(5)-N(82), 101.58(17) \\ Br(6)-Cu(5)-N(82), 112.58(17) \\ P(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 139.73(7) \\ Br(5)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 53.15(3) \\ Br(6)-Cu(5)-Cu(6), 138.33(17) \\ P(6)-Cu(6)-Br(6), 133.86(8) \\ P(6)-Cu(6)-Br(6), 123.38(7) \\ Br(6)-Cu(6)-Br(5), 123.38(7) \\ Br(6)-Cu(6)-Br(5), 104.1(2) \\ P(6)-Cu(6)-Cu(6)-Br(5), 140.93(8) \\ \end{array}$	$\begin{array}{c} C(91)-P(5)-C(88), 106.4(4) \\ C(82)-P(5)-Cu(5), 105.9(3) \\ C(91)-P(5)-Cu(5), 117.7(3) \\ C(88)-P(5)-Cu(5), 116.5(3) \\ C(102)-P(6)-C(105), 103.1(4) \\ C(102)-P(6)-C(108), 103.1(4) \\ C(111)-P(6)-C(108), 107.2(4) \\ C(102)-P(6)-Cu(6), 103.9(3) \\ C(111)-P(6)-Cu(6), 116.2(3) \\ C(108)-P(6)-Cu(6), 120.3(3) \\ C(85)-N(81)-C(82), 109.2(7) \\ C(85)-N(81)-N(82), 127.3(7) \\ C(85)-N(81)-N(82), 123.2(7) \\ N(81)-N(82)-C(86), 110.6(7) \\ N(81)-N(82)-C(87), 109.4(7) \\ C(86)-N(82)-Cu(5), 107.7(6) \\ C(87)-N(82)-Cu(5), 111.5(5) \\ \end{array}$

Table S3. Distances [Å] and angles [°] of 4c.

P(6)-Cu(6)-Cu(5), 140.93(8)	N(81)-C(82)-P(5), 120.5(6)
N(102)-Cu(6)-Cu(5), 134.50(19)	C(83)-C(82)-P(5), 131.9(7)
Br(5)-Cu(6)-Cu(5), 52.29(3)	C(82)-C(83)-C(84), 106.9(7)
C(82)-P(5)-C(91), 104.5(4)	C(85)-C(84)-C(83), 108.5(8)
C(82)-P(5)-C(88), 104.4(4)	C(84)-C(85)-N(81), 107.8(7)
C(90)-C(88)-C(89), 112.1(9)	C(90)-C(88)-P(5), 114.4(6)
C(89)-C(88)-P(5), 108.2(6)	C(92)-C(91)-C(93), 112.1(8)
C(92)-C(91)-P(5), 109.7(6)	C(93)-C(91)-P(5), 109.1(5)
C(105)-N(101)-C(102), 111.6(8)	C(105)-N(101)-N(102), 126.3(8)
C(102)-N(101)-N(102), 121.5(7)	N(101)-N(102)-C(106), 108.2(7)
N(101)-N(102)-C(107), 108.4(7)	C(106)-N(102)-C(107), 113.1(9)
N(101)-N(102)-Cu(6), 107.7(5)	C(106)-N(102)-Cu(6), 111.0(6)
C(107)-N(102)-Cu(6), 108.2(6)	N(101)-C(102)-C(103), 105.6(8)
N(101)-C(102)-P(6), 121.6(6)	C(103)-C(102)-P(6), 132.6(8)
C(102)-C(103)-C(104), 106.9(9)	C(105)-C(104)-C(103), 109.5(9)
N(101)-C(105)-C(104), 106.5(10)	C(110)-C(108)-C(109), 110.8(8)
C(110)-C(108)-P(6), 109.8(6)	C(109)-C(108)-P(6), 107.2(7)
C(112)-C(111)-C(113), 109.3(8)	C(112)-C(1119)-P(6), 116.3(7)
C(113)-C(111)-P(6), 109.2(7)	

Figure S4. Crystal structure of complex 4d. Hydrogen atoms are omitted for clarity.

Br(1)-Cu(1), 2.4297(3)	C(2)-C(3), 1.380(2)
Br(1)-Cu(2), 2.4572(3)	C(3)-C(4) 1.413(2)
Br(2)-Cu(2), 2.4359(3)	C(4)-C(5) 1.370(3)
Br(2)-Cu(1), 2.4560(3)	C(8)-C(9), 1.545(2)
Cu(1)-P(1), 2.1867(4)	C(8)-C(12), 1.557(2)
Cu(1)-N(2), 2.4157(15)	C(9)-C(10), 1.529(3)
Cu(1)-Cu(2), 2.8055(3)	C(10)-C(11), 1.529(3)
Cu(2)-P(2), 2.1868(5)	C(11)-C(12), 1.540(2)
Cu(2)-N(22), 2.4056(15)	C(13)-C(17), 1.537(2)
P(1)-C(2), 1.8010(16)	C(13)-C(14), 1.540(2)
P(1)-C(13), 1.8377(16)	C(14)-C(15), 1.541(2)
P(1)-C(8), 1.8386(17)	C(15)-C(16), 1.540(3)
P(2)-C(22), 1.8007(17)	C(16)-C(17), 1.535(2)
P(2)-C(33), 1.8361(17)	N(21)-C(25), 1.371(2)
P(2)-C(28), 1.8366(17)	N(21)-C(22) 1.380(2)
N(1)-C(5), 1.375(2)	N(21)-N(22) 1.423(2)
N(1)-C(2), 1.382(2)	N(22)-C(27), 1.474(2)
N(1)-N(2), 1.4250(19)	N(22)-C(26), 1.476(2)
N(2)-C(7), 1.470(2)	C(22)-C(23), 1.381(2)
N(2)-C(6), 1.475(2)	C(23)-C(24), 1.414(3)
C(24)-C(25), 1.355(3)	C(28)-C(32), 1.542(2)
C(28)-C(32), 1.542(2)	C(28)-C(29), 1.549(2)
C(29)-C(30), 1.536(3)	C(30)-C(31), 1.525(3)
C(31)-C(32), 1.529(3)	C(33)-C(34), 1.541(2)
C(33)-C(37), 1.543(2)	C(34)-C(35), 1.524(2)
C(35)-C(36), 1.519(3)	C(36)-C(37), 1.525(3)
Cu(1)-Br(1)-Cu(2), 70.069(8)	C(8)-P(1)-Cu(1), 119.12(6)
Cu(2)-Br(2)-Cu(1), 69.989(8)	C(22)-P(2)-C(33), 102.99(8)
P(1)-Cu(1)-N(2), 84.56(3)	C(22)-P(2)-C(28), 102.13(8)
P(1)-Cu(1)-Br(1), 126.495(15)	C(33)-P(2)-C(28) 106.17(8)
N(2)-Cu(1)-Br(1), 105.07(3)	C(22)-P(2)-Cu(2), 102.90(6)
P(1)-Cu(1)-Br(2), 118.902(15)	C(33)-P(2)-Cu(2), 118.75(5)
N(2)-Cu(1)-Br(2), 102.97(3)	C(28)-P(2)-Cu(2), 120.88(6)
Br(1)-Cu(1)-Br(2), 110.001(9)	C(5)-N(1)-C(2), 109.92(14)
P(1)-Cu(1)-Cu(2), 162.624(15)	C(5)-N(1)-N(2), 126.38(14)
N(2)-Cu(1)-Cu(2), 112.21(3)	C(2)-N(1)-N(2), 122.46(13)
Br(1)-Cu(1)-Cu(2), 55.425(7)	N(1)-N(2)-C(7), 110.75(14)
Br(2)-Cu(1)-Cu(2), 54.670(7)	N(1)-N(2)-C(6), 109.02(13)
P(2)-Cu(2)-N(22), 84.76(4)	C(7)-N(2)-C(6), 110.92(14)
P(2)-Cu(2)-Br(2), 124.487(15)	N(1)-N(2)-Cu(1), 106.11(9)

Table S4. Distances [Å] and angles [°] of 4d.

N(22)-Cu(2)-Br(2), 103.31(4)	C(7)-N(2)-Cu(1). 109.39(11)
P(2)-Cu(2)-Br(1), 120.919(15)	C(6)-N(2)-Cu(1), 110.54(11)
N(22)-Cu(2)-Br(1), 105.24(4)	C(3)-C(2)-N(1), 106.66(14)
Br(2)-Cu(2)-Br(1), 109.755(10)	C(3)-C(2)-P(1), 132.72(13)
P(2)-Cu(2)-Cu(1), 157.047(15)	N(1)-C(2)-P(1), 120.27(12)
N(22)-Cu(2)-Cu(1), 118.13(4)	C(2)-C(3)-C(4), 108.10(16)
Br(2)-Cu(2)-Cu(1), 55.342(7)	C(5)-C(4)-C(3), 107.66(16)
Br(1)-Cu(2)-Cu(1), 54.506(7)	C(4)-C(5)-N(1), 107.65(15)
C(2)-P(1)-C(13), 102.83(8)	C(9)-C(8)-C(12), 104.44(14)
C(2)-P(1)-C(8) 102.21(7)	C(9)-C(8)-P(1), 113.71(11)
C(13)-P(1)-C(8), 106.30(8)	C(12)-C(8)-P(1), 111.00(11)
C(2)-P(1)-Cu(1), 102.81(5)	C(10)-C(9)-C(8), 103.05(14)
C(13)-P(1)-Cu(1), 120.51(5)	C(9)-C(10)-C(11), 102.83(14)
C(10)-C(11)-C(12), 104.55(15)	C(17)-C(13)-C(14), 101.84(13)
C(11)-C(12)-C(8), 106.43(14)	C(17)-C(13)-P(1), 113.90(11)
C(14)-C(13)-P(1), 111.69(11)	C(13)-C(14)-C(15), 104.86(13)
C(16)-C(15)-C(14), 106.25(14)	C(17)-C(16)-C(15), 105.52(14)
C(16)-C(17)-C(13), 103.91(14)	C(25)-N(21)-C(22), 109.75(15)
C(25)-N(21)-N(22), 126.71(15)	C(22)-N(21)-N(22), 123.54(14)
N(21)-N(22)-C(27), 109.71(14)	N(21)-N(22)-C(26), 109.55(14)
C(27)-N(22)-C(26), 111.23(15)	N(21)-N(22)-Cu(2), 107.36(9)
C(27)-N(22)-Cu(2), 108.89(11)	C(26)-N(22)-Cu(2), 110.02(11)
N(21)-C(22)-C(23), 106.59(15)	N(21)-C(22)-P(2), 120.43(12)
C(23)-C(22)-P(2), 132.98(14)	C(22)-C(23)-C(24), 107.77(17)
C(25)-C(24)-C(23), 107.83(16)	C(24)-C(25)-N(21), 108.06(17)
C(32)-C(28)-C(29), 104.74(14)	C(32)-C(28)-P(2), 113.94(12)
C(29)-C(28)-P(2), 109.96(11)	C(30)-C(29)-C(28), 106.44(15)
C(31)-C(30)-C(29), 105.19(15)	C(30)-C(31)-C(32), 103.11(15)
C(31)-C(32)-C(28), 103.22(15)	C(34)-C(33)-C(37), 103.62(14)
C(34)-C(33)-P(2), 110.71(11)	C(37)-C(33)-P(2), 113.31(12)
C(35)-C(34)-C(33), 103.31(14)	C(36)-C(35)-C(34), 104.60(16)
C(35)-C(36)-C(37), 107.75(17)	C(36)-C(37)-C(33), 105.56(15)

9. General synthesis of Imino Esters

A mixture of aminoacid methyl ester hydrochloride (1.0 g, 7.96 mmol), 4chlorobenzaldehyde (1.120 g, 7.96 mmol), triethylamine (0.806 g, 7.96 mmol), and anhydrous magnesium sulfate (1.5 g, 12.5 mmol) was refluxed for 2 h in dichloromethane. After the reaction mixture was cooled to room temperature, the undissolved materials were removed by filtration, washed with dichloromethane, and discarded. The filtrate was concentrated to dryness on a rotatory evaporator to give a white solid. The white solid was dissolved in benzene and filtered, and the resulting solution was concentrated to dryness on a rotatory evaporator to give compound **Imino Esters**.³

Scheme S4. General synthesis of imino esters 5.

note: due to their easy oxidation to the corresponding aldehyde all imino esters were prepared *in-situ*

10. General Procedure for the 1,3-Dipolar Cycloaddition of Imino Esters and Dipolarophiles

Typical procedure for asymmetric 1,3-dipolar cycloaddition of azomethine ylides: To a solution of the appropriate imino ester **5** (1.2 mmol) in 3.0 mL of ethanol (EtOH), were added 0.17 mL of triethylamine (Et₃N, 1.2 mmol) and *N*-phenyl maleimide (174 mg, 1 mmol). Then, 0.03 mmol (27 mg) of **4a** are added under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 3 hours. Then, the reaction mixture was evaporated under vacuum and crude was redissolved with 5 mL of CH₂Cl₂ and washed with H₂O (3×15 mL). The organic phase was dried with anhydrous sodium sulfate and then filtered through a pad of celite and alumina, using 5.0 mL of CH₂Cl₂. Subsequently, the solvent was removed under reduced pressure. The crude was further purified through silica gel chromatography (eluent: 7:3 hexanes/EtOAc) to obtain the corresponding adducts **7** (**Scheme S5**).

³ Albert, J.; Crespo, M.; Granell, J.; Rodríguez, J.; Zafrilla, J.; Calvet, T.; Font-Bardia, M.; Solans, X. Organometallics, 2010, 29, 214–225

Scheme S5. 1,3-dipolar cycloaddition reaction between imino ester 5 and *N*-phenyl maleimide 6.

11. Characterization Data of Pyrrolidine derivatives.

(±)- ethyl (1*S*,3*R*,3a*S*,6a*R*)-3-(4-chlorophenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (7a). solid white (95 %). ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.40-7.36 (*m*, 4H, H19, H14), 7.33-7.30 (*m*, 3H, H15, H16), 7.08-7.06 (*d*, *J*= 7.47 Hz, 2H, H18), 4.85–4.81 (*t*, *J*= 8.12 Hz, 1H, H8), 4.35–4.30 (*q*, *J*= 7.1 Hz, *J*= 14.3 Hz, 2H, H11), 3.69–3.65 (*dd*, *J*= 7.8 Hz, *J*= 8.8 Hz, 1H, H3), 3.45-3.43 (*d*, *J*= 7.7 Hz, 1H, H7), 2.57-2.55 (*d*, *J*= 7.0 Hz, 1H, NH) 1.65 (*s*, 3H, H9) 1.38-1.34 (*t*, *J*= 7.2 Hz, 3H, H12). ¹³C NMR (100.0

MHz, CDCl₃) δ (ppm) 174.6 (C4), 173.5 (C6), 172.2 (C10), 135.6 (C13), 134.1 (C17), 129.2 (C19), 128.7 (C14), 128.6 (C15), 128.6 (C16), 126.1 (C18), 67.5 (C11), 62.0 (C2), 61.6 (C8), 55.3 (C7), 50.0 (C3), 24.0 (C9), 14.1 (C12). IR (ATR, cm⁻¹) vmax: 3342.9 (N-H); 2990.0 (-CH); 1729.6 (O=C-CH₂CH₃); 1691.9 (O=C-NPh); 1599.7 (C=C); 1383.9 (C-O). MS (DART): m/z: 413.8700 [M+1]. HRMS (DART): calc. for C₂₂H₂₁ClN₂O₄ [M+] 412.1190; found 413.1251.

(±)- methyl (1*R*,3*R*,3a*S*,6a*R*)-3-(4-chlorophenyl)-4,6-dioxo-1,5-diphenyloctahydropyrrolo[3,4-*c*]pyrrole-1-carboxylate (7b). solid white (75 %). ¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.57-7.55 (*d*, *J*= 8.0 Hz, 2H, H19), 7.29-7.48 (*m*, 10H, H14, H15, H16, H21, H22, H23), 7.12-7.10 (*d*, *J*= 8.0 Hz, 2H, H18), 4.37–4.33 (*dd*, *J*= 5.78 Hz, *J*= 9.24 Hz, 1H, H8), 4.24–4.22 (*dd*, *J*= 1.31 Hz, *J*= 7.37 Hz, 1H, H3), 3.78 (*s*, 3H, H11), 3.52–3.48 (*dd*, *J*= 7.4 Hz, *J*= 9.21 Hz, 1H, H7), 3.19 (*d*, *J*= 5.28 Hz, 1H, NH). ¹³C NMR (100.0 MHz, CDCl₃) δ (ppm) 175.0

(C4), 173.5 (C6), 170.9 (C10), 138.3 (C13), 135.3 (C17), 134.2 (C20), 131.5 (C9), 129.2 (C23, C16), 128.7 (C14), 128.6 (C21), 128.6 (C22), 128.5 (C15), 126.0 (C19, 125.9 (C18), 72.6 (C2), 60.7 (C8), 53.1 (C3), 52.9 (C11), 49.6 (C7). IR (ATR, cm⁻¹) vmax: 3357.2 (N-H); 3057.3 (=C-H); 1746.1 (O=C-CH₃); 1711.4 (O=C-NPh); 1595.7 (C=C); 1381.2 (C-O). MS (DART): m/z: 461.9140 [M+1]. HRMS (DART): calc. for C26H21ClN2O4 [M+] 460.1190; found 461.1267 [M+1].

(±)- ethyl (1*S*,3*R*,3a*S*,6a*R*)-3-(4-chlorophenyl)-1-(2-(methylthio)ethyl)-4,6-dioxo-5-

phenyloctahydropyrrolo[3,4-c]pyrrole-1-

carboxylate (7c). solid white (85 %). ¹H NMR (300 MHz, CDCl₃) δ(ppm) 7.41-7.31 (*m*, 7H, H14, H15, H16, H19), 7.07-7.04 (*d*, *J*= 7 Hz, 2H, H18), 4.76–4.70 (*t*, *J*= 8.6 Hz, 1H, H8), 4.39–4.29 (*m*, 2H, H11), 3.67-3.62 (*dd*, J= 7.7 Hz J= 9 Hz, 1H, H3), 3.45–3.42 (*d*, *J*= 7.7 Hz, 1H, H7), 2.90-2.87 (*d*, *J*= 9.4 Hz, 1H, NH). 2.59-2.39 (*m*, 4H, H9, H22) 2.14 (*s*, 3H, H23), 2.39.2.35 (*t*, *J*= 7.2 Hz 3H, H12) ¹³C NMR (75.0 MHz, CDCl₃) δ

(ppm) 174.3 (C4), 173.4 (C6), 171.0 (C10), 135.3 (C13), 134.2 (C17), 131.4 (C20), 129.1 (C19), 128.8 (C14), 128.7 (C15), 128.5 (C16), 126.0 (C18), 71.1 (C11) 62.2 (C22), 61.7 (C23), 55.7 (C2), 50.3 (C8), 34.9 (C7), 28.7 (C3), 15.9 (C9), 14.1 (C12). IR (ATR, cm⁻¹) vmax: 3330.9 (N-H); 2986.2 (=C-H); 2923.7 (-CH); 1707.5 (O=C-NPh); 1597.8 (C=C); 1376.9 (C-O). MS (DART): m/z: 472.9840 [M+1]. HRMS (DART): calc. for C24H25ClN2O4S [M+] 472.1224; found 473.1295 [M+1].

(±)- methyl (1*R*,3*R*,3a*S*,6a*R*)-3-(4-chlorophenyl)-1-(hydroxymethyl)-4,6-dioxo-5-

phenyloctahydropyrrolo[3,4-*c*]pyrrole-1-carboxylate (7d). solid white (80%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.50-7.38 (*m*, 7H, H14, H15, H16, H19), 7.13-7.10 (*d*, *J*= 8.1 Hz, 2H, H18), 5.36 (m, 1H, OH), 4.84–4.80 (*d*, *J*= 10.2 Hz, 1H, H8), 4.10–4.06 (*d*, *J*= 14.0 Hz, 1H, H9), 3.86 (*s*, 3H, H11), 3.80-3.76 (*d*, *J*= 11.1 Hz, 1H, H9),3.70-3.65 (*d*, *d*, *J*= 7.9 Hz, *J*= 9.0 Hz, 1H, H3) 3.51-3.48 (*d*, *J*= 8.0 Hz, 1H, H7), 3.08 (*s*, 1H, NH). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 174.5 (C4), 173.4 (C6), 171.6 (C10), 136.0

(C13), 133.9 (C17), 131.7 (C19), 129.5 (C14), 128.6 (C15), 128.3 (C16), 126.7 (C18),125.9 (C20), 72.5 (C9), 64.0 (C11), 63.1 (C2), 61.9 (C8), 61.5 (C7), 51.3 (C3). IR (ATR, cm⁻¹) vmax: 3468.5 (-O-H); 3330.9 (N-H); 2958.2 (-C-H); 1707.5 (O=C-NPh); 1597.8 (C=C); 1376.9 (C-O); 1280.5 (C-OH). MS (DART): m/z: 415.8420 [M+1]. HRMS (DART): calc. for C21H19ClN2O5 [M+] 414.0982; found 415.1057 [M+1].

(±)- ethyl (1*S*,3*R*,3a*S*,6a*R*)-3-(4-fluorophenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (7e). solid white (74 %). ¹H NMR (300 MHz, CDCl₃) δ(ppm) 7.43-7.31 (*m*, 5H, H19, H14, H16), 7.09-7.01 (*m*, 4H, H15, H18), 4.86–4.83 (*d*, *J*= 9.0 Hz, 1H, H8), 4.36–4.29 (*q*, *J*= 7.0 Hz, *J*= 14.1 Hz, 2H, H11), 3.67–3.63 (*dd*, *J*= 7.7 Hz, *J*= 9.1 Hz, 1H, H3), 3.44-3.42 (*d*, *J*= 7.7 Hz, 1H, H7), 2.56 (*s*, 1H, NH) 1.64 (*s*, 3H, H9) 1.38-1.36 (*t*, *J*= 7.2 Hz, 3H, H12). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 174.7 (C4), 173.6 (C6), 172.3

(C10), 164.2 (C20), 160.9 (C17), 132.8 (C13), 131.5 (C19), 129.1 (C14), 128.9 (C15), 128.8 (C16), 126.1 (C18), 67.5 (C11), 61.9 (C2), 61.5 (C8), 55.4 (C7), 50.0 (C3), 24.0 (C9), 14.1 (C12). IR (ATR, cm⁻¹) vmax: 3337.1 (N-H); 2982.3 (-CH); 1729.8 (O=C-CH₂CH₃); 1703.9 (O=C-NPh); 1604.2 (C=C); 1390.1 (C-O). MS (DART): m/z: 397.4184 [M+1]. HRMS (DART): calc. for C₂₂H₂₁FN₂O4 [M+] 396.1485; found 397.1576 [M+1].

(±)- ethyl (1*S*,3*R*,3a*S*,6a*R*)-1-methyl-4,6-dioxo-5phenyl-3-(1-ferrocenyloctahydropyrrolo[3,4-

c]pyrrole-1-carboxylate (7f). solid yellow (56 %). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.38-7.28 (*m*, 3H, H15, H16), 7.08-7.05 (*m*, 2H, H14), 4.67-4.61 (*t*, *J*= 8.3 Hz 1H, H8) 4.35–4.33 (*m*, 2H, H11), 4.22-4.17 (*m*, 8H, H18, H19, H20, Cp), 3.55-3.50 (*t*, *J*= 6.9Hz, 1H, H7), 3.43-3.41 (*d*, *J*= 7.7 Hz, 1H, H3) 2.90-2.88 (*d*, *J*= 7.7 Hz, 1H, NH), 1.62 (*s*, 3H, H9) 1.40-1.35 (*t*, *J*= 7.2 Hz, 3H, H12). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 174.9 (C4), 173.8 (C6), 172.6 (C10), 131.6 (C13), 128.9 (C15), 128.3 (C16), 126.1

(C14), 84.7 (C2), 69.0 (CCp), 68.6 (C20), 68.1 (C19), 67.4 (C2), 64.7 (C18), 62.0 (C11), 59.7 (C8), 57.2 (C3), 50.7 (C7), 25.0 (C9), 14.1 (C12). IR (ATR, cm⁻¹) vmax: 3341.8 (N-H); 3074.8 (=C-H); 2981.1 (-CH); 1711.4 (O=C-NPh); 1597.7 (C=C); 1375.3 (C-O). MS (DART): m/z: 487.3490 [M+1]. HRMS (DART): calc. for C26H26FeN2O4 [M+] 486.1242; found 487.1324 [M+1].

(±)- ethyl (1*S*,3*R*,3a*S*,6a*R*)-1-methyl-4,6-dioxo-5-phenyl-3-(thien-2-yl)octahydropyrrolo[3,4-*c*]pyrrole-1-

carboxylate (7g). solid white (%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.41-7.31 (*m*, 3H, H20, H14), 7.24-7.22 (*d*,*d*, *J*= 5.1 Hz, *J*= 1.2 Hz, 1H, H19), 7.16-7.11 (*m*, 3H, H15, H16), 7.01-6.98 (*d*,*d*, *J*= 5.1 Hz, *J*= 4.0 Hz, 1H, H18), 5.16-5.11 (*d*,*d*, *J*= 8.8 Hz, *J*= 7.5 Hz 1H, H8) 4.34–4.27 (*q*, *J*= 14.0 Hz, *J*= 6.7 Hz, 2H, H11), 3.67–3.61 (*dd*, *J*= 9.1 Hz, *J*= 7.7 Hz, 1H, H3), 3.44-3.41 (*d*, *J*= 8.3 Hz, 1H, H7), 2.78-2.76 (*d*, *J*= 7.3 Hz, 1H, NH) 1.60 (*s*, 3H, H9) 1.37-1.32 (*t*, *J*= 7.2

Hz, 3H, H12). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 174.6 (C4), 173.3 (C6), 171.9 (C10), 141.1 (C17), 131.7 (C20), 129.0 (C14), 129.5 (C19), 127.1 (C18), 126.3 (C15), 125.4 (C16), 125.1 (C13), 67.2 (C11), 61.9 (C2), 58.2 (C8), 55.4 (C7), 50.1 (C3), 23.9 (C9), 14.1 (C12). IR (ATR, cm⁻¹) vmax: 3333.4 (N-H); 3119.6 (=C-H); 2987.7 (-CH); 1738.8 (O=C-CH₂CH₃); 1712.9 (O=C-NPh); 1598.6 (C=C); 1385.0 (C-O). MS (DART): m/z: 385.4500 [M+1]. HRMS (DART): calc. for C₂₀H₂₀N₂O4S [M+] 384.1144; found 385.1208 [M+1].

(±)- ethyl (1*S*,3*R*,3a*S*,6a*R*)-3-(4-methoxyphenyl)-1-methyl-4,6-dioxo-5-phenyloctahydropyrrolo[3,4-*c*]pyrrole-1-carboxylate (7h). solid white (79 %). ¹H NMR (300 MHz, CDCl₃) δ(ppm) 7.40-7.30 (*m*, 5H, H14, H15, H16), 7.12-7.08 (*d*, *J*= 10.4 Hz, 2H, H18), 6.89-6.86 (*d*, *J*= 8.8 Hz, 2H, H19), 4.84-4.81 (*d*, *J*= 9.1 Hz 1H, H8) 4.36–4.27 (*q*, *J*= 14.3 Hz, *J*= 7.1 Hz, 2H, H11), 3.77 (*s*, 3H, H23) 3.66-3.60 (*d*,*d*, *J*= 9.1 Hz, *J*= 7.7 Hz, 1H, H7), 3.44-3.41 (*d*, *J*= 7.7 Hz, 1H, H3) 2.64 (*s*, 1H, NH), 1.63 (*s*, 3H, H9) 1.38-1.33 (*t*, *J*= 7.2 Hz, R)

3H, H12). ¹³C NMR (75.0 MHz, CDCl₃) δ (ppm) 174.9 (C4), 173.8 (C6), 172.4 (C10), 159.5 (C17), 131.6 (C13), 129.0 (C14), 128.9 (C19), 128.5 (C18), 128.3 (C15), 126.1 (C16), 113.9 (C20), 67.5 (C11), 62.1 (C22), 61.9 (C2), 55.8 (C8), 55.2 (C7), 50.4 (C3), 24.0 (C9), 14.1 (C12). IR (ATR, cm⁻¹) vmax: 3258.7 (N-H); 3034.1 (=C-H); 2987.8 (-CH); 1747.1 (O=C-CH₂CH₃); 1707.1 (O=C-NPh); 1610.8 (C=C); 1383.6 (C-O). MS (DART): m/z: 409.4540 [M+1]. HRMS (DART): calc. for C23H24N2O5 [M+] 408.1685; found 409.1747 [M+1].

(±)- ethyl (1*S*,3*R*,3a*S*,6a*R*)-1-methyl-4,6-dioxo-5phenyl-3-(4-(trifluoromethyl) phenyl) octahydropyrrolo [3,4-*c*]pyrrole-1-carboxylate (7i). solid white (85 %). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.62-7.58 (*m*, 4H, H19, H14), 7.55-7.38 (*m*, 3H, H15, H16), 7.06-7.03 (*m*, 2H, H18), 4.92–4.87 (*t*, *J*= 8.1 Hz, 1H, H8), 4.36–4.29 (*q*, *J*= 15.3 Hz, *J*= 7.1 Hz, 2H, H11), 3.75–3.72 (*dd*, *J*= 8.9 Hz, *J*= 7.7 Hz, 1H, H3), 3.46-3.44 (*d*, *J*= 7.7 Hz, 1H, H7), 2.61-2.59 (*d*, *J*= 7.0 Hz, 1H, NH) 1.66 (*s*, 3H, H9) 1.39-1.34 (*t*, *J*= 7.2 Hz, 3H, H12). ¹³C

NMR (75.0 MHz, CDCl₃) δ (ppm) 174.6 (C4), 173.4 (C6), 172.2 (C10), 141.1 (C20), 131.4 (C17), 130.6 (C13), 130.2 (C19), 129.1 (C14), 128.7 (C15), 127.7 (C16), 126.1 (C18), 125.6 125.3 (CF₃), 67.7 (C11), 62.0 (C2), 61.7 (C8), 55.3 (C7), 50.0 (C3), 24.0 (C9), 14.1 (C12). IR (ATR, cm⁻¹) vmax: 3334.2 (N-H); 3075.3 (=C-H); 2984.8 (-CH); 1737.6 (O=C-CH₂CH₃); 1716.8 (O=C-NPh); 1620.7 (C=C); 1370.1 (C-O). MS (DART): m/z: 447.4262 [M+1]. HRMS (DART): calc. for C23H21F3N2O4 [M+] 446.1453; found 447.1543 [M+1].

(±)- ethyl (1*S*,3*R*,3a*S*,6a*R*)-3-(4-chlorophenyl)-1,5dimethyl-4,6-dioxooctahydropyrrolo[3,4-*c*]pyrrole-1-carboxylate (9) solid white (90 %). ¹H NMR (300.0 MHz, CDCl₃) δ (ppm) 7.32-7.30 (*d*, *J*= 8.7 Hz, 2H, H19), 7.27-7.24 (*d*, *J*= 8.9 Hz, 2H, H18), 4.75–4.70 (*t*, *J*= 8.5 Hz, 1H, H8), 4.36–4.31 (*q*, *J*= 5.7Hz, *J*= 14.4 Hz, 2H, H11), 3.55–3.50 (*dd*, *J*= 7.7 Hz, *J*= 8.8 Hz, 1H, H3), 3.28-3.26 (*d*, *J*= 7.5 Hz, 1H, H7), 2.81 (s, 3H, H13), 2.46-2.44 (*d*, *J*= 7.3 Hz, 1H, NH) 1.60 (*s*, 3H,

H9) 1.41-1.36 (*t*, J= 7.2 Hz, 3H, H12). ¹³C NMR (100.0 MHz, CDCl₃) δ (ppm) 175.6 (C4), 174.6 (C6), 172.2 (C10), 135.7 (C17), 133.9 (C20), 128.6 (C19), 67.1 (C11), 61.9 (C2), 61.2 (C8), 55.3 (C7), 50.1 (C3), 24.9 (C13), 23.9 (C9), 14.1 (C12). IR (ATR, cm⁻¹) vmax: 3342.9 (N-H); 2990.3 (-CH); 1743.5 (O=C-CH₂CH₃); 1692.8 (O=C-NPh); 1600.1 (C=C); 1384.0 (C-O). MS (DART): m/z: 351.7990 [M+1]. HRMS (DART): calc. for C17H19ClN2O4 [M+] 350.1033; found 351.1107 [M+1].

(±)- ethyl (2*S*,3*S*,4*S*,5*R*)-3,4-dibenzoil-5-(4-clorophenyl)-2-methylpirrolidin-2-carboxylate
(11). Solid white (45 %). NMR ¹H (300 MHz, CDCl₃) δ(ppm) 8.10-8.07 (*d*, *J*= 8.3 Hz, 2H, H13), 7.59 (*m*, 3H, H19, H18), 7.32-7.26 (*m*, 2H, H22), 7.04 (*s*, 4H, H12, H17), 5.16–5.0 (*m*, 3H, H5, H9), 4.16–4.05 (*m*, 1H, H3), 3.9–3.86 (*m*, 1H, H4), 3.17 (*s*, 1H, NH), 3.0 (*s*, 3H, H6) 1.0-0.95 (*t*, *J*= 7.2 Hz, 3H, H10). NMR ¹³C (75.0 MHz, CDCl₃) δ (ppm) 198.8 (C20), 198.5 (C15),

174.8 (C7), 138.1 (C21), 138.0 (C16), 137.1 (C11), 133.4 (C14), 133.3 (C13), 133.1 (C22), 129.0 (C17), 128.6 (C18), 128.4 (C24), 128.3 (C23), 128.2 (C19), 67.8 (C3), 63.4 (C2), 61.8 (C5), 56.7 (C4), 54.8 (C9), 21.9 (C6), 13.6 (C10).

(±)- ethyl (2*S*,3*R*,4*R*,5*R*)-3,4-dibenzoil-5-(4clorophenyl)-2-methylpirrolidin-2-carboxylate

(11). Solid white (40 %). NMR ¹H (300 MHz, CDCl₃) δ (ppm) 7.93-7.91 (*d*, *J*= 7.1 Hz 2H, H13), 7.57-7.54 (*m*, 3H, H19, H18), 7.47-7.39 (*m*, 5H, H22, H23, H24), 7.27-7.19 (m, 4H, H12, H17) 4.71–4.69 (*d*, *J*=

7.3 Hz, 1H, H5), 4.56–4.48 (q, J= 6.3 Hz, 2H, H9), 4.08–3.98 (m, 1H, H4), 3.92-3.88 (m, 1H, H3), 1.72 (s, 3H, H6) 1.03-0.98 (t, J= 7.1 Hz, 3H, H10). NMR ¹³C (75.0 MHz, CDCl₃) δ (ppm) 200.3 (C20), 199.6 (C15), 173.6 (C7), 138.4 (C21), 137.0 (C16), 136.3 (C11), 133.8 (C14), 133.6 (C13), 129.0 (C22), 128.7 (C17), 128.7 (C18), 128.4 (C24), 70.6 (C3), 66.7 (C2), 61.7 (C5), 60.6 (C4), 60.2 (C9), 20.3 (C6), 13.7 (C10).

12. NMR spectra of the compounds synthesized.

Figure S6. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound 2a

Figure S7. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 2a

Figure S8. ¹H NMR Spectrum (300 MHz, CDCl₃) of compound 2b.

Figure S10. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 2b

Figure S12. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound 2c

Figure S16. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 2d

Figure S18. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 3a

Figure S22. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 3c

Figure S24. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 3d

Figure S26. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound 4a

Figure S27. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound 4a

Figure S28. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 4a

Figure S30. ERSM Spectrum (MALDI-TOF) of compound 4a

Figure S31. ¹H NMR Spectrum (300 MHz, CDCl₃) of compound 4b

Figure S32. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound 4b

Figure S33. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound 4b

-11.53

Figure S34. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 4b

Figure S36. ERSM Spectrum (MALDTI-TOF) of compound 4b

Figure S40. ³¹P NMR Spectrum (121.5 MHz, CDCl₃) of compound 4c

Figure S42. ERSM Spectrum (MALDI-TOF) of compound 4c

Figure S44. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound 4d

Figure S48. ERSM Spectrum (MALDI-TOF) of compound 4d

Figure S50. ¹³C NMR Spectrum (100 MHz, CDCl₃) of compound (±) 7a

Figure S51. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 7a

Figure S52. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 7a

Figure S54. ERSM Spectrum (DART+) of compound (\pm) 7a

Figure S56. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 7b

Figure S57. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 7b

Figure S58. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 7b

Figure S60. ERSM Spectrum (DART+) of compound (±) 7b

f1 (ppm)

Figure S62. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 7c

Figure S64. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 7c

Figure S66. ERSM Spectrum (DART+) of compound (±) 7c

Figure S68. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 7d

Figure S69. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 7d

Figure S70. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 7d

Figure S72. ERSM Spectrum (DART+) of compound (±) 7d

-0.85

m/z

420.0

Possible Formula

¹²C₂₁¹H₂₀³⁵Cl₁¹⁴N₂¹⁶O₅

418.10545 417.68892 418.44977 419.11304

418.0

Mass Difference (ppm)

417.10587

-0 :

Mass Difference (mmu)

416.11586

416.0

Calc. Mass

415,1060

50 -

0-

Mass

415.10572

Intensity

62259.8

0

424.0

7d

422.0

12.5

Unsaturation Number

Figure S74. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 7e

Figure S75. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 7e

Figure S76. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 7e

Figure S77. IR Spectrum of compound (±) 7e

Figure S78. ERSM Spectrum (DART+) of compound 7e

Figure S81. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 7f

Figure S82. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 7f

Figure S84. ERSM Spectrum (DART+) of compound (±) 7f

Figure S86. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 7g

Figure S88. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 7g

Figure S90. ERSM Spectrum (DART+) of compound (\pm) 7g

Figure S92. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 7h

Figure S93. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 7h

Figure S94. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 7h

Figure S96. ERSM Spectrum (DART+) of compound (±) 7h

Figure S98. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 7i

Figure S99. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 7i

Figure S100. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 7i

Figure S102. ERSM Spectrum (DART+) of compound (\pm) 7i

Figure S104. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 9

Figure S105. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 9

Figure S106. HMBC NMR Spectrum (300 MHz, CDCl₃) of compound (\pm) 9

Figure S108. ERSM Spectrum (DART+) of compound (±) 9

Figure S110. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 11 endo

Figure S111. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 11 endo

Figure S112. ¹H NMR Spectrum (300 MHz, CDCl₃) of compound (±) 11 exo

Figure S113. ¹³C NMR Spectrum (75 MHz, CDCl₃) of compound (±) 11 exo

Figure S114. HMQC NMR Spectrum (300 MHz, CDCl₃) of compound (±) 11 exo

Figure S117. nOe NMR Spectrum (300 MHz, CDCl₃) of compound (±) 11

13. UV-Vis Spectroscopy.

Figure S118. UV/Vis Spectrum in CH₂Cl₂ of compound 2a

Figure S119. UV/Vis Spectrum in CH₂Cl₂ of compound 2a

Figure S120. Graph of the absorption maxima of the compound 2a

Figure S121. Graph of the absorption maxima of the compound 2a

Figure S122. UV/Vis Spectrum in CH₂Cl₂ of compound 2b

Figure S123. UV/Vis Spectrum in CH₂Cl₂ of compound 2b

Figure S124. Graph of the absorption maxima of the compound 2b

Figure S125. UV/Vis Spectrum in CH₂Cl₂ of compound 2c

Figure S126. UV/Vis Spectrum in CH₂Cl₂ of compound 2c

Figure S127. Graph of the absorption maxima of the compound 2c

Figure S128. Graph of the absorption maxima of the compound 2c

Figure S129. UV/Vis Spectrum in CH₂Cl₂ of compound 2d

Figure S130. UV/Vis Spectrum in CH2Cl2 of compound 2d

Figure S131. Graph of the absorption maxima of the compound 2d

Figure S132. UV/Vis Spectrum in CH₂Cl₂ of compound 4a

Figure S133. UV/Vis Spectrum in CH₂Cl₂ of compound 4a

Figure S134. Graph of the absorption maxima of the compound 4a

Figure S135. Graph of the absorption maxima of the compound 4a

Figure S136. UV/Vis Spectrum in CH₂Cl₂ of compound 4b

Figure S137. UV/Vis Spectrum in CH₂Cl₂ of compound 4b

Figure S138. Graph of the absorption maxima of the compound 74b

Figure S139. UV/Vis Spectrum in CH₂Cl₂ of compound 4c

Figure S140. UV/Vis Spectrum in CH₂Cl₂ of compound 4c

Figure S141. Graph of the absorption maxima of the compound 4c

Figure S142. V/Vis Spectrum in CH₂Cl₂ of compound 4d

Figure S143. UV/Vis Spectrum in CH₂Cl₂ of compound 4d

Figure S144. Graph of the absorption maxima of the compound 4d

Figure S145. UV/Vis spectra of compounds 2a-d acquired in CH₂Cl₂

Figure S146. UV/Vis spectra of compounds 4a-d acquired in CH₂Cl₂

Figure S147. UV/Vis spectra of compounds 2a and 4a, acquired in CH₂Cl₂

Figure S148. UV/Vis spectra of compounds 2b and 4b, acquired in CH₂Cl₂

Figure S149. UV-vis spectra of compounds 2c and 4c, acquired in CH₂Cl₂

Figure S150. UV-vis spectra of compounds 2d and 4d, acquired in CH₂Cl₂

Figure S151. UV-vis spectra of compounds 2a-d and 4a-d, acquired in CH₂Cl₂

14. Follow-up of the 1,3-dipolar cycloaddition by 31P NMR

Figure S152. Follow-up of the 1,3-dipolar cycloaddition catalyzed for 4a by ³¹P NMR in CD₂Cl₂

Figure S153. UV-visible spectra of 4a in different ratios of CH₂Cl₂/EtOH

15. Theoretical data

Figure S154. QTAIM molecular graph of the interaction between specie C and the maleimide. The density at the bond critical point (red) and the delocalization indices between the atoms liked by the bond paths (black) are shown for the intermolecular interactions.

Figure S155. Intermolecular RDG surface of the interaction between specie C and the maleimide. The $sign(\lambda_2)\rho$ is plotted over the isosurface. $sign(\lambda_2)\rho$ color code: $\leq -5.0 \times 10^{-2}$ a.u. (dark blue), 0.0 a.u. (green) and $\geq 5.0 \times 10^{-2}$ a.u. (red).