One-pot hydrothermal synthesis of noble-metal-free NiS on Zn_{0.5}Cd_{0.5}S nanosheets photocatalysts for high H₂ evolution from water under visible

light.

Linfen Yang ^{a, b}, Yong Peng ^{a, b*} and Yuhua Wang ^{c*}

^a Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China

^b School of Materials and Energy, or Electron Microscopy Centre of Lanzhou University,

Lanzhou, 730000, China

^c School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China

*Corresponding author: Prof. Yong Peng, or Prof. Yuhua Wang.

Tel: +86-931-8912772; Fax: +86-931-8913554

E-mail address: pengy@lzu.edu.cn, or wyh@lzu.edu.cn

Fig. S1. Schematic illustration of the fabrication process of ZCS/NS.

Fig. S2. Schematic diagram of formation of nanosheets in hexagonal crystal system.

Table S1.	The relative	e intensity of	f different crystal	faces in Zn0.5	5Cd0.5S sample and	d its PDF card
		~	2		1	

Crystal faces	(100)	(002)	(101)
Relative intensity of PDF card	78.5	51.4	100
Relative intensity of Zn _{0.5} Cd _{0.5} S	73	144	85

Crystal plane	(100)	(002)	(101)
Relative intensity ratios of PDF card	0.785	0.514	1
Relative intensity of ratios Zn _{0.5} Cd _{0.5} S	0.86	1.694	1

Table S2. The relative intensity ratios of (101)/(100), (101)/(002) and (101)/(101) in Zn0.5Cd0.5Ssample and its PDF card

Fig. S3. (a) TEM image of ZCS-NS-5 composites. (b-f) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and the elemental mappings of ZCS-NS-5

composites.

 Table S3. The measured ICP concentration and the calculated mass and molar ratio of metal ions

 contained in ZCS/NS-5.

Metal ion	C1(mg/L)	C2(mg/L)	m(mg)	n(Mmol)	Practical Ni/(Cd+Mn) molar ratio
Zn	52.75	51.76	2.77	0.042	
Cd	88.72	89.36	4.72	0.0424	4.86%
Ni	4.631	4.417	0.24	0.0041	

Table S4 Performance comparison of typical sulfide based photocatalysts.

Photocatalyst	Light source	Sacrificial reagent	Catalyst dosage (mg)	morphology	H_2 evolution (mmol $g^{-1} h^{-1}$)	Ref.
$MS/Cd_{0.4}Zn_{0.4}S(M = Mo,$ Cu, Pd)	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	50	nanoparticles	1.2	S1
$1 wt\% Pt/ Cd_{0.4}Zn_{0.4}S$	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	50	nanoparticles	1.21	S1
Cd _{0.2} Zn _{0.8} S@UiO-66-NH ₂	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	50	nanoparticles	5.85	S2
$Cu_2S/Zn_{0.5}Cd_{0.5}S$	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	100	nanoparticles	4.92	83
$CuS/Cd_{0.3}Zn_{0.7}S$	high-pressure mercury lamp(λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	50	nanoparticles	3.52	S4
$p\text{-}Cu_2S/n\text{-}Zn_xCd_{1-x}S$	solar simulator	Na ₂ S-Na ₂ SO ₃	50	nanoparticles	0.87	S5

Photocatalyst	Light source	Sacrificial reagent	Catalyst dosage (mg)	morphology	H_2 evolution (mmol $g^{-1} h^{-1}$)	Ref.
Cu ₂ (OH) ₂ CO ₃ /Zn _{0.5} Cd _{0.5} S	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	50	nanoparticles	5.51	S6
$CuS/Zn_{0.8}Cd_{0.2}S$	300 W Xe lamp(λ≥400nm)	Na ₂ S-Na ₂ SO ₃	200	nanoparticles	2.79	S7
$MoS_2\!/Zn_{0.5}Cd_{0.5}S\!/g\!\!-\!C_3N_4$	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	100	particles	4.91	S8
CoFe ₂ O ₄ /Cd _{0.9} Zn _{0.1} S	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	100	nanorods	3.5	S9
Zn _{0.5} Cd _{0.5} S-OLC	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	30	nanosheets	10.8	S10
$Zn_{0.7}Cd_{0.3}S/NiWO_4$	5 W LED (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	10	nanosheets	15.95	S11
AuPd/ Cd _{0.5} Zn _{0.5} S	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	50	spheres	3.65	S12
Bi ³⁺ -doped Cd _{0.5} Zn _{0.5} S	high-pressure mercury lamp(λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	100	particles	0.56	S13
$MoS_2/Cd_{0.8}Zn_{0.2}S$	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	35	urchin-like	1.3	S14
Zn _{0.1} Cd _{0.9} S/NiS	300 W Xe lamp (λ > 300 nm)	glucose	10	nanorods	12.7	S15
NiS modified Mn _x Cd _{1-x} S	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	50	nanoparticles	8.39	S16
1wt%Pt/Ni _{0.01} Mn _{0.56} Cd _{0.43} S	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	200	nanoparticles	0.33	S17
Cu ₂ S/CdS	300 W Xe lamp ($\lambda > 420 \text{ nm}$)	Na ₂ S-Na ₂ SO ₃	200	polyhedrons	2.0	S18

Photocatalyst	Light source	Sacrificial reagent	Catalyst dosage (mg)	morphology	H_2 evolution (mmol $g^{-1} h^{-1}$)	Ref.
CdS/NiTiO ₃ /CoS	300 W Xe lamp (λ≥420 nm)	lactic acid	50	nanoflakes	6.24	S19
NiS/TiO ₂	300 W Xe lamp (λ > 300 nm)	methanol	50	nanosheets	0.31	S20
Co(OH) ₂ /CdS	500 W Xe lamp	ethanol	100	nanorods	0.061	S21
NiS/CDs/CdS	350 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	100	spheres	1.44	S22
$Cd_{0.5}Zn_{0.5}S/BiVO_4$	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	certain amounts	spheres	2.35	S23
Cd _{0.5} Zn _{0.5} S	300 W Xe lamp (λ≥420 nm)	AgNO ₃ , benzoquinone and EDTA- 2Na	50	dendritic	0.15	S24
Mo doped Cd _{0.5} Zn _{0.5} S	300 W Xe lamp (λ≥420 nm)	lactic acid	20	nanorods	11.32	S25
$NiS_x\!/\operatorname{Cd}_{0.5}Zn_{0.5}S$	300 W Xe lamp (λ≥430 nm)	Na ₂ S-Na ₂ SO ₃	100	nanorods	4.46	S26
SiO ₂ /Ni ₂ P/rGO/Cd _{0.5} Zn _{0.5} S	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	30	yolk-shell	11.65	S27
PtPd decorated Zn _{0.5} Cd _{0.5} S	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	50	nanorods	9.689	S28
$Cd_{0.5}Zn_{0.5}S@Bi_2Fe_4O_9$	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	20	quantum dots	0.8	S 29
Co _{0.85} Se/Cd _{0.5} Zn _{0.5} S	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	100	nanorods	0.76	S30

Photocatalyst	Light source	Sacrificial reagent	Catalyst dosage (mg)	morphology	H_2 evolution (mmol $g^{-1} h^{-1}$)	Ref.
$Cd_{0.5}Zn_{0.5}S@C_{3}N_{4}$	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	20	quantum dots	33.4	S31
p-CuS/n-CdS	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	20	nanoparticles	7	S32
CoO _x -loaded TiO ₂ /CdS	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	10	nanoparticles	0.66	S33
CuS/ZnS	300 W Xe lamp (λ≥400 nm)	Na ₂ S-Na ₂ SO ₃	50	hexagonal plates	1.23	S34
Ni-doped ZnS	300 W Xe lamp (λ≥420 nm)	Na ₂ S-K ₂ SO ₃	1000	particles	0.28	S35
Cu-doped ZnIn ₂ S ₄	300 W Xe lamp (λ≥430 nm)	Na ₂ S-Na ₂ SO ₃	200	microspheres	0.76	S36
MoS_2 -graphene/ $ZnIn_2S_4$	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	50	microspheres	4.17	S37
$CdIn_2S_4$	450 W Xe lamp (λ≥420 nm)	methanol	50	nanotubes	6.96	S38
Zn _{0.5} Cd _{0.5} S/NiS	300 W Xe lamp (λ≥420 nm)	Na ₂ S-Na ₂ SO ₃	50	nanosheets	9.98	This work

- J. Wang, B. Li, J. Chen, N. Li, J. Zheng, J. Zhao and Z. Zhu, *Applied Surface Science*, 2012, 259, 118-123.
- S2. Y. Su, Z. Zhang, H. Liu and Y. Wang, *Applied Catalysis B: Environmental*, 2017, **200**, 448-457.
- S3. Y. Tang, D. Zhang, X. Pu, B. Ge, Y. Li and Y. Huang, *Journal of the Taiwan Institute of Chemical Engineers*, 2019, **96**, 487-495.
- S4. D. V. Markovskaya, S. V. Cherepanova, A. A. Saraev, E. Y. Gerasimov and E. A. Kozlova, *Chem. Eng. J.*, 2015, **262**, 146-155.
- S5. C.-C. Wang, J.-W. Chang and S.-Y. Lu, *Catalysis Science & Technology*, 2017, **7**, 1305-1314.
- S6. Y. Liu, H. Ren, H. Lv, Z. Gong and Y. Cao, *Applied Surface Science*, 2019, **484**, 1061-1069.
- S7. L. Zhang, T. Jiang, S. Li, Y. Lu, L. Wang, X. Zhang, D. Wang and T. Xie, *Dalton transactions*, 2013, 42,

12998-13003.

- S8. Y. Tang, X. Li, D. Zhang, X. Pu, B. Ge and Y. Huang, *Materials Research Bulletin*, 2019, **110**, 214-222.
- S9. Z. Shao, T. Zeng, Y. He, D. Zhang and X. Pu, *Chem. Eng. J.*, 2019, **359**, 485-495.
- S10. T. Liu, Q. Li, S. Qiu, Q. Wang, X. Peng, H. Yuan and X. Wang, *Applied Surface Science*, 2020, **525**, 146586.
- S11. Y. Liu, G. Wang, Y. Li and Z. Jin, Journal of Colloid and Interface Science, 2019, 554, 113-124.
- S12. L. Wu, J. Gong, L. Ge, C. Han, S. Fang, Y. Xin, Y. Li and Y. Lu, *International Journal of Hydrogen Energy*, 2016, **41**, 14704-14712.
- S13. S. Peng, R. An, Y. Li, G. Lu and S. Li, International Journal of Hydrogen Energy, 2012, 37, 1366-1374.
- S14. A. Liu, P. Ling, G. Yu, H. Jin, S. Wang and J. Wang, International Journal of Hydrogen Energy, 2017,
 42, 18824-18831.
- S15. Y.-S. Shen, F.-Y. Bai, K. Wei, X.-L. Wang, J. Chen, Z.-Y. Jiang, J. Liu, Z.-Y. Hu, L.-H. Chen, Y. Li and B.-L.
 Su, Applied Surface Science, 2023, 626, 157237.
- S16. X. Liu, X. Liang, P. Wang, B. Huang, X. Qin, X. Zhang and Y. Dai, *Applied Catalysis B: Environmental*, 2017, **203**, 282-288.
- S17. M. Xiong, Y. Qin, B. Chai, J. Yan, G. Fan, F. Xu, C. Wang and G. Song, *Chemical Engineering Journal*, 2022, 428, 131069.
- S18. Y. Chen, Z. Qin, X. Wang, X. Guo and L. Guo, *RSC Advances*, 2015, **5**, 18159-18166.
- S19. Z. Wang, J. Peng, X. Feng, Z. Ding and Z. Li, *Catalysis Science & Technology*, 2017, **7**, 2524-2530.
- S20. Y. Xin, Y. Lu, C. Han, L. Ge, P. Qiu, Y. Li and S. Fang, *Materials Research Bulletin*, 2017, **87**, 123-129.
- X. Zhou, J. Jin, X. Zhu, J. Huang, J. Yu, W.-Y. Wong and W.-K. Wong, *Journal of Materials Chemistry A*, 2016, 4, 5282-5287.
- S22. R.-B. Wei, Z.-L. Huang, G.-H. Gu, Z. Wang, L. Zeng, Y. Chen and Z.-Q. Liu, *Applied Catalysis B:* Environmental, 2018, **231**, 101-107.
- S23. C. Zeng, Y. Hu, T. Zhang, F. Dong, Y. Zhang and H. Huang, *Journal of Materials Chemistry A*, 2018, **6**, 16932-16942.
- S24. S. Lin, Q. Wang, H. Huang and Y. Zhang, Small, 2022, 18.
- S25. W. Huang, C. Su, C. Zhu, T. Bo, S. Zuo, W. Zhou, Y. Ren, Y. Zhang, J. Zhang, M. Rueping and H. Zhang, *Angew. Chem. Int. Ed.*, 2023, **62**.
- S26. M. Liu, Y. Chen, J. Su, J. Shi, X. Wang and L. Guo, Nature Energy, 2016, 1.
- S27. P. Zhang, C. Xue, Y. Li, S. Guo, X. Zhang, P. Zhang and G. Shao, *Chemical Engineering Journal*, 2021, 404, 126497.
- S28. L. Zhang, F. Zhang, H. Xue, J. Gao, Y. Peng, W. Song and L. Ge, *Chinese Journal of Catalysis*, 2021, 42, 1677-1688.
- S29. H. Hua, F. Feng, M. Du, Y. Ma, Y. Pu, J. Zhang and X. a. Li, *Applied Surface Science*, 2021, 541, 148428.
- S30. X. Sun and H. Du, ACS Sustainable Chemistry & Engineering, 2019, **7**, 16320-16328.
- S31. L. Yao, D. Wei, Y. Ni, D. Yan and C. Hu, Nano Energy, 2016, 26, 248-256.
- S32. I. Vamvasakis, A. Trapali, J. Miao, B. Liu and G. S. Armatas, *Inorganic Chemistry Frontiers*, 2017, **4**, 433-441.

- S33. Z. Yan, H. Wu, A. Han, X. Yu and P. Du, International Journal of Hydrogen Energy, 2014, **39**, 13353-13360.
- S34. L. Wang, H. Chen, L. Xiao and J. Huang, *Powder Technol.*, 2016, **288**, 103-108.
- S35. A. Kudo and M. Sekizawa, *Chemical Communications*, 2000, DOI: 10.1039/b003297m, 1371-1372.
- S36.
- S37. Y.-J. Yuan, J.-R. Tu, Z.-J. Ye, D.-Q. Chen, B. Hu, Y.-W. Huang, T.-T. Chen, D.-P. Cao, Z.-T. Yu and Z.-G. Zou, *Applied Catalysis B: Environmental*, 2016, **188**, 13-22.
- S38. B. B. Kale, J. O. Baeg, S. M. Lee, H. Chang, S. J. Moon and C. W. Lee, *Adv. Funct. Mater.*, 2006, **16**, 1349-1354.