Supporting information

Mitochondria-targeted ruthenium(II) complexes for photodynamic therapy and GSH detection in living cells

Wanqing Zhang, Weibin Chen, Fengfu Fu, Mei-Jin Li *

Materials and chemicals

The chemicals used were purchased from commercial suppliers and used directly without purification. 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA), 1,3-Diphenylisobenzofuran (DPBF) and N-methylmaleimide (NEM) were purchased from Adamas Chemical Co. Cysteine (Cys), homocysteine (Hcy) and selenium oxide (SeO₂) were purchased from Alfa Aesar Chemical Co. Glutathione (GSH) and Glutathione oxydized (GSSG) were purchased from Acros Organics. Ammonium hexafluorophosphate (NH₄PF₆) and arginine hydrochloride (Arg), methionine (Met), phenylalanine (Phe), tryptophan (Trp), threonine (Thr), valine (Val), leucine (Leu), histidine hydrochloride (His), isoleucine (Ile), lysine hydrochloride (Lys) were purchased from Sigma-Aldrich. Homocysteine (Hcy) was purchased from Tokyo Chemical Industry (TCL). CCK-8 was purchased from MedChemExpress LLC (China). MitoTracker Green FM was purchased from Next Sense Biotechnology (Shanghai) Co. Phosphate buffered saline (PBS) was purchased from Cellmax Chemical Co. 4,4-Dimethyl-2,2-bipyridine, RuCl₃ was purchased from Aladdin Reagent Co. 4-Methyl-2,2-bipyridine-4-carboxaldehyde and Ru(bpy)₂Cl₂ were synthesized according to previously reported methods.¹ All other chemical reagents were of analytical grade and used directly without treatment.

Instruments

¹H NMR and ¹³C NMR spectra were measured by JEOL (500 MHz) with

^{*} Corresponding author. *E-mail address: mjli@fzu.edu.cn*

Me₄Si as internal standard. High resolution mass spectra (ESI-MS) were measured on a Thermo Finnigan DECAV-30000LCQ Deca XP mass spectrometer. Photoluminescence (PL) spectra and UV-visible absorption spectra were obtained on an Edinburgh FS5 EVOLUTION 220 and UV-visible spectrophotometer tests, and lifetimes were measured with an Edinburgh FLS920 spectrofluorometer. Crystal X-ray diffraction data were collected by a Bruker SMART diffractometer.

Cytotoxicity

Calculation formula for cell viability:

Cell viability (%) = $[(As-Ab) / (Ac-Ab)] \times 100\%$.

Where As: absorbance of experimental wells (with cells and complexes); Ac: absorbance of control group (with cells);

Ab: absorbance of blank group (without cells and complexes).

Synthesis

Fig. S1 ¹H NMR (500 MHz, CDCl₃) spectrum of ligand 1.

Fig. S5(a) ¹H NMR (500 MHz, methanol- d_4) spectrum of Ru-1.

Fig. S5(b) 13 C NMR (151 MHz, methanol- d_4) spectrum of Ru-1.

Fig. S6 ESI-MS of Ru-1 in aqueous solution at room temperature: $m/z=326.0753 \{M-Cl_2\}^{2+}$.

Fig. S7(a) ¹H NMR (500 MHz, Methanol- d_4) spectrum of Ru-2.

Fig.S7(b) ¹³C NMR (151 MHz, Methanol- d_4) spectrum of **Ru-2**.

Fig. S8 ESI-MS of Ru-2 in aqueous solution at room temperature: $m/z=382.0910 \{M-Cl_2\}^{2+}$.

Complex	Ru-1	Ru-2	
Identification code	[Ru(bpy) ₂ ligand1](PF ₆) ₂	[Ru(bpy) ₂ ligand2](PF ₆) ₂	
Empirical formula	$C_{37.1}H_{38.4}F_{12}N_6O_{3.1}P_2Ru$	$C_{44}H_{36.4}F_{12}N_6O_{2.2}P_2Ru$	
Formula weight	1008.95	1075.40	
Temperature/K	296.15	296.15	
Crystal system	triclinic	triclinic	
Space group	P-1	P-1	
a/Å	10.8450(6)	9.9020(17)	
b/Å	11.8133(7)	12.910(2)	
c/Å	17.1597(9)	18.288(3)	
α/°	86.824(2)	88.353(5)	
β/°	82.482(2)	74.769(5)	
$\gamma/^{\circ}$	73.339(2)	87.246(5)	
Volume/Å ³	2087.7(2)	2252.8(7)	
Z	2	2	
$\rho_{cal.}g/cm^3$	1.605	1.585	
μ/mm^{-1}	0.551	0.515	
F(000)	1020.0	1084.0	
Crystal size/mm ³	$0.16 \times 0.14 \times 0.1$	$0.18 \times 0.15 \times 0.1$	
Radiation	$MoK\alpha(\lambda = 0.71073)$	MoK $\alpha(\lambda = 0.71073)$	
2Θ range for data collection/°	3.6 to 50.172	3.882 to 50.336	

Table S1 Crystallographic data ang structural refinement data

Index ranges	$-12 \le h \le 12, -14 \le k \le 14,$	$-11 \le h \le 11, -15 \le k \le 15,$	
	$-20 \le 1 \le 20$	$-21 \le 1 \le 21$	
Reflections collected	53627	60521	
Independent reflections	7388 [$R_{int} = 0.0305$,	8056 [R _{int} =0.0577,	
	$R_{sigma} = 0.0201$]	$R_{sigma} = 0.0384$]	
Data/restraints/parameters	7388/465/575	8056/25/597	
Goodness-of-fit	1.042	1.141	
on F ²	1.042		
Final R indexes	$\mathbf{P} = 0.0522 \dots \mathbf{P} = 0.1277$	$R_1 = 0.0644, wR_2 = 0.1667$	
[I>=2σ (I)]	$R_1 = 0.0532, WR_2 = 0.1277$		
Final R indexes [all data]	$R_1 = 0.0602, wR_2 = 0.1353$	$R_1 = 0.1112, wR_2 = 0.2204$	

Table S2 Selected bond lengths (Å) and angles (°) for Ru-1 and Ru-2

Ru-1		Ru-2	
Ru1-N4	2.060(3)	Ru1-N5	2.037(5)
Ru1-N2	2.059(3)	Ru1-N3	2.053(5)
Ru1-N5	2.055(3)	Ru1-N4	2.049(5)
Ru1-N1	2.061(3)	Ru1-N6	2.061(5)
Ru1-N3	2.064(3)	Ru1-N2	2.062(5)
Ru1-N6	2.052(3)	Ru1-N1	2.061(5)
C32-C33	1.328(7)	C32-C33	1.304(9)
O1-C34	1.217(7)	O1-C34	1.220(8)
N2-Ru1-N1	78.91(13)	N5-Ru1-N4	78.22(19)
N5-Ru1-N6	78.83(13)	N1-Ru1-N2	79.0(2)
N3-Ru1-N4	78.64(13)	N3-Ru1-N6	78.65(18)

Sensing of GSH by complexes

Fig. S9 (a) and (b) The photostability of **Ru-1** (10 μ M) and **Ru-2** (10 μ M) in aqueous solution by UV-visible absorption, respectively; (c) and (d) The stability of **Ru-1** (10 μ M) and **Ru-2** (10 μ M) in aqueous solution by UV-visible absorption, respectively.

Fig. S10 (a) Variation of luminescence intensity of **Ru-1** (10 μ M) and GSH (0-40 eq.). (b) Linear plot of **Ru-1** (10 μ M) GSH (0-60 μ M); (c) Variation of luminescence intensity of **Ru-2** (10 μ M) and GSH (0-40 eq.); (d) linear plot of **Ru-2** (10 μ M) and GSH (0-30 μ M).

Fig. S11 (a) and (b) Luminescence plots of Ru-1 and Ru-2 (10 μ M) in the presence of GSH at molar ratios of 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 and 0.2, respectively. Phosphate buffer (10 mM, pH = 7.4), Ru-1 (λ_{ex} = 435 nm, λ_{em} = 635 nm), Ru-2 (λ_{ex} = 425 nm, λ_{em} = 635 nm).

Fig. S12 (a) and (b) Luminescence plots of Ru-1 and Ru-2 (10 μ M) against GSH (100 μ M) and other amino acids (100 μ M); Phosphate buffer (10 mM, pH = 7.4), Ru-1 (λ_{ex} = 435 nm, λ_{em} = 635 nm), Ru-2 (λ_{ex} = 425 nm, λ_{em} = 635 nm).

Mechanism

Fig. S13 Reaction of Ru-1 with GSH in aqueous solution.

Fig. S14 ESI-MS of Ru-1+GSH in aqueous solution at room temperature.

Fig. S15 1 H NMR (500 MHz, D₂O-*d*) spectrum of (a) Ru-1 and (b) Ru-1+GSH.

Singlet oxygen

$$\Phi_{T} = \Phi_{ref} \cdot S_{T} \cdot F_{ref} / (S_{ref} \cdot F_{t})$$

Where, the subscript T denotes the substance to be measured, and ref denotes the reference $\text{Ru}(\text{bpy})_3^{2+}$ ($\Phi_{\text{ref}}=0.56$, in CH₃CN). S represents the slope of the linear fit with irradiation time as X and the change in absorbance of DPBF at 413 nm as Y.

F: Absorption correction factor; OD: Absorbance value of the co-ordinate at 450 nm.

Fig. S16 (a) Absorption spectra of (a) **Ru-1** (20 μ M) and (b) **Ru-2** (20 μ M) with DPBF (50 μ M) irradiated at 450 nm in acetonitrile solution; (c) Changes in the absorbance at 413 nm of **Ru-1**, **Ru-2** and Ru(bpy)₃²⁺ with DPBF irradiated at 450 nm in acetonitrile.

Fig. S17 Changes in the absorbance at 400 nm of $\text{Ru}(\text{bpy})_3^{2+}(10 \ \mu\text{M})$, **Ru-2** (10 μM) and **Ru-2** (10 μM) +GSH (20eq. of complex) with ABDA (60 μM) irradiated at 450 nm in H₂O.

Complex	Cell lines	Dark	Irradiation	PI	references
	HeLa	100	81.3	1.2	2
	HeLa	100	18.2	5.5	2
OHC N N N N N N N N N N N N N N N N N N N	HeLa	31.3	3.8	8.24	3
	HeLa	$77.48 \pm \\ 0.68$	12.05± 0.33	6.4	4
	HeLa	52.1± 2.7	18.4 ± 1.1	2.8	4
	HeLa	65.3 ± 1.4	15.8 ± 1.5	4.1	4
	HeLa	42.2± 4.1	4.66± 0.40	9.1	4
$ \begin{bmatrix} \begin{pmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$	HeLa	100	21.4 ± 1.7	4.7	5

Table S3 IC₅₀ and PI values of the complexes reported in the literature for different cell lines

Fig. S18 (a) Merged image of co-localised fluorescence imaging of HeLa cells with Ru-2 (30 μ M) and Mito-tracker Green (250 nM); (b) Intensity profiles of regions of interest (ROI) across HeLa cells.

References

1 M.-J. Li, C.-Q. Zhan, M.-J. Nie, G.-N. Chen, X. Chen, J. Inorg. Biochem. 2011, 105, 420-425.

2 J. Karges, F. Heinemann, F. Maschietto, M. Patra, O. Blacque, I. Ciofini, B. Spingler, G. Gasser, *Bioorg. Med. Chem.*, 2019, **27**, 2666-2675.

3 P. Yang, S. Q. Zhang, K. Wang, H. L. Qi, Dalton Transactions 2021, 50, 17338-17345.

4 X. Liu, G. Li, M. J. Xie, S. Guo, W. L. Zhao, F. Y. Li, S. J. Liu, Q. Zhao, Dalton

Trans., 2020, 49, 11192-11200.

5 S. Q. Zhang, T. T. Meng, J. Li, F. Hong, J. Liu, Y. J. Wang, L. H. Gao, H. Zhao, K. Z. Wang, *Inorg. Chem.*, 2019, **58**, 14244-14259.

6 G. L. He, N. Xu, H. Y. Ge, Y. Lu, R. Wang, H. X. Wang, J. J. Du, J. L. Fan, W. Sun, X.J. Peng, ACS Appl. Mater. Interfaces, 2021, 13, 19572-19580.

7 L. Wei, X. D. He, D. M. Zhao, M. Kandawa-Shultz, G. Q. Shao, Y. H. Wang, *Eur. J. Med. Chem.*, 2024, **264**,115985.