# **Supporting Information**

## Reduction of Nitrite to Nitric Oxide and Generation of Reactive Chalcogen Species by Mononuclear Fe(II) and Zn(II) Complexes of Thiolate and Selenolate

Sayan Atta, Amit Mandal, Rahul Saha, and Amit Majumdar\*

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.

\*Corresponding author email: icam@iacs.res.in

| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | number      |
| Experimental procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S10-S22     |
| <b>Table S1.</b> Unit cell parameters for $5^{Zn}(BF_4)_2$ obtained from different reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S23         |
| Table S2. Unit cell parameters for 1a <sup>Zn</sup> obtained from different reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S24         |
| <b>Table S3.</b> Unit cell parameters for $2^{Zn}$ obtained from different reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S24         |
| <b>Table S4.</b> Unit cell parameters for $3^{Zn}$ obtained from different reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S24         |
| <b>Table S5.</b> Unit cell parameters for $5^{\text{Fe}}(\text{BPh}_4)$ obtained from different reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S25         |
| <b>Table S6.</b> Unit cell parameters for $8^{\text{Fe}}$ obtained from different reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S26         |
| Table S7     Unit cell parameters for 19 <sup>Fe</sup> obtained from different reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S26         |
| Table S7. Onit cell parameters for 2 <sup>Fe</sup> obtained from different reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S26         |
| <b>Table S0.</b> Vields (GC) of products obtained by the transfer of reactive sulfur / selenium species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S20<br>S27  |
| (concreted insitu by calculated $Z_{\rm P}({\rm II})$ and $E_{\rm P}({\rm II})$ compounds and alemental sulfur/selenium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 527         |
| (generated institutory sciencied $Z_{11}(11)$ and $Fe(11)$ compounds and elemental sufficiencial science $A_{20}$ , $Z_{20}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 520         |
| <b>Table S10.</b> A-ray crystallographic data for compounds $1a^{-n}$ , $10^{-n}$ , $2^{-n}$ , $3^{-n}$ , $4^{-n}$ , $5^{-n}$ (BF4) <sub>2</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 528         |
| $\mathbf{O}^{\text{mand}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>GQQ</b>  |
| Table S11. X-ray crystallographic data for compounds $[a^{re}, 1b^{re}, 2^{re}, 5^{re}(BPh_4)_2$ and $8^{re}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S29         |
| Figure S1. <sup>1</sup> H NMR (300 MHz, DMSO-d <sup><math>\circ</math></sup> ) spectrum of [(Py2ald)Zn(SPh)] (1a <sup>2n</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$30        |
| Figure S2. <sup>15</sup> C NMR (75 MHz, DMSO-d <sup><math>6</math></sup> ) spectrum of [(Py2ald)Zn(SPh)] (1a <sup>2n</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S30         |
| Figure S3. <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$ (1b <sup>2n</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S31         |
| Figure S4. <sup>13</sup> C NMR (150 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$ (1b <sup>Zn</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S31         |
| Figure S5. <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S32         |
| Figure S6. <sup>13</sup> C NMR (151 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn(SePh)]$ ( $2^{Zn}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S32         |
| Figure S7. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Zn(ONO)] ( $3^{Zn}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S33         |
| Figure S8. <sup>13</sup> C NMR (150 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Zn(ONO)] (3 <sup>Zn</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S33         |
| Figure S9. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) spectrum of $[(Py2ald)Zn(Br)_2]$ (4 <sup>Zn</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S34         |
| Figure S10. <sup>13</sup> C NMR (150 MHz, CDCl <sub>3</sub> ) spectrum of [(Py2ald)Zn(Br) <sub>2</sub> ] (4 <sup>Zn</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S34         |
| Figure S11. <sup>1</sup> H NMR (600 MHz, DMSO- $d^6$ ) spectrum of [(Py2ald)Zn] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub> ( $5^{Zn}$ (BF <sub>4</sub> ) <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S35         |
| Figure S12. <sup>13</sup> C NMR (75 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Pv2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S35         |
| Figure S13. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Pv2ald)Zn(Br)]$ (6 <sup>Zn</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S36         |
| Figure S14. <sup>13</sup> C NMR (150 MHz DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn(Br)]$ (6 <sup>Zn</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S36         |
| Figure S15 <sup>1</sup> H NMR (600 MHz, CDCl <sub>2</sub> ) spectrum of $[(Py2ald)Zn(mnt)]$ (7 <sup>Zn</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S37         |
| Figure S15: If NMR (400 MHz, CD:OD) spectrum of $[(Py2ald)Zn(mnt)](7^{Z_{1}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S37         |
| Figure S10: If NVR (400 WHZ, CDC) spectrum of $[(1 y2ald)Zn(mnt)]$ (7).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S38         |
| Figure S17. C NVIX (150 WHIZ, CDCI3) spectrum $OI[(1 yZald)Zh(hhlt)](7)$ .<br>Figure S19. Mass spectrometric data (in MaCN) for $[(DyZald)Zh(hhlt)](7)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 536         |
| <b>Figure 516.</b> Mass spectrometric data (in MeCN) for $[(1 y2a(a)2h)_2(5 (514)_2)$ shows the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 338         |
| presence of [(Py2aid)Zh] (m/2: 410.0847, simulated data, orange me; 410.0846, observed data,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| green line).<br><b>E</b> $(10 \text{ M})$ $(11 \text{ M})$ | <b>G20</b>  |
| Figure S19. Mass spectrometric data (in MeCN) for $[(PyZaid)Fe]_2(BF4)_2(5^{\circ}(BF4)_2)$ shows the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 539         |
| presence of [(Py2ald)Fe]' (m/z: 402.0905, simulated data, orange line; 402.0904, observed data,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>G2</b> 0 |
| Figure S20. Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BPh_4)_2(5^{re}(BPh_4)_2)$ shows the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$39        |
| presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange line; 402.0902, observed data,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| Figure S21. IR spectra (ATR) of [(Py2ald)Zn(ONO)] ( $3^{2n}$ ) along with that of [(Py2ald)Zn] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S40         |
| $(5^{\mathbb{Z}n}(BF_4)_2)$ used as a control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| Figure S22. IR spectra (KBr pellet) of [(Py2ald)Zn(mnt)] ( $7^{Zn}$ ) shows v <sub>O-H (H-bonded)</sub> = 3485 cm <sup>-1</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S40         |
| $v_{\rm CN} = 2195 \text{ cm}^{-1} \text{ and } v_{\rm CHO} = 1652 \text{ cm}^{-1}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Figure S23. Electronic absorption spectroscopic signatures for the iron compounds in CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S41         |
| (0.25 mM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Figure S24. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Fe(SPh)] (1a <sup>Fe</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S41         |
| Figure S25. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Fe(SPh)] (1a <sup>Fe</sup> ), recorded in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S42         |
| coaxial NMR tube, with DMSO-d <sup>6</sup> inside. Inset shows a shift in the peak of DMSO-d <sup>6</sup> . Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| magnetic moment ( $\mu_{eff}$ ) = 4.63 BM (calculated spin only magnetic moment = 4.90 BM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| Figure S26. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Fe(SC_6H_4-2,6-Me_2)]$ (1b <sup>Fe</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S42         |
| Figure S27. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Fe(SC <sub>6</sub> H <sub>4</sub> -2,6-Me <sub>2</sub> )]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S43         |
| $(1b^{Fe})$ .recorded in a coaxial NMR tube, with DMSO-d <sup>6</sup> inside.Inset shows a shift in the peak of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| DMSO-d <sup>6</sup> . Solution magnetic moment ( $\mu_{eff}$ ) = 4.71 BM (calculated spin only magnetic moment =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 4.90 BM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| Figure S28. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Fe(SePh)] (2 <sup>Fe</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S43         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |

| Contents                                                                                                                                                                                                                 | Page   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                                                                                                                          | number |
| Figure S29. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Fe(SePh)] (2 <sup>Fe</sup> ) recorded in a                                                                                           | S44    |
| coaxial NMR tube, with DMSO-d <sup>6</sup> inside. Inset shows a shift in the peak of DMSO-d <sup>6</sup> . Solution                                                                                                     |        |
| magnetic moment ( $\mu_{eff}$ ) = 4.79 BM (calculated spin only magnetic moment = 4.90 BM).                                                                                                                              |        |
| Figure S30. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Fe]_2(BF_4)_2(5^{Fe}(BF_4)_2)$ .                                                                                                    | S44    |
| Figure S31. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Fe]_2(BF_4)_2$ (5 <sup>re</sup> (BF <sub>4</sub> ) <sub>2</sub> ) recorded                                                          | S45    |
| in a coaxial NMR tube, with DMSO-d <sup>6</sup> inside, inset shows a shift in the peak of DMSO-d <sup>6</sup> . Solution                                                                                                |        |
| magnetic moment ( $\mu_{eff}$ ) = 8.52 BM (calculated spin only magnetic moment = 8.94 BM).                                                                                                                              |        |
| Figure S32. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup><math>\circ</math></sup> ) spectrum of [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup><math>re</math></sup> (BPh <sub>4</sub> ) <sub>2</sub> ). | S45    |
| Figure S33. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup><math>0</math></sup> ) spectrum of [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>re</sup> (BPh <sub>4</sub> ) <sub>2</sub> ),                  | S46    |
| recorded in a coaxial NMR tube, with DMSO-d <sup>o</sup> inside, inset shows a shift in the peak of DMSO-                                                                                                                |        |
| d°. Solution magnetic moment ( $\mu_{eff}$ ) = 8.62 BM (calculated spin only magnetic moment = 8.94                                                                                                                      |        |
| BM(),                                                                                                                                                                                                                    | G4C    |
| Figure S34. 'H NMR (400 MHZ, DMSO-d') spectrum of [{(Py2aid)(ONO)Fe} <sub>2</sub> - $\mu_2$ -O] (8'').                                                                                                                   | S40    |
| Figure 5.5. 'H NMR (400 MHZ, DMSO-d') spectrum of [{(Py2aid)(ONO)Fe} <sub>2</sub> - $\mu_2$ -O] (OF) recorded in a capacital NMD type with DMSO definite inset shows a shift in the pack of                              | 54/    |
| $(6^{-1})$ , recorded in a coaxial NVIR tube, with DIVISO-d-inside, inset shows a shift in the peak of water Solution magnetic moment $(u, v) = 2.42$ PM (calculated only magnetic moment                                |        |
| water. Solution magnetic moment ( $\mu_{eff}$ ) – 2.45 BW (calculated spin only magnetic moment for only                                                                                                                 |        |
| two unpaired electron is 2.83)                                                                                                                                                                                           |        |
| <b>Figure S36</b> . Mass spectrometric data (in MeCN) for $[(Pv2ald)Zn]_2(BE_4)_2(5^{Zn}(BE_4)_2)$ obtained from                                                                                                         | S47    |
| the reaction of $[(Pv2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) with 1 equiv of $(Cn_2Fe)(BF_4)$ , shows the presence of                                                                                                         | 517    |
| $[(Pv2ald)Zn]^+$ (m/z: 410.0847, simulated data, orange line: 410.0845, observed data, green line).                                                                                                                      |        |
| Figure S37. <sup>1</sup> H NMR (300 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Pv2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$ obtained                                                                                             | S48    |
| from the reaction [(Pv2ald)Zn(SPh)] ( $1a^{Zn}$ ) with 1 equiv of (Cp <sub>2</sub> Fe)(BF <sub>4</sub> ).                                                                                                                | -      |
| Figure S38. GC-MS data for the identification and yield (31%) calculation of diphenyl disulfide                                                                                                                          | S48    |
| produced in the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with 1 equiv of (Cp <sub>2</sub> Fe)(BF <sub>4</sub> ).                                                                                                      |        |
| Figure S39. Mass spectrometric data (in MeCN) for [(Py2ald)Zn] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub> (5 <sup>Zn</sup> (BF <sub>4</sub> ) <sub>2</sub> ) obtained from                                             | S49    |
| the reaction of $[(Py2ald)Zn(ONO)]$ ( $3^{Zn}$ ) with 1 equiv of PhSH shows the presence of                                                                                                                              |        |
| [(Py2ald)Zn] <sup>+</sup> (m/z: 410.0847, simulated data, green line; 410.0844, observed data, purple line).                                                                                                             |        |
| Figure S40. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$ obtained                                                                                             | S49    |
| from the reaction of $[(Py2ald)Zn(ONO)]$ (3 <sup>2n</sup> ) with 1 equiv of PhSH.                                                                                                                                        | ~ ~ ~  |
| Figure S41. GC-MS data shows that no diphenyldisulfide was generated in the reaction of                                                                                                                                  | \$50   |
| [(Py2ald)Zn(ONO)] (3 <sup>2m</sup> ) with 1 equiv of NaSPh.                                                                                                                                                              | 850    |
| <b>Figure S42.</b> GC-IVIS data for the identification and yield (52%) calculation of dippenyidisuitide produced in the reaction of $[(Dy2old)/Tn(ONO)]$ ( $3^{Zn}$ ) with 1 equiv of PhSH                               | 550    |
| Figure S43 <sup>1</sup> H NMP ( $400$ MHz DMSO $d^6$ ) spectrum of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) obtained from                                                                                                         | \$51   |
| the reaction of $[(Py2ald)Zn(ONO)]$ ( $3^{Zn}$ ) with 2 equiv of PhSH                                                                                                                                                    | 551    |
| <b>Figure S44</b> GC-MS data for the identification and yield (38%) calculation of diphenyldisulfide                                                                                                                     | S51    |
| produced in the reaction of $[(Pv2ald)Zn(ONO)]$ ( $3^{Zn}$ ) with 2. equiv of PhSH.                                                                                                                                      | 551    |
| Figure S45. IR spectra of $[(TPP)Co(NO)]$ (v <sub>NO</sub> = 1696 cm <sup>-1</sup> ) generated by the trapping of NO gas                                                                                                 | S52    |
| (generated by the reaction of $[(Py2ald)Zn(ONO)]$ ( $3^{Zn}$ ) with PhSH, PhCH <sub>2</sub> SH and PhSeH) by                                                                                                             | -      |
| (TPP)Co <sup>II</sup> .                                                                                                                                                                                                  |        |
| <b>Figure S46.</b> <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) spectra of (TPP)Co <sup>II</sup> after trapping the NO gas generated                                                                                 | S53    |
| by the reaction of [(Py2ald)Zn(ONO)] ( <b>3</b> <sup>Zn</sup> ) with (a) 'BuSH (2 equiv), (b) PhCH <sub>2</sub> SH (2 equiv), (c)                                                                                        |        |
| PhSH (1 equiv), (d) PhSH (2 equiv) and (e) PhSeH (2 equiv).                                                                                                                                                              |        |
| Figure S47. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Zn(SePh)] (2 <sup>Zn</sup> ) obtained from                                                                                           | S54    |
| the reaction of $[(Py2ald)Zn(ONO)](3^{2n})$ with 2 equiv of PhSeH.                                                                                                                                                       |        |
| Figure S48. Gas chromatographic data for the identification and yield calculation (35%) of                                                                                                                               | S54    |
| diphenyldiselenide produced in the reaction of $[(Py2ald)Zn(ONO)](3^{2n})$ with 2 equiv of PhSeH.                                                                                                                        |        |
| Figure S49. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>o</sup> ) spectrum of $[(Py2ald)Zn]_2((BF_4)_2 (5^{2n}(BF_4)_2))$                                                                                                   | S55    |
| obtained from the reaction of $[(Py2ald)Zn(ONO)]$ ( $3^{2n}$ ) and 2 equiv of PhCH <sub>2</sub> SH.                                                                                                                      | 0.5.5  |
| Figure S50. Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2((BF_4)_2 (5^{cn}(BF_4)_2) obtained$                                                                                                                    | 822    |
| trom the reaction of [(Py2ald)Zn(ONO)] ( $5^{2m}$ ) and 2 equiv of PhCH <sub>2</sub> SH shows the presence of $[(D_2, 2, 1)]^{-1}$                                                                                       |        |
| [(ry2aid)Ln] (m/z: 410.084/, simulated data, green line; 410.0842, observed data, purple line).                                                                                                                          | 856    |
| <b>Figure 551.</b> Use chromatographic data for the identification and yield calculation of diherentiation of $[(D_1, 2_{-1})/2_{-1}(O_1, O_1)]$                                                                         | 220    |
| Vields: 32% (PhCH <sub>2</sub> S, SCH <sub>2</sub> Ph) 53% (unreaged DhCH <sub>2</sub> SH)                                                                                                                               |        |
| 10003.5270 (1 $100125-501121$ H), $5570$ (unicacity 1 $10012511$ ).                                                                                                                                                      |        |
|                                                                                                                                                                                                                          |        |

| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | number       |
| Figure S52. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>o</sup> ) spectrum of the unreacted [(Py2ald)Zn(ONO)] (3 <sup>2n</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S56          |
| obtained from the reaction of $3^{2n}$ with 2 equiv of 'BuSH. Note that the yield of NO in this reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Was only $9\%$ .<br><b>E</b> $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1$ | 0.57         |
| Figure S55. Cyclic voltammograms of $1a^{1/2}$ (a) $1b^{1/2}$ (b), $2^{1/2}$ (c), $5^{1/2}$ (d), and $8^{1/2}$ (e) in CH <sub>2</sub> Cl <sub>2</sub><br>(multiple scene, scene rate = 100 mV/scene). See Eigure S54 for the suclid voltammograms of $7\pi$ (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 557          |
| (multiple scans, scan rate = 100 m v/scan). See Figure S54 for the cyclic voltammograms of $Zn(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| Eigure S54 Cyclic voltammograms of $1e^{Zn}$ (a) $1b^{Zn}$ (b) $2^{Zn}$ (c) $5^{Zn}$ (d) and $3^{Zn}$ (e) in CH-Cl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$58         |
| Figure 554. Cyclic voltaminograms of ra (a) 10 (b), 2 (c), 5 (d), and 5 (c) in C112C12 (multiple scans, scan, rate = $100 \text{ mV/scan}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 338          |
| Figure \$55 Mass spectrometric data (in MeCN) for [(Pv2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$59         |
| from the reaction between $[(Pv2ald)Ee(SPh)]$ (1a <sup>Fe</sup> ) with 1 equiv of $(Cn_2Ee)(BE_4)$ in the presence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 657          |
| of NaBPh <sub>4</sub> shows the presence of $[(Pv2ald)Fe]^+$ (m/z 402 0905 simulated data orange line:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 402 0928 observed data green line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| <b>Figure S56.</b> Mass spectrometric data (in MeCN) for [(Pv2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S59          |
| from the reaction between $[(Pv2ald)Fe(SePh)](2^{Fe})$ with 1 equiv of $(Cp_2Fe)(BF_4)$ ) in the presence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| of NaBPh <sub>4</sub> , shows the presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange line;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 402.0872, observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| Figure S57. GC-MS data for the identification and yield (33%) calculation of diphenyl disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S60          |
| produced in the reaction of [(Py2ald)Fe(SPh)] (1a <sup>Fe</sup> ) with 1 equiv of (Cp <sub>2</sub> Fe)(BF <sub>4</sub> ) in the presence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| of NaBPh <sub>4</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| Figure S58. GC-MS data for the identification and yield (34%) calculation of diphenyl diselenide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S60          |
| produced in the reaction of [(Py2ald)Fe(SePh)] (2 <sup>Fe</sup> ) with 1 equiv of (Cp <sub>2</sub> Fe)(BF <sub>4</sub> ) in the presence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| of NaBPh <sub>4</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| Figure S59. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S61          |
| from the reaction of $[(Py2ald)Fe(S-C_6H_4-2,6-Me_2)]$ (1b <sup>Fe</sup> ) with 1 equiv of $(Cp_2Fe)(BF_4)$ in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| presence of NaBPh <sub>4</sub> , shows the presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| line; 402.0916, observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Figure S60. GC-MS for the identification and yield (33%) calculation of 1, 2-bis(2,6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S61          |
| dimethylphenyl)disulfide produced in the reaction of $[(Py2ald)Fe(S-C_6H_4-2,6-Me_2)]$ (1b <sup>re</sup> ) with 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| equiv of $(Cp_2Fe)(BF_4)$ in the presence of NaBPh4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G ( <b>2</b> |
| Figure S61. IR spectra of [(IPP)Co(NO)] ( $v_{NO} = 1696 \text{ cm}^{-1}$ ) obtained by the trapping of NO gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 862          |
| which was generated by the reaction of $[(Py2ald)Fe]_2(BF4)_2(5^{\circ}(BF4)_2)$ and $[(Py2ald)Fe(EPh)]$ (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| = 5, 1a <sup>1,</sup> , E = Se, 2 <sup>1,2</sup> ) with 4 and 3 equiv of $(Bu_4N)(NO_2)$ , respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5(2          |
| Figure So2. H NMR (400 MHZ, CDCl <sub>3</sub> ) spectra of (IPP)Co <sup>22</sup> after trapping the NO gas which was generated by the reaction of $[(Dr)2ald)Eal (DE)$ ( <b>F</b> <sup>f</sup> (DE)) and $[(Dr)2ald)Ea(EDb)] (E = S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 505          |
| was generated by the reaction of $[(Fy2aid)Fe]_2(DF4)_2(5^{-1}(DF4)_2)$ and $[(Fy2aid)Fe(DF1)](D = 5, 1e^{Fe} = 5e^{-2Fe})$ with 4 and 3 equiv of (Bu N)(NO <sub>2</sub> ) respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| <b>Figure S63</b> GC-MS data for the identification and yield (35%) calculation of dinbenyldisulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$64         |
| produced in the reaction of $[(Pv^2ald)Fe(SPh)]$ (1a <sup>Fe</sup> ) with 3 equiv of $(BuAN)(NO_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 504          |
| <b>Figure S64.</b> Gas chromatographic data for the identification and yield calculation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S64          |
| diphenyldiselenide (38%) produced in the reaction of [(Py2ald)Fe(SePh)] (2 <sup>Fe</sup> ) with 3 equiv of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 501          |
| $(Bu_4N)(NO_2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Figure S65. IR spectra (ATR) of [{(Py2ald)(ONO)Fe} <sub>2</sub> - $\mu_2$ -O] (8 <sup>Fe</sup> ) and the corresponding <sup>15</sup> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S65          |
| labelled compound, <b>8</b> <sup>Fe</sup> ( <sup>15</sup> NO <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Figure S66 Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S66          |
| from the reaction between [{(Py2ald)(ONO)Fe} <sub>2</sub> - $\mu_2$ -O] (8 <sup>Fe</sup> ) and 4 equiv of Cp <sub>2</sub> Co shows the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange line; 402.0870, observed data,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Figure S67. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S66          |
| from the reaction between [{(Py2ald)(ONO)Fe} <sub>2</sub> - $\mu_2$ -O] ( <b>8</b> <sup>Fe</sup> ) with 4 equiv of PhSH (in the presence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| of 2 equiv of NaBPh <sub>4</sub> ) shows the presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| line; 402.0913, observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Figure S68. Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BF_4)_2$ (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S67          |
| from the reaction between [{(Py2ald)(ONO)Fe} <sub>2</sub> - $\mu_2$ -O] (8 <sup>re</sup> ) with 4 equiv of PhSeH (in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| presence of 2 equiv of NaBPh <sub>4</sub> ) shows the presence of [(Py2ald)Fe] <sup>+</sup> (m/z:402.0905, simulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| data, orange line; $402.0934$ , observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0(0          |
| <b>Figure Soy.</b> IK spectra of $[(1PP)Co(NO)]$ ( $v_{NO} = 1696 \text{ cm}^{-1}$ ) obtained by the trapping of NO gas which was generated by the reserves $-61((PP)Co(NO)E_{-1}) = -01((PP)Co(NO)E_{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 568          |
| which was generated by the reaction of $[{(Py2aid)(ONO)Fe}_2-\mu_2-O](\delta^{**})$ with 4 and 6 equiv of DbEH (E - S Sa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| FILT ( $E = 3$ , $SC$ ).<br>Figure S70 <sup>1</sup> H NMR (400 MHz CDC <sup>12</sup> ) spectra of (TDD)Co <sup>II</sup> after transing the NO gas concreted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$60         |
| Figure 570. If NVIK (400 WILL, CDCD) spectra of (1FF)C0 <sup>-</sup> after trapping the NO gas generated<br>by the reaction of [{(Pv2ald)(ONO)Fe} <sub>2</sub> , $\mu_2$ -O] ( $\mathbf{R}^{Fe}$ ) with 4 and 6 equiv of PhEH (F = S Se)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 307          |
| by the reaction of [](1 y2ald)( $(0,10)$ ) $c_{12}-\mu_{2}-0$ ] ( <b>b</b> ) with $-4$ and $0$ equivior function (E = 5, 56).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~ ·          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S4           |

| Contents                                                                                                                                                                                                                                                                                                          | Page           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Figure \$71 CCMS data for the identification and yield calculation (1.24 equiv) of                                                                                                                                                                                                                                | number<br>\$70 |
| diphenyldisulfide produced in the reaction of $[{(Py2ald)(ONO)Fe}_2-\mu_2-O]$ (8 <sup>Fe</sup> ) with 4 equiv PhSH.                                                                                                                                                                                               | 570            |
| <b>Figure S72.</b> GC-MS data for the identification and yield calculation (1.32 equiv) of diphenyldiselenide produced in the reaction of $[{(Py2ald)(ONO)Fe}_2-\mu_2-O]$ ( <b>8</b> <sup>Fe</sup> ) with 4 equiv PhSeH.                                                                                          | S70            |
| <b>Figure S73.</b> GC-MS data for the identification and yield (1.41 equiv) calculation of diphenyldisulfide produced in the reaction of $[{(Py2ald)(ONO)Fe}_{2}-\mu_{2}-O]$ ( <b>8</b> <sup>Fe</sup> ) with 6 equiv of PhSH.                                                                                     | S71            |
| <b>Figure S74.</b> GC-MS data for the identification and yield calculation (1.41 equiv) of diphenyldiselenide produced in the reaction of [{(Py2ald)(ONO)Fe} <sub>2</sub> - $\mu_2$ -O] ( <b>8</b> <sup>Fe</sup> ) with 6 equiv of PhSeH.                                                                         | S71            |
| <b>Figure S75.</b> GC-MS data for the identification and yield (58%) calculation of methylphenyl sulfide produced in the reaction of $[(Pv2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) with MeI in 1:1 ratio.                                                                                                               | S72            |
| Figure S76. GC-MS data for the identification and yield (56%) calculation of benzyl(phenyl)sulfide produced in the reaction of $[(Py2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) with PhCH <sub>2</sub> Br in 1:1 ratio.                                                                                                    | S72            |
| <b>Figure S77.</b> GC-MS data for the identification and yield (62%) calculation of S-phenyl ethanethioate produced in the reaction of $[(Pv2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) with MeCOCl in 1:1 ratio.                                                                                                          | S73            |
| <b>Figure S78.</b> GC-MS data for the identification and yield (72%) calculation of S-phenyl benzothioate produced in the reaction of $[(Py2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) with PhCOCl in 1:1 ratio                                                                                                            | S73            |
| <b>Figure S79.</b> Gas chromatographic data for the identification and yield (38%) calculation of bis(phenylthio)methane produced in the reaction of $[(Py2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) with CH <sub>2</sub> Br <sub>2</sub> in 1:1 ratio.                                                                   | S74            |
| <b>Figure S80.</b> Gas chromatographic data for the identification and yield (69%) calculation of methylphenyl sulfide produced in the reaction of $[(Pv2ald)Fe(SPh)]$ (1a <sup>Fe</sup> ) with MeI in 1:1 ratio                                                                                                  | S74            |
| Figure S81. GC-MS data for the identification and yield (88%) calculation of benzyl(phenyl)sulfide produced in the reaction of $[(Py2ald)Fe(SPh)]$ (1a <sup>Fe</sup> ) with PhCH <sub>2</sub> Br in 1:1 ratio                                                                                                     | S75            |
| <b>Figure S82.</b> GC-MS data for the identification and yield (62%) calculation of S-phenyl ethanethioate produced in the reaction of $[(Pv2ald)Fe(SPh)]$ (1a <sup>Fe</sup> ) with MeCOCl in 1:1 ratio                                                                                                           | S75            |
| <b>Figure S83.</b> GC-MS data for the identification and yield (83%) calculation of S-phenyl benzothioate produced in the reaction of $[(Py2ald)Fe(SPh)]$ (1a <sup>Fe</sup> ) with PbCOCl in 1:1 ratio                                                                                                            | S76            |
| <b>Figure S84.</b> GC-MS data for the identification and yield (46%) calculation of bis(phenylthio)methane produced in the reaction of $[(Py2ald)Fe(SPh)]$ (1 $a^{Fe}$ ) with CH <sub>2</sub> Br <sub>2</sub> in 1:1 ratio.                                                                                       | S76            |
| <b>Figure S85.</b> GC-MS data for the identification and yield (33%) calculation of methyl(phenyl)selane produced in the reaction of $[(Py2ald)Zn(SePh)](2^{Zn})$ with MeI in 1:1 ratio                                                                                                                           | S77            |
| <b>Figure S86.</b> GC-MS data for the identification and yield (57%) calculation of benzyl(phenyl)selane produced in the reaction of $[(Py2ald)Zn(SePh)](2^{Zn})$ with PbCH <sub>2</sub> Br in 1:1 ratio.                                                                                                         | S77            |
| Figure S87. GC-MS data for the identification and yield (45%) calculation of Se-phenyl ethaneselenoate produced in the reaction of $[(Py2ald)Zn(SePh)](2^{Zn})$ with MeCOCl in 1:1 ratio                                                                                                                          | S78            |
| <b>Figure S88.</b> GC-MS data for the identification and yield (57%) calculation of Se-phenyl benzoselenoate produced in the reaction of $[(Py2ald)Zn(SePh)]$ ( $2^{Zn}$ ) with PhCOCl in 1:1 ratio                                                                                                               | S78            |
| <b>Figure S89.</b> GC-MS data for the identification and yield $(37\%)$ calculation of bis(phenylselanyl)methane produced in the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with CH <sub>2</sub> Br <sub>2</sub> in bil artic                                                                                    | S79            |
| Figure S90. GC-MS data for the identification and yield (31%) calculation of                                                                                                                                                                                                                                      | S79            |
| metnyi(pnenyi)selane produced in the reaction of $[(Py2ald)Fe(SePh)](2^{re})$ with MeI in 1:1 ratio.<br><b>Figure S91.</b> GC-MS data for the identification and yield (70%) calculation of benzyl(phenyl)selane produced in the reaction of $[(Py2ald)Fe(SePh)](2^{Fe})$ with PhCH <sub>2</sub> Br in 1:1 ratio. | S80            |
| <b>Figure S92.</b> GC-MS data for the identification and yield (48%) calculation of Se-phenyl ethaneselenoate produced in the reaction of [(Py2ald)Fe(SePh)] (2 <sup>Fe</sup> ) with MeCOCl in 1:1 ratio.                                                                                                         | S80            |
| <b>Figure S93.</b> GC-MS data for the identification and yield (63%) calculation of Se-phenyl benzoselenoate produced in the reaction of $[(Py2ald)Fe(SePh)]$ (2 <sup>Fe</sup> ) with PhCOCl in 1:1 ratio.                                                                                                        | S81            |
|                                                                                                                                                                                                                                                                                                                   |                |

| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page<br>number |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>Figure S94.</b> GC-MS data for the identification and yield (44%) calculation of bis(phenylselanyl)methane produced in the reaction of $[(Py2ald)Fe(SePh)]$ ( $2^{Fe}$ ) with CH <sub>2</sub> Br <sub>2</sub> in 1:1 ratio.                                                                                                                                                                                                                                                                | S81            |
| <b>Figure 95.</b> <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) with MeI in DMF.                                                                                                                                                                                                                                                                              | S82            |
| Figure S96. <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SPh)](1a^{Zn})$ with PhCH <sub>2</sub> Br in DMF.                                                                                                                                                                                                                                                                              | S82            |
| <b>Figure S97.</b> <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SPh)](1a^{Zn})$ with MeC(O)Cl in DMF.                                                                                                                                                                                                                                                                                   | S83            |
| <b>Figure S98.</b> <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2(S^{Zn}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SPh)]$ ( $1a^{Zn}$ ) with PhC(O)Cl in MeCN.                                                                                                                                                                                                                                                                             | S83            |
| <b>Figure S99.</b> <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SPh)](1a^{Zn})$ with $CH_2Br_2$ in DMF.                                                                                                                                                                                                                                                                                 | S84            |
| Figure S100. <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ (5 <sup>2n</sup> (BF <sub>4</sub> ) <sub>2</sub> ) obtained from the reaction of $[(Py2ald)Zn(SePh)]$ (2 <sup>2n</sup> ) with MeI in DMF solution.                                                                                                                                                                                                                                       | S84            |
| Figure S101. <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{2n}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SePh)]$ ( $2^{2n}$ ) with PhCH <sub>2</sub> Br in DMF.                                                                                                                                                                                                                                                                   | S85            |
| Figure S102. <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>o</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ (5 <sup>2n</sup> (BF4) <sub>2</sub> ) obtained from the reaction of $[(Py2ald)Zn(SePh)]$ (2 <sup>2n</sup> ) with MeC(O)Cl in DMF solution.                                                                                                                                                                                                                                               | S85            |
| Figure S103. <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>o</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ (5 <sup>2n</sup> (BF_4)_2) obtained from the reaction of $[(Py2ald)Zn(SePh)]$ (2 <sup>2n</sup> ) with PhC(O)Cl in MeCN.                                                                                                                                                                                                                                                                  | S86            |
| Figure S104. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>o</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ (5 <sup>2n</sup> (BF_4)_2) obtained from the reaction of $[(Py2ald)Zn(SePh)]$ (2 <sup>2n</sup> ) with CH <sub>2</sub> Br <sub>2</sub> in DMF.                                                                                                                                                                                                                                            | S86            |
| Figure S105. Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2(S^{2m}(BF_4)_2)$ obtained<br>from the reaction of $[(Py2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) with MeI shows the presence of $[(Py2ald)Zn]^+$ (m/z:<br>410.0847, simulated data, around line 410.0825, sharehed data, group line)                                                                                                                                                                                      | 58/            |
| <b>Figure S106.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SPh)]$ ( $1a^{Zn}$ ) with PhCH <sub>2</sub> Br shows the presence of $[(Py2ald)Zn]^+$ (m/z; 410.0847 simulated data orange line; 410.0829 observed data green line)                                                                                                                                                                        | S87            |
| Figure S107. Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $S^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SPh)]$ ( $1a^{Zn}$ ) with MeC(O)Cl, which shows the presence of                                                                                                                                                                                                                                                                                   | S88            |
| [(Py2ald)Zn] <sup>+</sup> (m/z: 410.0847, simulated data, orange line; 410.0837, observed data, green line).<br>Figure S108. Mass spectrometric data (in MeCN) for [(Py2ald)Zn] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub> ( $5^{Zn}$ (BF <sub>4</sub> ) <sub>2</sub> ) obtained<br>from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with PhC(O)Cl, shows the presence of [(Py2ald)Zn] <sup>+</sup><br>(m/z, 410.0847, simulated data, argues line, 410.0887, shows a data, green line) | S88            |
| Figure S109. Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SPh)]$ ( $1a^{Zn}$ ) with CH <sub>2</sub> Br <sub>2</sub> shows the presence of $[(Py2ald)Zn]^+$ (m/z; 410.0847, simulated data, orange line; 410.0858, observed data, green line).                                                                                                                                                               | S89            |
| <b>Figure S110.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2(S^{Zn}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SePh)](2^{Zn})$ with MeI shows the presence of $[(Py2ald)Zn]^+$ (m/z: 410.0847, simulated data, orange line; 410.0850, observed data, green line).                                                                                                                                                                                              | S89            |
| <b>Figure S111.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SePh)]$ ( $2^{Zn}$ ) with PhCH <sub>2</sub> Br, which shows the presence of $[(Py2ald)Zn]^+$ (m/z: 410.0847, simulated data, orange line; 410.0846, observed data, green line).                                                                                                                                                            | S90            |
| <b>Figure S112.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SePh)]$ ( $2^{Zn}$ ) with MeC(O)Cl shows the presence of $[(Py2ald)Zn]^+$ (m/z; 410.0847, simulated data, orange line; 410.0841, observed data, green line).                                                                                                                                                                               | S90            |
| <b>Figure S113.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2(S^{Zn}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SePh)](2^{Zn})$ with PhC(O)Cl, which shows the presence of $[(Py2ald)Zn]^+(m/z; 410.0847, simulated data, orange line; 410.0839, observed data, green line).$                                                                                                                                                                                   | S91            |
| <b>Figure S114.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $\mathbf{5^{Zn}}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SePh)]$ ( $\mathbf{2^{Zn}}$ ) with CH <sub>2</sub> Br <sub>2</sub> shows the presence of $[(Py2ald)Zn]^+$ (m/z; 410.0847 simulated data orange line; 410.0853 observed data green line)                                                                                                                                            | S91            |
| Figure S115. Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BPh_4)_2$ (5 <sup>Fe</sup> (BPh_4) <sub>2</sub> ) obtained<br>from the reaction of $[(Py2ald)Fe(SPh)]$ (1a <sup>Fe</sup> ) with MeI ((in the presence of 2 equiv of NaBPh_4)<br>shows the presence of $[(Py2ald)Fe]^+$ (m/z: 402.0905, simulated data, orange line; 402.0888,<br>observed data, green line).                                                                                                               | S92            |

| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Page       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | number     |
| Figure S116. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S92        |
| from the reaction of [(Py2ald)Fe(SPh)] (1a <sup>Fe</sup> ) with PhCH <sub>2</sub> Br (in the presence of 2 equiv of NaBPh <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| shows the presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, green line; 402.0919, observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| data, orange line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| Figure S117. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S93        |
| from the reaction of [(Py2ald)Fe(SPh)] (1a <sup>Fe</sup> ) with MeC(O)Cl (in the presence of 2 equiv of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| NaBPh <sub>4</sub> ) shows the presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange line;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| 402.0880, observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Figure S118. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>re</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S93        |
| from the reaction of [(Py2ald)Fe(SPh)] (1a <sup>re</sup> ) with PhC(O)Cl (in the presence of 2 equiv of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| NaBPh <sub>4</sub> ) shows the presence of $[(Py2ald)Fe]^+$ (m/z: 402.0905, simulated data, orange line;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 402.0896, observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Figure S119. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>re</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S94        |
| from the reaction of [(Py2ald)Fe(SPh)] (1a <sup>re</sup> ) with CH <sub>2</sub> Br <sub>2</sub> (in the presence of 2 equiv of NaBPh <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| shows the presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange line; 402.0945,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Figure S120. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S94        |
| from the reaction of [(Py2ald)Fe(SePh)] (2 <sup>re</sup> ) with MeI (in the presence of 2 equiv of NaBPh <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| shows the presence of $[(Py2ald)Fe]^+$ (m/z: 402.0905, simulated data, orange line;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 402.0928, observed data, purple line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Figure S121. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>re</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S95        |
| from the reaction of [(Py2ald)Fe(SePh)] ( $2^{\text{re}}$ ) with PhCH <sub>2</sub> Br (in the presence of 2 equiv of NaBPh <sub>4</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| shows the presence of [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange line; 402.0932,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~~        |
| Figure S122. Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BPh_4)_2$ (5 <sup>re</sup> (BPh_4) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 895        |
| from the reaction of $[(Py2ald)Fe(SePh)]$ (2 <sup>re</sup> ) with MeC(O)Cl (in the presence of 2 equiv of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| NaBPh <sub>4</sub> ) shows the presence of $[(Py2ald)Fe]^{+}$ (m/z: 402.0916, simulated data, orange line;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 402.0901, observed data, green line).<br>$\mathbf{F}_{i}$ (122) M (2010) ( $\mathbf{F}_{i}$ (D) ( $\mathbf{F}_{i}$ | 607        |
| Figure S123. Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BPh_4)_2$ ( $S^{re}(BPh_4)_2$ ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>S96</b> |
| from the reaction of $[(Py2aid)Fe(SePh)](2^{12})$ with PhC(O)CI (in the presence of 2 equiv of N DPL) $1 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| NaBPh4) shows the presence of [(Py2aid)Fe] (m/z: 402.0905, simulated data, orange line;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 402.0920, observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 506        |
| Figure S124. Mass spectrometric data (in MeCN) for [(Py2aid)Fe]2(BPn4)2 (5 <sup>-4</sup> (BPn4)2) obtained from the reserves of 2 aguin of NeDDh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 590        |
| from the reaction of $[(ry2aid)re(Serif)](2^{-7})$ with $CH_2DI_2$ (in the presence of 2 equivity of NaDrII4)<br>shows the presence of $[(Dy2aid)Fe]^+$ (m/z; 402,0005, simulated data, orange line; 402,0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| shows the presence of [(ryzald)re] (11/2. 402.0905, simulated data, orange line, 402.0910,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| <b>Figure \$125</b> GC MS data for the identification and yield calculation of 1 methyl 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$07       |
| nhenyldisulfide (Me-S-S-Ph vield = $46\%$ ) produced in the reaction of [(Pv2ald)7n(SPh)] (1aZn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 397        |
| with S <sub>0</sub> and MeI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| <b>Figure \$126</b> Gas chromatographic data for the identification and yield calculation of 1-henzyl-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>S98</b> |
| phenyldisulfide (PhCH <sub>2</sub> -S-S-Ph, vield = 58%) produced in the reaction of $[(Pv2ald)Zn(SPh)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 570        |
| $(1a^{2n})$ with S <sub>8</sub> and PhCH <sub>2</sub> Br in 1:1 ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| <b>Figure S127.</b> GC-MS data for the identification and vield calculation of 1-(2.6-dimethylphenyl)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S99        |
| 2-methyldisulfide (Me-S-S-2.6-Me <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> , vield = $46\%$ ) produced in the reaction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| $[(Pv2ald)Zn(SC_6H_4-2.6-Me_2)]$ (1b <sup>Zn</sup> ) with S <sub>8</sub> and MeI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Figure S128. GC-MS data for the identification and yield calculation of 1-benzyl-(2.6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S100       |
| dimethylphenyl)-2-methyldisulfide (PhCH <sub>2</sub> -S-S-2,6-Me <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> , yield = $38\%$ ) produced in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| reaction of $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$ (1b <sup>Zn</sup> ) with S <sub>8</sub> and PhCH <sub>2</sub> Br.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Figure S129. GC-MS data for the identification and yield calculation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S101       |
| methyl(phenylselanyl)sulfide (Me-S-Se-Ph, yield = 11%) produced in the reaction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| [(Py2ald)Zn(SePh)] (2 <sup>Zn</sup> ) with S <sub>8</sub> and MeI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Figure S130. GC-MS data for the identification and yield calculation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S102       |
| ethyl(phenylselanyl)sulfide (Et-S-Se-Ph, yield = 13%) produced in the reaction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| [(Py2ald)Zn(SePh)] (2 <sup>Zn</sup> ) with S <sub>8</sub> and EtBr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| Figure S131. GC-MS data for the identification and yield calculation of 1-methyl-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S103       |
| phenyldisulfide (Me-S-S-Ph, yield = 58%) produced in the reaction of $[(Py2ald)Fe(SPh)]$ (1a <sup>Fe</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| with $S_8$ and MeI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |

| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Page<br>number |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>Figure S132.</b> GC-MS data for the identification and yield calculation of 1-benzyl-2-phenyldisulfide (PhCH <sub>2</sub> -S-S-Ph, yield = 61%) produced in the reaction of [(Py2ald)Fe(SPh)] ( $1a^{Fe}$ ) with S <sub>8</sub> and PhCH <sub>2</sub> Br.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S103           |
| <b>Figure S133.</b> GC-MS data for the identification and yield calculation of 1-(2,6-dimethylphenyl)-<br>2-methyldisulfide (Me-S-S-2,6-Me <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> , yield = 62%) produced in the reaction of $[(Py2ald)Fe(SC_6H_4-2,6-Me_2)]$ ( <b>1b</b> <sup>Fe</sup> ) with S <sub>8</sub> and MeI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S104           |
| <b>Figure S134.</b> GC-MS data for the identification and yield calculation of 1-benzyl-(2,6-dimethylphenyl)-2-methyldisulfide (PhCH <sub>2</sub> -S-S-2,6-Me <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> , yield = 71%) produced in the reaction of $[(Py2ald)Fe(SC_6H_4-2,6-Me_2)]$ ( <b>1b</b> <sup>Fe</sup> ) with S <sub>8</sub> and PhCH <sub>2</sub> Br.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S105           |
| <b>Figure S135.</b> GC-MS data for the identification and yield calculation of methyl(phenylselanyl)sulfide (Me-S-Se-Ph, yield = 14%) produced in the reaction of $[(Py2ald)Fe(SePh)]$ (2 <sup>Fe</sup> ) with S <sub>8</sub> and MeI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S106           |
| <b>Figure S136.</b> Gas chromatographic data for the identification and yield calculation of ethyl(phenylselanyl)sulfide (Et-S-Se-Ph, yield = $15\%$ ) produced in the reaction of [(Py2ald)Fe(SePh)] ( $2^{Fe}$ ) with S <sub>8</sub> and EtBr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S107           |
| <b>Figure S137.</b> <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SPh)]$ ( $1a^{Zn}$ ) with S <sub>8</sub> and MeI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S108           |
| <b>Figure S138.</b> <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SPh)]$ ( $1a^{Zn}$ ) with S <sub>8</sub> and PhCH <sub>2</sub> Br.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S108           |
| <b>Figure S139.</b> <sup>1</sup> H NMR (600 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ ( <b>5</b> <sup>Zn</sup> (BF <sub>4</sub> ) <sub>2</sub> ) obtained from the reaction of $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$ ( <b>1b</b> <sup>Zn</sup> ) with S <sub>8</sub> and MeI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S109           |
| Figure S140. <sup>1</sup> H NMR (400 MHz, DMSO-d <sup>6</sup> ) spectrum of $[(Py2ald)Zn]_2(BF_4)_2$ (S <sup>2n</sup> (BF_4)_2) obtained from the reaction of $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$ ( <b>1b</b> <sup>2n</sup> ) with S <sub>8</sub> and PhCH <sub>2</sub> Br.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S109           |
| obtained from the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with S <sub>8</sub> and MeI.<br>Figure S142. <sup>1</sup> H NMR (400 MHz DMSO-d <sup>6</sup> ) spectrum of [(Py2ald)Zn] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub> ( $5^{Zn}$ (BF <sub>4</sub> ) <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S110           |
| obtained from the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with S <sub>8</sub> and EtBr.<br><b>Figure S143.</b> Mass spectrometric data (in MeCN) for [(Py2ald)Zn] <sub>2</sub> (BF <sub>4</sub> ) <sub>2</sub> ( $5^{Zn}$ (BF <sub>4</sub> ) <sub>2</sub> ) obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S110           |
| from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with S <sub>8</sub> and MeI shows the presence of [(Py2ald)Zn] <sup>+</sup> (m/z: 410.0847, simulated data, orange line; 410.0815, observed data, green line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0111           |
| Figure S144. Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2(S^{2n}(BF_4)_2)$ obtained<br>from the reaction of $[(Py2ald)Zn(SPh)]$ (1a <sup>Zn</sup> ) S <sub>8</sub> and PhCH <sub>2</sub> Br, which shows the presence of<br>$[(Py2ald)Zn]^+$ (m/z; 410.0847, simulated data, grange line; 410.0849, observed data, green line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SIII           |
| <b>Figure S145.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$ ( $1b^{Zn}$ ) with S <sub>8</sub> and MeI, which shows the presence of $[(Py2ald)Zn]^+$ (m/z: 410.0847, simulated data, orange line; 410.0819, observed data, green line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S112           |
| <b>Figure S146.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$ ( $1b^{Zn}$ ) with S <sub>8</sub> and PhCH <sub>2</sub> Br shows the presence $f[(P_22ald)Zn^{1+}(m/r_2,410,0)]$ ( $1b^{Zn}(SC_6H_4-2,6-Me_2)]$ ( $1b^{Zn}(SC_6H_4-2,6-Me_2)$ ) ( $1b^{Zn}(SC_6H_4-2,6-Me_$ | S112           |
| Figure S147. Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2$ ( $5^{Zn}(BF_4)_2$ ) obtained<br>from the reaction of $[(Py2ald)Zn(SePh)]$ ( $2^{Zn}$ ) with S <sub>8</sub> and MeI shows the presence of $[(Py2ald)Zn]^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S113           |
| <b>Figure S148.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Zn]_2(BF_4)_2(S^{Zn}(BF_4)_2)$ obtained from the reaction of $[(Py2ald)Zn(SePh)]$ ( $2^{Zn}$ ) with S <sub>8</sub> and EtBr shows the presence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S113           |
| $[(Py2ald)Zn]^+$ (m/z: 410.0847, simulated data, orange line; 410.0849, observed data, green line).<br><b>Figure S149.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BPh_4)_2$ ( <b>5</b> <sup>Fe</sup> (BPh_4)_2) obtained<br>from the reaction of $[(Py2ald)Fe(SPh)]$ ( <b>1a</b> <sup>Fe</sup> ) with S <sub>8</sub> and MeI, which shows the presence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S114           |
| $[(Py2ald)Fe]^+$ (m/z: 402.0905, simulated data, orange line; 402.0924, observed data, green line).<br><b>Figure S150.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BPh_4)_2$ ( <b>5</b> <sup>Fe</sup> (BPh_4)_2) obtained<br>from the reaction of $[(Py2ald)Fe(SPh)]$ ( <b>1a</b> <sup>Fe</sup> ) with S <sub>8</sub> and PhCH <sub>2</sub> Br, which shows the presence of<br>$[(P_1)_2(Id)Fe]^+$ (m/z) 402.0005, simulated data, green ga line; 402.0022, ghaserund data, green line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S114           |
| <b>Figure S151.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BPh_4)_2$ ( <b>5</b> <sup>Fe</sup> (BPh_4)_2) obtained<br>from the reaction of $[(Py2ald)Fe(SC_6H_4-2,6-Me_2)]$ ( <b>1b</b> <sup>Fe</sup> ) with S <sub>8</sub> and MeI, which shows the<br>presence of $[(Py2ald)Fe]^+$ (m/z;402.0905, simulated data.orange line; 402.0908.observed data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S115           |
| green line).<br><b>Figure S152.</b> Mass spectrometric data (in MeCN) for $[(Py2ald)Fe]_2(BPh_4)_2$ ( <b>5</b> <sup>Fe</sup> (BPh_4)_2) obtained<br>from the reaction of $[(Py2ald)Fe(SC_6H_4-2,6-Me_2)]$ ( <b>1b</b> <sup>Fe</sup> ) with S <sub>8</sub> and PhCH <sub>2</sub> Br shows the presence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S115           |

| Contents                                                                                                                                                                   | Page   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                                                                            | number |
| Figure S153. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained | S116   |
| from the reaction of [(Py2ald)Fe(SePh)] ( $2^{Fe}$ ) with S <sub>8</sub> and MeI, which shows the presence of                                                              |        |
| [(Py2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange line; 402.0929, observed data, green line).                                                               |        |
| Figure S154. Mass spectrometric data (in MeCN) for [(Py2ald)Fe] <sub>2</sub> (BPh <sub>4</sub> ) <sub>2</sub> (5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> ) obtained | S116   |
| from the reaction of $[(Py2ald)Fe(SePh)]$ (2 <sup>Fe</sup> ) with S <sub>8</sub> and EtBr, which shows the presence of                                                     |        |
| [(Pv2ald)Fe] <sup>+</sup> (m/z: 402.0905, simulated data, orange line; 402.0921, observed data, green line).                                                               |        |

#### **Experimental Procedures.**

#### Experimental Procedure for the Generation, identification, and quantification of NO.

**Reaction of [(Py2ald)Zn(ONO)] (3<sup>Zn</sup>) with 2 equiv of 'BuSH.** To a solution of 18.1 mg (0.04 mmol) of **3<sup>Zn</sup>** in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> was added a solution of 7.2 mg (0.08 mmol) of 'BuSH in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> and the solution was allowed to stir overnight. The reaction mixture was then filtered through Celite. The filtrate was evaporated to dryness and the yellow solid residue thus obtained was washed twice with 2 mL of Et<sub>2</sub>O. The solid product was then dried under vacuum, dissolved in a mixture of MeCN and MeOH and the resulting solution was filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as yellow, needle-shaped, crystals (12.5 mg, 68%). The identity of the product as the starting material  $(3^{\mathbb{Z}n})$  was confirmed by unit cell determination of the single crystals and <sup>1</sup>H NMR spectroscopy. NO trapping. The experiment was carried out in a vial-inside-vial setup, to quantitatively trap nitric oxide (NO) by reaction with the (TPP)Co<sup>II</sup> complex. A smaller vial containing  $3^{Zn}$  (9.2 mg, 0.02 mmol) dissolved in CH<sub>2</sub>Cl<sub>2</sub> (~0.2 mL) was placed inside a larger vial containing (TPP)Co<sup>II</sup> (13.4 mg, 0.02 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (~2 mL). The outer vial was sealed with a rubber septum. A solution of 'BuSH (3.6 mg, 0.04 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (~0.2 mL) was injected into the inner vial and allowed it to stand at room temperature for overnight with occasional shaking. The solution of the outer vial was evaporated to dryness, and the solid thus obtained was analyzed using FTIR and <sup>1</sup>H NMR spectroscopy. The yield of NO was found to be 11%, based on the relative integrals of the <sup>1</sup>H NMR resonances of (TPP)Co(NO) and unreacted (TPP)Co<sup>II</sup>.

**Reaction of [(Py2ald)Zn(ONO)] (3<sup>Zn</sup>) with 2 equiv of PhCH<sub>2</sub>SH.** To a solution of 18.1 mg (0.04 mmol) of (**3<sup>Zn</sup>**) in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> was added a solution of 9.9 mg (0.08 mmol) of PhCH<sub>2</sub>SH in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> and the solution was allowed to stir overnight. Following this, 6.6 mg (0.06 mmol) of sodium tetrafluoroborate (NaBF<sub>4</sub>) was added into the reaction mixture and was further stirred for an additional 2 hours. The reaction mixture was then filtered through S10

Celite. Et<sub>2</sub>O was subsequently added to the filtrate until the complete precipitation of the metal complex took place. The solution was then again filtered through Celite. The filtrate was kept for GC-MS experiment. The solid residue was washed twice with 2 mL of Et<sub>2</sub>O and dried under vacuum. The solid was then dissolved in a mixture of CH<sub>2</sub>Cl<sub>2</sub> and MeOH and filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as yellow, needle-shaped, crystals (8.4 mg, 42%). The identity of the product, [(Py2ald)M]<sub>2</sub>(BF<sub>4</sub>)<sub>2</sub>  $(5(BF_4)_2)$ , was confirmed by a unit cell determination of the single crystals, mass spectrometry and <sup>1</sup>H NMR spectroscopy. **NO trapping:** The experiment was carried out in a vial-inside-vial setup as described in the preceding experiment for the reaction of  $3^{\mathbb{Z}n}$  with 2 equiv of 'BuSH but by using  $3^{\mathbb{Z}n}$  (9.2 mg, 0.02 mmol) and PhCH<sub>2</sub>SH (5.0 mg, 0.04 mmol). Yield of NO = 41%. **Reaction of [(Py2ald)Zn(ONO)] (3<sup>Zn</sup>) with 1 equiv of PhSH.** A procedure similar to that described for  $3^{Zn}$  with 2 equiv of PhCH<sub>2</sub>SH was followed but by using  $3^{Zn}$  (18.1 mg, 0.04) mmol) and PhSH (4.4 mg, 0.04 mmol) to obtain  $[(Py2ald)Zn]_2(BF_4)_2$  (5(BF<sub>4</sub>)<sub>2</sub>) as the product (11.6 mg, 58%). The identity of the product was confirmed by a unit cell determination of the single crystals, mass spectrometry and <sup>1</sup>H NMR spectroscopy. **NO trapping:** The experiment was carried out in a vial-inside-vial setup as described in the preceding experiment for the reaction of  $3^{\mathbb{Z}n}$  with 2 equiv of 'BuSH but by using  $3^{\mathbb{Z}n}$  (9.2 mg, 0.02 mmol) and PhSH (2.2 mg, 0.02 mmol). Yield of NO = 71%.

[(**Py2ald**)**Zn**(**ONO**)] (**3**<sup>**Zn**</sup>) **with 2 equiv of PhSH.** A procedure similar to that described for  $\mathbf{3}^{\mathbf{Zn}}$  with 2 equiv of PhCH<sub>2</sub>SH was followed but by using using  $\mathbf{3}^{\mathbf{Zn}}$  (18.1 mg, 0.04 mmol) and PhSH (8.8 mg, 0.08 mmol) to obtain [(Py2ald)Zn(SPh)] ( $\mathbf{1a}^{\mathbf{Zn}}$ ) as the product (15 mg, 72%). The identity of the product was confirmed by a unit cell determination of the single crystals, and <sup>1</sup>H NMR spectroscopy. NO trapping: The experiment was carried out in a vial-inside-vial setup as described in the preceding experiment for the reaction of  $\mathbf{3}^{\mathbf{Zn}}$  with 2 equiv of *'*BuSH but by using  $\mathbf{3}^{\mathbf{Zn}}$  (9.2 mg, 0.02 mmol) and PhSH (4.4 mg, 0.04 mmol). Yield of NO = 74%.

[(**Py2ald**)**Zn**(**ONO**)] ( $3^{Zn}$ ) with 2 equiv of PhSeH. A procedure similar to that described for  $3^{Zn}$  with 2 equiv of PhCH<sub>2</sub>SH was followed but by using using  $3^{Zn}$  (18.1 mg, 0.04 mmol) and PhSeH (12.6 mg, 0.08 mmol) to obtain [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) as the product (16.1 mg, 71%). The identity of the product was confirmed by a unit cell determination of the single crystals, and <sup>1</sup>H NMR spectroscopy. NO trapping: The experiment was carried out in a vial-inside-vial setup as described in the preceding experiment for the reaction of  $3^{Zn}$  with 2 equiv of 'BuSH but by using  $3^{Zn}$  (9.2 mg, 0.02 mmol) and PhSeH (6.3 mg, 0.04 mmol). Yield of NO = 81%.

Trapping of NO generated in the reaction of  $[(Py2ald)Fe]_2(BF4)_2 (5^{Fe}(BF4)_2)$  with 4 equiv of (Bu4N)(NO<sub>2</sub>). The experiment was carried out in a vial-inside-vial setup, to quantitatively trap nitric oxide (NO) by reaction with the (TPP)Co<sup>II</sup> complex. A smaller vial containing  $5^{Fe}(BF_4)_2$  (20 mg, 0.02 mmol) dissolved in CH<sub>2</sub>Cl<sub>2</sub> (~0.3 mL) was placed inside a larger vial containing (TPP)Co<sup>II</sup> (26.8 mg, 0.04 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (~4 mL). The outer vial was sealed with a rubber septum. A solution of (Bu<sub>4</sub>N)(NO<sub>2</sub>) (23 mg, 0.08 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (~0.3 mL) was injected into The solution of the outer vial was evaporated to dryness, and the solid thus obtained was analyzed using FTIR and <sup>1</sup>H NMR spectroscopy. The yield of NO was found to be 1.80 equiv, based on the relative integrals of the <sup>1</sup>H NMR resonances of (TPP)Co(NO) and unreacted (TPP)Co<sup>II</sup>.

Trapping of NO generated in the reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with 3 equiv of (Bu4N)(NO<sub>2</sub>). The experiment was carried out in a vial-inside-vial setup as described in the preceding experiment for the reaction of  $5(BF_4)_2$  with 4 equiv of  $(Bu_4N)(NO_2)$  was followed but by using  $1a^{Fe}$  (10.3 mg, 0.02 mmol) and  $(Bu_4N)(NO_2)$  (17.3 mg, 0.06 mmol). Yield of NO = 1.56 equiv.

**Trapping of NO generated in the reaction of [(Py2ald)Fe(SePh)]** ( $2^{Fe}$ ) with 3 equiv of (**Bu4N**)(**NO**<sub>2</sub>). The experiment was carried out in a vial-inside-vial setup as described in the preceding experiment for the reaction of  $5(BF_4)_2$  with 4 equiv of (Bu4N)(NO<sub>2</sub>) was followed S12

but by using  $2^{Fe}$  (11.2 mg, 0.02 mmol) and (Bu<sub>4</sub>N)(NO<sub>2</sub>) (17.3 mg, 0.06 mmol). Yield of NO = 1.65 equiv.

Reaction of [{(Py2ald)(ONO)Fe}2-µ2-O] (8<sup>Fe</sup>) with 4 equiv of PhSH. To a solution of 36.5 mg (0.04 mmol) of 8<sup>Fe</sup> in 0.5 mL of DCM was added a solution of 17.6 mg (0.16 mmol) of PhSH in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> and the solution was allowed to stir overnight. The reaction mixture was then filtered through Celite. Et<sub>2</sub>O was subsequently added to the filtrate until the complete precipitation of the metal complex took place. The solution was then again filtered through Celite. The filtrate was kept for GC-MS experiment. The solid residue was washed twice with 2 mL of Et<sub>2</sub>O and dried under vacuum. The solid product was dissolved in 1 mL MeOH followed by the addition of NaBPh<sub>4</sub> (20.5 mg, 0.06 mmol). The solution was stirred for 30 min during which the precipitation of a brown solid was observed. The brown solid was separated from the reaction mixture, washed twice with MeOH followed by Et<sub>2</sub>O and dried under vacuum. The solid was then dissolved in DMF and filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as brown, needle-shaped, crystals of [{(Py2ald)Fe}2](BPh4)2 (5<sup>Fe</sup>(BPh4)2) (31.8 mg, 55%). The product was identified by unit cell determination of the single crystals and mass spectrometry. NO trapping: The experiment was carried out in a vial-inside-vial setup (mentioned earlier), to quantitatively trap nitric oxide (NO) with the (TPP)Co<sup>II</sup> complex. A smaller vial containing 8<sup>Fe</sup> (18.25 mg, 0.02 mmol) dissolved in CH<sub>2</sub>Cl<sub>2</sub> (~0.2 mL) was placed inside a larger vial containing (TPP)Co<sup>II</sup> (26.8 mg, 0.04 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (~4 mL). The outer vial was sealed with a rubber septum. A solution of PhSH (8.8 mg, 0.08 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (~0.2 mL) was injected into the inner vial and allowed it to stand at RT for overnight with occasional shaking. The solution of the outer vial was evaporated to dryness, and the solid thus obtained was analyzed using FTIR and <sup>1</sup>H NMR spectroscopy. Yield of NO = 1.42 equiv.

Reaction of  $[{(Py2ald)(ONO)Fe}_2-\mu_2-O]$  (8<sup>Fe</sup>) with 6 equiv of PhSH. The procedure described above for the reaction of 8<sup>Fe</sup> with 4 equiv of PhSH was followed but by using 8<sup>Fe</sup> S13

(36.5 mg, 0.04 mmol) and PhSH (26.4 mg, 0.24 mmol) while addition of NaBPh<sub>4</sub> was not required. The product, **[(Py2ald)Fe(SPh)]** ( $1a^{Fe}$ ) was obtained as orange, needle-shaped, crystals (23.7 mg, 58%) and was identified by unit cell determination of the single crystals. **NO trapping:** The procedure described above for the reaction of  $8^{Fe}$  with 4 equiv of PhSH was followed but by using  $8^{Fe}$  (18.25 mg, 0.02 mmol) and PhSH (13.2 mg, 0.12 mmol). Yield of NO = 1.70 equiv.

**Reaction of** [{(**Py2ald**)(**ONO**)**Fe**}<sub>2- $\mu_2$ -**O**] (8<sup>Fe</sup>) with 4 equiv of PhSeH. The procedure described above for the reaction of 8<sup>Fe</sup> with 4 equiv of PhSH was followed but by using 8<sup>Fe</sup> (36.5 mg, 0.04 mmol), PhSeH (25.1 mg, 0.16 mmol) and NaBPh<sub>4</sub> (20.5 mg, 0.06 mmol). The product, [{(**Py2ald**)**Fe**}<sub>2</sub>](**BPh**<sub>4</sub>)<sub>2</sub> (5<sup>Fe</sup>(BPh<sub>4</sub>)<sub>2</sub>) was obtained as brown, needle-shaped, crystals (32.8 mg, 57%) and was identified by unit cell determination of the single crystals and mass spectrometry. **NO trapping:** The procedure described above for the reaction of 8<sup>Fe</sup> with 4 equiv of PhSH was followed but by using 8<sup>Fe</sup> (18.25 mg, 0.02 mmol) and PhSeH (12.6 mg, 0.08 mmol). Yield of NO = 1.66 equiv.</sub>

**Reaction of** [{(**Py2ald**)(**ONO**)**Fe**}<sub>2- $\mu_2$ -**O**] (8<sup>Fe</sup>) with 6 equiv of PhSeH. The procedure described above for the reaction of 8<sup>Fe</sup> with 4 equiv of PhSH was followed but by using 8<sup>Fe</sup> (36.5 mg, 0.04 mmol) and PhSeH (37.7 mg, 0.24 mmol) while addition of NaBPh<sub>4</sub> was not required. The product, [(**Py2ald**)**Fe**(**SePh**)] (2<sup>Fe</sup>) was obtained as orange, needle-shaped, crystals (28.1 mg, 63%) and was identified by unit cell determination of the single crystals. **NO trapping:** The procedure described above for the reaction of 8<sup>Fe</sup> with 4 equiv of PhSH was followed but by using 8<sup>Fe</sup> (18.25 mg, 0.02 mmol) and PhSeH ((18.8 mg, 0.12 mmol). Yield of NO = 1.76 equiv.</sub>

### **Experimental Procedure for Transfer Reactions.**

Reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with MeI. To a solution of 20.8 mg (0.04 mmol) of 1a<sup>Zn</sup> in 0.5 mL of DMF was added a solution of 5.7 mg (0.04 mmol) of Iodomethane (MeI) in 0.5 mL of DMF and the solution was allowed to stir overnight. Following this, 6.6 mg (0.06 S14

mmol) of sodium tetrafluoroborate (NaBF<sub>4</sub>) was added into the reaction mixture and further stirred for an additional 2 hours. The reaction mixture was then filtered through Celite. Et<sub>2</sub>O was subsequently added to the filtrate until the complete precipitation of the metal complex occurred. The solution was then again filtered through Celite. The resulting solid residue was washed twice with 2 mL of Et<sub>2</sub>O and the remaining solution was kept for GC-MS experiment. The solid product was then dried under vacuum, dissolved in a mixture of 0.5 mL MeOH and 0.5 mL EtOH and the resulting solution was filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as yellow, needle-shaped, crystals of  $[(Py2ald)Zn]_2(BF_4)_2$  ( $5^{Zn}(BF_4)_2$ ) in 62% yield (12.4 mg). The compound,  $5^{Zn}(BF_4)_2$ , was identified by <sup>1</sup>H NMR spectroscopy and mass spectrometry.

A similar procedure was followed for the following transfer reactions using the specified amount of the reactants. The compound,  $5^{Zn}(BF_4)_2$ , was identified by <sup>1</sup>H NMR spectroscopy and mass spectrometry in each case.

**Reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with PhCH<sub>2</sub>Br.** 20.8 mg (0.04 mmol) of **1a<sup>Zn</sup>** and 6.8 mg (0.04 mmol) of PhCH<sub>2</sub>Br in DMF. Yield of **5<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub> = 59% (11.8 mg)**.

Reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with MeC(O)Cl. 20.8 mg (0.04 mmol) of  $1a^{Zn}$  and 3.1 mg (0.04 mmol) of MeC(O)Cl in DMF. Yield of  $5^{Zn}(BF_4)_2 = 58\%$  (11.6 mg).

**Reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with PhC(O)Cl.** 20.8 mg (0.04 mmol) of **1a<sup>Zn</sup>** and 5.6 mg (0.04 mmol) of PhC(O)Cl in MeCN. Yield of  $5^{Zn}(BF_4)_2 = 67\%$  (13.4 mg).

**Reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with CH<sub>2</sub>Br<sub>2</sub>.** 20.8 mg (0.04 mmol) of **1a<sup>Zn</sup>** and 3.5 mg (0.03 mmol) of CH<sub>2</sub>Br<sub>2</sub> in DMF. Yield of **5<sup>Zn</sup>(BF<sub>4</sub>)**<sub>2</sub> = 71% (14.2 mg).

**Reaction of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>) with MeI.** 22.7 mg (0.04 mmol) of  $2^{Zn}$  and 5.7 mg (0.04 mmol) of MeI in DMF. Yield of  $5^{Zn}(BF_4)_2 = 38\%$  (7.6 mg).

**Reaction of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>) with PhCH<sub>2</sub>Br.** 22.7 mg (0.04 mmol) of  $2^{Zn}$  and 6.8 mg (0.04 mmol) of PhCH<sub>2</sub>Br in DMF. Yield of  $5^{Zn}(BF_4)_2 = 55\%$  (11 mg).

Reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with MeC(O)Cl. 22.7 mg (0.04 mmol) of  $2^{Zn}$  and 3.1 mg (0.04 mmol) of MeC(O)Cl in DMF. Yield of  $5^{Zn}(BF_4)_2 = 40\%$  (8 mg).

**Reaction of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>) with PhC(O)Cl.** 22.7 mg (0.04 mmol) of  $2^{Zn}$  and 5.6 mg (0.04 mmol) of PhC(O)Cl in MeCN. Yield of  $5^{Zn}(BF_4)_2 = 52\%$  (10.4 mg).

**Reaction of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>) with CH<sub>2</sub>Br<sub>2</sub>.** 22.7 mg (0.04 mmol) of  $2^{Zn}$  and 3.5 mg (0.03 mmol) of CH<sub>2</sub>Br<sub>2</sub> in DMF. Yield of  $5^{Zn}(BF_4)_2 = 68\%$  (13.6 mg).

**Reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with MeI.** To a solution of 20.5 mg (0.04 mmol) of 1a<sup>Fe</sup> in 0.5 mL of DMF was added a solution of 5.7 mg (0.04 mmol) of Iodomethane (MeI) and the solution was allowed to stir overnight. The reaction mixture was then filtered through Celite. Et<sub>2</sub>O was subsequently added to the filtrate until the complete precipitation of the metal complex occurred. The solution was then again filtered through Celite. The resulting solid residue was washed twice with 2 mL of Et<sub>2</sub>O and the remaining solution was kept for GC-MS experiment. The solid product was then dried under vacuum and dissolved in 1 mL MeOH. Following this, 20.5 mg (0.06 mmol) of sodium tetraphenylborate (NaBPh<sub>4</sub>) was added into the solution and further stirred for an additional 30 min. During this period, immediate precipitation of a brown solid was observed. Then the brown solid is separated from the reaction mixture and washed twice with MeOH and Et<sub>2</sub>O and dried under vacuum. The solid was then redissolved in DMF and filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as brown, needle-shaped, crystals of [(Py2ald)Fe]<sub>2</sub>(BPh<sub>4</sub>)<sub>2</sub> (**5**<sup>Fe</sup>(BPh<sub>4</sub>)<sub>2</sub>) in 63% yield (18.2 mg). The compound was identified by unit cell determination of the single crystals and mass spectrometry.

A similar procedure was followed for the following transfer reactions using the specified amount of the reactants. The compound,  $5^{Fe}(BPh_4)_2$ , was identified by unit cell determination of the single crystals and mass spectrometry in each case.

Reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with PhCH<sub>2</sub>Br. 20.5 mg (0.04 mmol) of 1a<sup>Fe</sup> and 6.8 mg (0.04 mmol) of PhCH<sub>2</sub>Br in DMF. Yield of  $(5^{Fe}(BPh_4)_2) = 78\%$  (22.5 mg).

Reaction of [(Py2ald)Fe(SPh)] ( $1a^{Fe}$ ) with MeC(O)Cl. 20.5 mg (0.04 mmol) of  $1a^{Fe}$  and 3.1 mg (0.04 mmol) of MeC(O)Cl in DMF. Yield of ( $5^{Fe}(BPh_4)_2$ ) = 76% (22 mg).

**Reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with PhC(O)Cl.** 20.5 mg (0.04 mmol) of  $1a^{Fe}$  and 5.6 mg (0.04 mmol) of PhC(O)Cl in MeCN. Yield of  $(5^{Fe}(BPh_4)_2) = 59\%$  (17 mg).

**Reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with CH<sub>2</sub>Br<sub>2</sub>.** 20.5 mg (0.04 mmol) of **1a<sup>Fe</sup>** and 3.5 mg (0.03 mmol) of CH<sub>2</sub>Br<sub>2</sub> in DMF. Yield (**5<sup>Fe</sup>(BPh<sub>4</sub>)**<sub>2</sub>) = 87% (25.1 mg).

Reaction of [(Py2ald)Fe(SePh)] ( $2^{Fe}$ ) with MeI. 22.3 mg (0.04 mmol) of  $2^{Fe}$  and 5.7 mg (0.04 mmol) of MeI in DMF. Yield ( $5^{Fe}(BPh_4)_2$ ) = 34% (9.8 mg).

**Reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with PhCH<sub>2</sub>Br.** 22.3 mg (0.04 mmol) of  $2^{Fe}$  and 6.8 mg (0.04 mmol) of PhCH<sub>2</sub>Br in DMF. Yield ( $5^{Fe}(BPh_4)_2$ ) = 58% (16.7 mg).

**Reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with MeC(O)Cl.** 22.3 mg (0.04 mmol) of  $2^{Fe}$  and 3.1 mg (0.04 mmol) of MeC(O)Cl in DMF. Yield ( $5^{Fe}(BPh_4)_2$ ) = 43% (12.4 mg).

**Reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with PhC(O)Cl.** 22.3 mg (0.04 mmol) of  $2^{Fe}$  and 5.6 mg (0.04 mmol) of PhC(O)Cl in MeCN. Yield ( $5^{Fe}(BPh_4)_2$ ) = 55% (15.9 mg).

**Reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with CH<sub>2</sub>Br<sub>2</sub>.** 22.3 mg (0.04 mmol) of **2<sup>Fe</sup>** and 3.5 mg (0.03 mmol) of CH<sub>2</sub>Br<sub>2</sub> in DMF. Yield (**5<sup>Fe</sup>(BPh<sub>4</sub>)**<sub>2</sub>) = 83% (24 mg).

### Experimental Procedure for the Transfer of Reactive Sulfur/Selenium Species.

**Reaction of [(Py2ald)Zn(SPh)] (1a^{Zn}) with S<sub>8</sub> and MeI.** To a solution of 20.8 mg (0.04 mmol) of  $1a^{Zn}$  in 1 mL of DMF was added 5.1 mg (0.02 mmol) of S<sub>8</sub> and the solution was allowed to stir for 4h. After that 5.7 mg (0.04 mmol) of Iodomethane (MeI) was added to the reaction mixture and the solution was allowed to stir overnight. Following this, 6.6 mg (0.06 mmol) of sodium tetrafluoroborate (NaBF<sub>4</sub>) was added into the reaction mixture and further stirred for an additional 2 hours. The reaction mixture was then filtered through Celite. Et<sub>2</sub>O was subsequently added to the filtrate until the complete precipitation of the metal complex occurred. The solution was then again filtered through Celite. The resulting solid residue was washed twice with 2 mL of Et<sub>2</sub>O and the remaining solution was kept for GC-MS experiment.

The solid product was then dried under vacuum, dissolved in a mixture of 0.5 mL MeOH and 0.5 mL EtOH and the resulting solution was filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as yellow, needle-shaped, crystals of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5<sup>Zn</sup>(BF**<sub>4</sub>)<sub>2</sub>) in 53% yield (10.6 mg). The compound, **5<sup>Zn</sup>(BF**<sub>4</sub>)<sub>2</sub>, was identified by <sup>1</sup>H NMR spectroscopy and mass spectrometry.

A similar procedure was followed for the following reactions using the specified amount of the reactants. The compound,  $5^{Zn}(BF_4)_2$ , was identified by <sup>1</sup>H NMR spectroscopy and mass spectrometry in each case.

Reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br. 20.8 mg (0.04 mmol) of 1a<sup>Zn</sup>, 5.1 mg (0.02 mmol) of S<sub>8</sub> and 6.8 mg (0.04 mmol) of PhCH<sub>2</sub>Br in DMF. Yield of  $5^{Zn}(BF_4)_2 =$ 51% (10.2 mg).

Reaction of [(Py2ald)Zn(SC<sub>6</sub>H<sub>4</sub>-2,6-Me<sub>2</sub>)] (1b<sup>Zn</sup>) with S<sub>8</sub> and MeI. 21.92 mg (0.04 mmol) of 1b<sup>Zn</sup>, 5.1 mg (0.02 mmol) of S<sub>8</sub> and 5.7 mg (0.04 mmol) of MeI in DMF. Yield of  $5^{Zn}(BF_4)_2 = 55\%$  (11 mg).

Reaction of  $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$  (1b<sup>Zn</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br. 21.92 mg (0.04 mmol) of 1b<sup>Zn</sup>, 5.1 mg (0.02 mmol) of S<sub>8</sub> and 6.8 mg (0.04 mmol) of PhCH<sub>2</sub>Br in DMF. Yield of 5<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub> = 47% (9.4 mg).

**Reaction of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>) with S<sub>8</sub> and MeI.** 22.7 mg (0.04 mmol) of  $2^{Zn}$ , 5.1 mg (0.02 mmol) of S<sub>8</sub> and 5.7 mg (0.04 mmol) of MeI in DMF. Yield of  $5^{Zn}(BF_4)_2 = 48\%$  (9.6 mg).

**Reaction of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>) with S<sub>8</sub> and EtBr.** 22.7 mg (0.04 mmol) of  $2^{Zn}$ , 5.1 mg (0.02 mmol) of S<sub>8</sub> and 4.35 mg (0.04 mmol) of EtBr in DMF. Yield of  $5^{Zn}(BF_4)_2 = 53\%$  (10.6 mg).

**Reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with S<sub>8</sub> and MeI.** To a solution of 20.5 mg (0.04 mmol) of  $1a^{Fe}$  in 1 mL of DMF was added 5.1 mg (0.02 mmol) of S<sub>8</sub> and the solution was allowed to stir for 4h. After that 5.7 mg (0.04 mmol) of Iodomethane (MeI) was added to the reaction S18

mixture and the solution was allowed to stir overnight. The reaction mixture was then filtered through Celite. Et<sub>2</sub>O was subsequently added to the filtrate until the complete precipitation of the metal complex occurred. The solution was then again filtered through Celite. The resulting solid residue was washed twice with 2 mL of Et<sub>2</sub>O and the remaining solution was kept for GC-MS experiment. The solid product was then dried under vacuum and dissolved in 1 mL MeOH. Following this, 20.5 mg (0.06 mmol) of sodium tetraphenylborate (NaBPh<sub>4</sub>) was added into the solution and further stirred for an additional 30 min. During this period, immediate precipitation of a brown solid was observed. Then the brown solid is separated from the reaction mixture and washed twice with MeOH and Et<sub>2</sub>O and dried under vacuum. The solid was then redissolved in DMF and filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as brown, needle-shaped, crystals of  $[(Py2ald)Fe]_2(BPh_4)_2(5^{Fe}(BPh_4)_2)$  in 61% yield (17.6 mg).

A similar procedure was followed for the following reactions using the specified amount of the reactants. The compound,  $5^{Fe}(BPh_4)_2$ , was identified by unit cell determination of the single crystals and mass spectrometry in each case.

Reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br. 20.5 mg (0.04 mmol) of 1a<sup>Fe</sup>, 5.1 mg (0.02 mmol) of S<sub>8</sub> and 6.8 mg (0.04 mmol) of PhCH<sub>2</sub>Br in DMF. Yield of  $5^{Fe}(BPh_4)_2$ = 62% (17.9 mg).

**Reaction of [(Py2ald)Fe(SC<sub>6</sub>H<sub>4</sub>-2,6-Me<sub>2</sub>)] (1b<sup>Fe</sup>) with S<sub>8</sub> and MeI.** 21.58 mg (0.04 mmol) of **1b<sup>Fe</sup>**, 5.1 mg (0.02 mmol) of S<sub>8</sub> and 5.7 mg (0.04 mmol) of MeI in DMF. Yield of **5<sup>Fe</sup>(BPh<sub>4</sub>)**<sub>2</sub> = 59% (17 mg).

Reaction of  $[(Py2ald)Fe(SC_6H_4-2,6-Me_2)]$  (1b<sup>Fe</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br. 21.58 mg (0.04 mmol) of 1b<sup>Fe</sup>, 5.1 mg (0.02 mmol) of S<sub>8</sub> and 6.8 mg (0.04 mmol) of PhCH<sub>2</sub>Br in DMF. Yield of 5<sup>Fe</sup>(BPh<sub>4</sub>)<sub>2</sub> = 61% (17.6 mg).

**Reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with S<sub>8</sub> and MeI.** 22.3 mg (0.04 mmol) of  $2^{Fe}$ , 5.1 mg (0.02 mmol) of S<sub>8</sub> and 5.7 mg (0.04 mmol) of MeI in DMF. Yield of  $5^{Fe}(BPh_4)_2 = 56\%$  (16.2 mg).

**Reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with S<sub>8</sub> and EtBr.** 22.3 mg (0.04 mmol) of **2<sup>Fe</sup>**, 5.1 mg (0.02 mmol) of S<sub>8</sub> and 4.35 mg (0.04 mmol) of EtBr in DMF. Yield of **5<sup>Fe</sup>(BPh<sub>4</sub>)**<sub>2</sub> = 49% (14.2 mg).

Reaction of [{(Py2ald)Fe}2](BF4)2 (5<sup>Fe</sup>(BF4)2) with 2 equiv of (Cp2Fe)(BF4) and (Bu4N)(NO2). To a solution of 5<sup>Fe</sup>(BF4)2 (20 mg, 0.02 mmol) in MeCN (~0.3 mL) was added a solution of (Cp2Fe)(BF4) (10.9 mg, 0.04 mmol) in MeCN (~4 mL) and the solution was allowed to stir overnight. Then a solution of (Bu4N)(NO2) (11.5 mg, 0.04 mmol) in MeCN (~0.3 mL) was added into the reaction mixture and allowed it to stir for 4 h. The reaction mixture was then evaporated to dryness and the brown solid residue thus obtained was washed twice with 2 mL of Et2O. The solid product was then dried under vacuum, dissolved in a mixture of CH<sub>2</sub>Cl<sub>2</sub> and EtOH and the resulting solution was filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as brown, needle-shaped, crystals (13 mg, 62%). The compound was identified to be [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O] (8<sup>Fe</sup>) by unit cell determination of the single crystals.

Reaction of [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O] (8<sup>Fe</sup>) with 4 equiv of Cp<sub>2</sub>Co. To a solution of 36.5 mg (0.04 mmol) of 8<sup>Fe</sup> in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> was added a solution of 30.3 mg (0.16 mmol) of Cp<sub>2</sub>Co in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> and the solution was allowed to stir overnight. The reaction mixture was then evaporated to dryness and the brown-colored solid residue thus obtained was washed twice with 2 mL of Et<sub>2</sub>O. The solid product was then dried under vacuum and dissolved in 1 mL MeOH. Following this, 20.5 mg (0.06 mmol) of sodium tetraphenylborate (NaBPh<sub>4</sub>) was added into the solution and further stirred for an additional 30 min. During this period, immediate precipitation of a brown solid was observed. Then the brown solid was separated

from the reaction mixture and washed twice with MeOH and Et<sub>2</sub>O and dried under vacuum. The solid was then dissolved in DMF and filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product as brown, needle-shaped, crystals (44 mg, 76%). The compound was identified to be  $[{(Py2ald)Fe}_2](BPh_4)_2(5^{Fe}(BPh_4)_2)$  by unit cell determination of the single crystals.

**Reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with (Cp2Fe)(BF4).** To a solution of 20.8 mg (0.04 mmol) of  $1a^{Zn}$  in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> was added a solution of 10.91 mg (0.04 mmol) of (Cp<sub>2</sub>Fe)(BF4) in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> and the reaction mixture was allowed to stir for 12 h. The reaction mixture was then filtered through Celite, the filtrate was evaporated to dryness and the solid residue thus obtained was washed twice with 2 mL of Et<sub>2</sub>O. The solid product was then dried under vacuum, dissolved in a mixture of 0.5 mL MeOH and 0.5 mL EtOH and the resulting solution was filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into the filtrate at 0°C overnight to obtain the product, [(Py2ald)Zn]<sub>2</sub>(BF<sub>4</sub>)<sub>2</sub> ( $5^{Zn}(BF_4)_2$ ), as yellow, needle-shaped, crystals (13.2 mg, 66%). Identity of the compound was confirmed by unit cell determination of the single crystals, <sup>1</sup>H NMR spectroscopy and mass spectrometry.

**Reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with (Cp2Fe)(BF4).** To a solution of 20.5 mg (0.04 mmol) of  $1a^{Fe}$  in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> was added a solution of 10.91 mg (0.04 mmol) of (Cp<sub>2</sub>Fe)(BF4) in 0.5 mL of CH<sub>2</sub>Cl<sub>2</sub> and the reaction mixture was allowed to stir for 12 h. The reaction mixture was then filtered through Celite, the filtrate was evaporated to dryness and the solid residue thus obtained was washed twice with 2 mL of Et<sub>2</sub>O. The solid product was then dried under vacuum and dissolved in 1 mL MeOH. NaBPh<sub>4</sub> (20.5 mg, 0.06 mmol) was added into the solution and the solution was stirred for an additional 30 min. During this period, immediate precipitation of a brown solid was observed. Then the brown solid was separated from the reaction mixture, washed twice with MeOH and Et<sub>2</sub>O and dried under vacuum. The solid was then dissolved in DMF and filtered through Celite. Et<sub>2</sub>O was allowed to diffuse into

the filtrate at 0°C overnight to obtain the product,  $[{(Py2ald)Fe}_2](BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2), as brown, needle-shaped, crystals (20.5 mg, 71%). Identity of the compound was confirmed by unit cell determination of the single crystals and mass spectrometry.

**Reaction of [(Py2ald)Fe(2,6-Me<sub>2</sub>-C<sub>6</sub>H<sub>3</sub>S)] (1b<sup>Fe</sup>) with (Cp<sub>2</sub>Fe)(BF<sub>4</sub>).** A procedure similar to that described above for the reaction of  $1a^{Fe}$  with (Cp<sub>2</sub>Fe)(BF<sub>4</sub>) was followed but by using  $1b^{Fe}$  (21.58 mg, 0.04 mmol), (Cp<sub>2</sub>Fe)(BF<sub>4</sub>) (10.91 mg, 0.04 mmol) and NaBPh<sub>4</sub> (20.5 mg, 0.06 mmol). Identity of the product, [{(Py2ald)Fe}<sub>2</sub>](BPh<sub>4</sub>)<sub>2</sub> (5<sup>Fe</sup>(BPh<sub>4</sub>)<sub>2</sub>), (16.6 mg, 68%) was confirmed by unit cell determination of the single crystals and mass spectrometry.

**Reaction of** [(**Py2ald**)**Fe**(**SePh**)] (2<sup>Fe</sup>) **with** (**Cp2Fe**)(**BF4**). A procedure similar to that described above for the reaction of  $1a^{Fe}$  with (Cp2Fe)(BF4) was followed but by using  $2^{Fe}$  (22.3 mg, 0.04 mmol), (Cp2Fe)(BF4) (10.91 mg, 0.04 mmol) and NaBPh4 (20.5 mg, 0.06 mmol). Identity of the product, [{(Py2ald)Fe}2](BPh4)2 (5<sup>Fe</sup>(BPh4)2), (21.6 mg, 75%) was confirmed by unit cell determination of the single crystals and mass spectrometry.

| Reactions                                                               | Unit cell parameters |         |         |          |         |         |                    |  |
|-------------------------------------------------------------------------|----------------------|---------|---------|----------|---------|---------|--------------------|--|
| (in the presence of NaBF <sub>4</sub> )                                 | a (Å)                | b (Å)   | c (Å)   | α (°)    | β (°)   | γ (°)   | V (Å) <sup>3</sup> |  |
| $1a^{Zn} + MeI$                                                         | 9.63                 | 10.14   | 10.45   | 103.14°  | 90.22°  | 91.44°  | 993                |  |
| $1a^{Zn} + PhCH_2Br$                                                    | 9.87                 | 10.10   | 10.51   | 105.21°  | 90.94°  | 91.21°  | 1011               |  |
| $1a^{Zn} + MeC(O)Cl$                                                    | 9.84                 | 10.15   | 10.56   | 105.00°  | 90.92°  | 91.31°  | 1018               |  |
| $1a^{Zn} + PhC(O)Cl$                                                    | 9.87                 | 10.12   | 10.50   | 105.66°  | 90.62°  | 91.45°  | 1010               |  |
| $1a^{Zn} + CH_2Br_2$                                                    | 9.87                 | 10.10   | 10.51   | 105.21°  | 90.94°  | 91.21°  | 1011               |  |
| $2^{\mathbf{Zn}} + \mathrm{MeI}$                                        | 9.86                 | 10.31   | 10.43   | 104.23°  | 90.58°  | 91.50°  | 1027               |  |
| $2^{\mathbf{Zn}} + PhCH_2Br$                                            | 9.85                 | 10.29   | 10.50   | 104.24°  | 90.64°  | 91.75°  | 1031               |  |
| $2^{\mathbb{Z}n} + \operatorname{MeC}(O)\operatorname{Cl}$              | 9.86                 | 10.15   | 10.46   | 104.95°  | 90.99°  | 91.58°  | 1010               |  |
| $2^{\mathbf{Zn}} + PhC(O)Cl$                                            | 9.86                 | 10.22   | 10.38   | 105.35°  | 90.77°  | 91.79°  | 1008               |  |
| $2^{\mathbf{Zn}} + CH_2Br_2$                                            | 9.90                 | 10.29   | 10.45   | 104.75°  | 90.87°  | 91.77°  | 1029               |  |
| $1a^{Zn} + S_8 + MeI$                                                   | 10.06                | 10.13   | 10.48   | 104.23°  | 91.61°  | 92.49°  | 1027               |  |
| $1a^{Zn} + S_8 + PhCH_2Br$                                              | 9.94                 | 10.09   | 10.44   | 105.01°  | 90.58°  | 91.54°  | 1011               |  |
| $\mathbf{1b^{Zn} + S_8 + MeI}$                                          | 9.89                 | 10.17   | 10.50   | 105.31°  | 90.57°  | 91.62°  | 1018               |  |
| $\mathbf{1b}^{\mathbf{Zn}} + \mathbf{S}_8 + \mathbf{PhCH}_2\mathbf{Br}$ | 9.93                 | 10.09   | 10.44   | 104.93°  | 90.66°  | 91.61°  | 1011               |  |
| $2^{\mathbf{Zn}} + S_8 + MeI$                                           | 9.88                 | 10.09   | 10.49   | 105.62°  | 90.55°  | 91.79°  | 1006               |  |
| $2^{\mathbf{Zn}} + S_8 + EtBr$                                          | 9.91                 | 10.14   | 10.50   | 105.78°  | 91.07°  | 91.78°  | 1015               |  |
| $1a^{\mathbf{Zn}} + (\mathbf{Cp}_2\mathbf{Fe})(\mathbf{BF}_4)$          | 9.81                 | 10.34   | 10.37   | 105.41°  | 91.30°  | 90.46°  | 1014               |  |
| $3^{\mathbf{Zn}}$ + 2 equiv PhCH <sub>2</sub> SH                        | 9.93                 | 10.19   | 10.49   | 104.85°  | 90.71°  | 91.29°  | 1026               |  |
| $3^{\mathbf{Zn}} + 1$ equiv PhSH                                        | 9.91                 | 10.11   | 10.50   | 105.27°  | 90.80°  | 91.96°  | 1013               |  |
| Authentic sample of <b>5<sup>Zn</sup>(BF4)</b> 2                        | 9.8506               | 10.1305 | 10.4984 | 105.549° | 90.387° | 91.566° | 1008.8             |  |

**Table S1.** Unit cell parameters for  $5^{\mathbb{Z}n}(BF_4)_2$  obtained from different reactions.

| Reactions                                  | Unit cell parameters |        |        |       |       |       |                    |
|--------------------------------------------|----------------------|--------|--------|-------|-------|-------|--------------------|
|                                            | a (Å)                | b (Å)  | c (Å)  | α (°) | β (°) | γ (°) | V (Å) <sup>3</sup> |
| $3^{\mathbf{Zn}}$ + 2 equiv PhSH           | 10.59                | 12.13  | 19.06  | 90°   | 90°   | 90°   | 2447               |
| $3^{\mathbf{Zn}}$ + 1 equiv NaSPh          | 10.44                | 12.05  | 18.60  | 90°   | 90°   | 90°   | 2339               |
| Authentic sample of <b>1a<sup>Zn</sup></b> | 19.047               | 12.115 | 10.586 | 90°   | 90°   | 90°   | 2442.7             |

Table S2. Unit cell parameters for  $1a^{Zn}$  obtained from different reactions.

Table S3. Unit cell parameters for  $2^{Zn}$  obtained from different reactions.

| Reactions                         | Unit cell parameters |         |         |       |       |       |                    |
|-----------------------------------|----------------------|---------|---------|-------|-------|-------|--------------------|
|                                   | a (Å)                | b (Å)   | c (Å)   | α (°) | β (°) | γ (°) | V (Å) <sup>3</sup> |
| $3^{\mathbf{Zn}}$ + 2 equiv PhSeH | 10.38                | 12.10   | 19.18   | 90°   | 90°   | 90°   | 2410               |
| Authentic sample of $2^{Z_n}$     | 19.1361              | 12.0931 | 10.4127 | 90°   | 90°   | 90°   | 2409.65            |

Table S4. Unit cell parameters for  $3^{\mathbb{Z}n}$  obtained from different reactions.

| Reactions                         | Unit cell parameters |        |        |       |       |       |                    |  |
|-----------------------------------|----------------------|--------|--------|-------|-------|-------|--------------------|--|
|                                   | a (Å)                | b (Å)  | c (Å)  | α (°) | β (°) | γ (°) | V (Å) <sup>3</sup> |  |
| $3^{\mathbf{Zn}} + 2$ equiv 'BuSH | 11.91                | 15.52  | 21.30  | 90°   | 90°   | 90°   | 3936               |  |
| Authentic sample of $3^{Zn}$      | 15.507               | 11.929 | 21.331 | 90°   | 90°   | 90°   | 3945.9             |  |

| Reaction                                                                    | Unit cell parameters |         |         |          |          |          |                    |  |  |
|-----------------------------------------------------------------------------|----------------------|---------|---------|----------|----------|----------|--------------------|--|--|
| (in the presence of NaBPh <sub>4</sub> )                                    | a (Å)                | b (Å)   | c (Å)   | α (°)    | β (°)    | γ (°)    | V (Å) <sup>3</sup> |  |  |
| 1a <sup>Fe</sup> + MeI                                                      | 11.29                | 12.60   | 14.94   | 103.51°  | 110.11°  | 104.92°  | 1803               |  |  |
| $1a^{Fe} + PhCH_2Br$                                                        | 11.27                | 12.60   | 14.92   | 103.29°  | 110.22°  | 105.02°  | 1796               |  |  |
| 1a <sup>Fe</sup> + MeC(O)Cl                                                 | 11.26                | 12.59   | 14.89   | 103.27°  | 110.27°  | 105.08°  | 1789               |  |  |
| 1a <sup>Fe</sup> + PhC(O)Cl                                                 | 11.26                | 12.60   | 14.91   | 103.26°  | 110.25°  | 105.05°  | 1794               |  |  |
| $\mathbf{1a^{Fe}} + CH_2Br_2$                                               | 11.27                | 12.61   | 14.92   | 103.17°  | 110.12°  | 105.07°  | 1798               |  |  |
| 2 <sup>Fe</sup> + MeI                                                       | 11.26                | 12.59   | 14.90   | 103.26°  | 110.27°  | 105.08°  | 1789               |  |  |
| $2^{Fe} + PhCH_2Br$                                                         | 11.30                | 12.63   | 14.96   | 103.40°  | 110.12°  | 104.97°  | 1812               |  |  |
| $2^{Fe} + MeC(O)Cl$                                                         | 11.26                | 12.61   | 14.90   | 103.23°  | 110.24°  | 105.10°  | 1794               |  |  |
| $2^{Fe} + PhC(O)Cl$                                                         | 11.26                | 12.59   | 14.89   | 103.33°  | 110.18°  | 105.04°  | 1792               |  |  |
| $2^{Fe} + CH_2Br_2$                                                         | 11.28                | 12.63   | 14.91   | 103.25°  | 110.21°  | 105.12°  | 1800               |  |  |
| $1a^{Fe} + S_8 + MeI$                                                       | 11.30                | 12.65   | 14.94   | 103.37°  | 110.06°  | 104.99°  | 1831               |  |  |
| $\mathbf{1a^{Fe} + S_8 + PhCH_2Br}$                                         | 11.29                | 12.62   | 14.94   | 103.34°  | 110.13°  | 105.00°  | 1807               |  |  |
| $\mathbf{1b^{Fe}} + \mathbf{S_8} + \mathbf{MeI}$                            | 11.28                | 12.62   | 14.90   | 103.17°  | 110.25°  | 105.19°  | 1798               |  |  |
| $\mathbf{1b^{Fe}} + \mathbf{S_8} + \mathbf{PhCH_2Br}$                       | 11.31                | 12.65   | 14.95   | 103.39°  | 110.06°  | 104.99°  | 1817               |  |  |
| $2^{Fe}+S_8+MeI$                                                            | 11.26                | 12.60   | 14.90   | 103.26°  | 110.27°  | 105.06°  | 1791               |  |  |
| $2^{Fe}+S_8+EtBr$                                                           | 11.28                | 12.61   | 14.93   | 103.26°  | 110.24°  | 105.03°  | 1801               |  |  |
| $1\mathbf{a}^{\mathrm{Fe}} + (\mathrm{Cp}_{2}\mathrm{Fe})(\mathrm{BF}_{4})$ | 11.27                | 12.62   | 14.90   | 103.06°  | 110.31°  | 105.20°  | 1797               |  |  |
| $\mathbf{1b^{Fe}} + (Cp_2Fe)(BF_4)$                                         | 11.28                | 12.63   | 14.89   | 103.05°  | 110.28°  | 105.22°  | 1798               |  |  |
| $\mathbf{2^{Fe}} + (Cp_2Fe)(BF_4)$                                          | 11.30                | 12.66   | 14.94   | 103.30°  | 110.13°  | 105.04°  | 1815               |  |  |
| <b>8</b> <sup>Fe</sup> + 4 equiv PhSH                                       | 11.30                | 12.64   | 14.95   | 103.45°  | 110.10°  | 105.02°  | 1812               |  |  |
| <b>8</b> <sup>Fe</sup> + 4 equiv PhSeH                                      | 11.27                | 12.62   | 14.90   | 103.06°  | 110.31°  | 105.20°  | 1797               |  |  |
| $8^{Fe}$ + 4 equiv Cp <sub>2</sub> Co                                       | 11.27                | 12.61   | 14.92   | 103.15°  | 110.27°  | 105.10°  | 1800               |  |  |
| Authentic sample of <b>5</b> <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> | 11.1974              | 12.5730 | 14.8997 | 103.670° | 110.022° | 104.957° | 1778.1             |  |  |

**Table S5.** Unit cell parameters for  $5^{Fe}(BPh_4)_2$  obtained from different reactions.

**Table S6.** Unit cell parameters for  $8^{Fe}$  obtained from different reactions.

| Reactions                                                                            | Unit cell parameters |        |        |          |          |          |                       |  |  |
|--------------------------------------------------------------------------------------|----------------------|--------|--------|----------|----------|----------|-----------------------|--|--|
|                                                                                      | a (Å)                | b (Å)  | c (Å)  | α<br>(°) | β(°)     | γ<br>(°) | V<br>(Å) <sup>3</sup> |  |  |
| $1a^{Fe} + 3 equiv (Bu_4N)(NO_2)$                                                    | 10.63                | 15.39  | 14.45  | 90°      | 98.79°   | 90°      | 2336                  |  |  |
| $2^{Fe}$ + 3 equiv (Bu <sub>4</sub> N)(NO <sub>2</sub> )                             | 10.60                | 15.74  | 14.65  | 90°      | 99.78°   | 90°      | 2409                  |  |  |
| $5^{Fe}(BPh_4)_2 + 2 \text{ equiv } (Cp_2Fe)(BF_4) + 2 \text{ equiv } (Bu_4N)(NO_2)$ | 10.81                | 15.56  | 14.51  | 90°      | 100.42°  | 90°      | 2400                  |  |  |
| Authentic sample of <b>8</b> <sup>Fe</sup>                                           | 10.613               | 15.673 | 14.617 | 90°      | 100.532° | 90°      | 2390.5                |  |  |

Table S7. Unit cell parameters for  $1a^{Fe}$  obtained from different reactions.

| Reactions                                  | Unit cell parameters |         |         |                    |     |     |        |  |
|--------------------------------------------|----------------------|---------|---------|--------------------|-----|-----|--------|--|
|                                            | a (Å)                | β (°)   | γ (°)   | V (Å) <sup>3</sup> |     |     |        |  |
| $8^{\mathrm{Fe}}$ + 6 equiv PhSH           | 10.44                | 12.04   | 19.04   | 90°                | 90° | 90° | 2393   |  |
| Authentic sample of <b>1a<sup>Fe</sup></b> | 19.0369              | 12.0159 | 10.4305 | 90°                | 90° | 90° | 2385.9 |  |

Table S8. Unit cell parameters for  $2^{Fe}$  obtained from different reactions.

| Reactions                         | Unit cell parameters |        |        |       |       |       |                    |  |
|-----------------------------------|----------------------|--------|--------|-------|-------|-------|--------------------|--|
|                                   | a (Å)                | b (Å)  | c (Å)  | α (°) | β (°) | γ (°) | V (Å) <sup>3</sup> |  |
| $8^{\mathrm{Fe}}$ + 6 equiv PhSeH | 10.47                | 12.06  | 19.07  | 90°   | 90°   | 90°   | 2410               |  |
| Authentic sample of $2^{Fe}$      | 19.172               | 12.076 | 10.439 | 90°   | 90°   | 90°   | 2416.7             |  |

**Table S9.** Yields (GC) of products obtained by the transfer of reactive sulfur / selenium species

 (generated insitu by selected Zn(II) and Fe(II) compounds and elemental sulfur/selenium).

| reactants       | reactive sulfur / selenium species and by-products (yield)           |                                                                                 |  |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
|                 | MeI                                                                  | PhCH <sub>2</sub> Br / EtBr (for $2^{Zn/Fe}$ )                                  |  |  |  |  |  |  |
| $1a^{Zn} + S_8$ | Me-S-S-Ph (46%)                                                      | PhCH <sub>2</sub> -S-S-Ph (58%)                                                 |  |  |  |  |  |  |
|                 | Me-S-S-S-Me (3%)                                                     | $PhCH_2$ -S-S-CH <sub>2</sub> Ph (3%)                                           |  |  |  |  |  |  |
|                 | Me-S-Ph (8%)                                                         | PhCH <sub>2</sub> -S-S-CH <sub>2</sub> Ph (8%)                                  |  |  |  |  |  |  |
|                 | PhS-SPh (18%)                                                        | PhCH <sub>2</sub> -S-Ph (5%),                                                   |  |  |  |  |  |  |
|                 |                                                                      | PhS-SPh (18%)                                                                   |  |  |  |  |  |  |
| $1b^{Zn} + S_8$ | Me-S-S-2,6-Me <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> (46%)      | PhCH <sub>2</sub> -S-S-2,6-Me <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> (38%) |  |  |  |  |  |  |
|                 | $(2,6-Me_2-C_6H_4-S)_2$ (15%)                                        | $(2,6-Me_2-C_6H_4-S)_2(5\%)$                                                    |  |  |  |  |  |  |
| $1a^{Fe} + S_8$ | Me-S-S-Ph (58%)                                                      | PhCH <sub>2</sub> -S-S-Ph (61%)                                                 |  |  |  |  |  |  |
|                 | PhS-SPh (18%)                                                        | PhCH <sub>2</sub> -S-Ph (5%)                                                    |  |  |  |  |  |  |
|                 |                                                                      | PhS-SPh (16%)                                                                   |  |  |  |  |  |  |
| $1b^{Fe} + S_8$ | Me-S-S-2,6-Me <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> ( $62\%$ ) | PhCH <sub>2</sub> -S-S-2,6-Me <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> (71%) |  |  |  |  |  |  |
|                 | $(2,6-Me_2-C_6H_4-S)_2$ (15%)                                        | $(2,6-Me_2-C_6H_4-S)_2$ (11%)                                                   |  |  |  |  |  |  |
| $2^{Zn} + S_8$  | Me-S-Se-Ph (11%)                                                     | Et-S-Se-Ph (13%)                                                                |  |  |  |  |  |  |
|                 | Ph-Se-Se-Ph (24%)                                                    | Et-S-S-S-Et (11%)                                                               |  |  |  |  |  |  |
|                 | Me-S-S-S-S-Me (13%)                                                  | Et-Se-Ph (4%)                                                                   |  |  |  |  |  |  |
|                 |                                                                      | Ph-Se-Se-Ph (33%)                                                               |  |  |  |  |  |  |
| $2^{Fe} + S_8$  | Me-S-Se-Ph (14%)                                                     | Et-S-Se-Ph (15%)                                                                |  |  |  |  |  |  |
|                 | Ph-Se-Se-Ph (30%)                                                    | Et-S-S-S-Et (13%)                                                               |  |  |  |  |  |  |
|                 |                                                                      | Ph-Se-Se-Ph (34%)                                                               |  |  |  |  |  |  |

## Table S10. X-ray crystallographic data for compounds 1a<sup>Zn</sup>, 1b<sup>Zn</sup>, 2<sup>Zn</sup>, 3<sup>Zn</sup>, 4<sup>Zn</sup>, 5<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>, 6<sup>Zn</sup>

### and $7^{Zn}$ .<sup>a</sup>

| Compounds                                        | 1a <sup>Zn</sup>                                                     | 1b <sup>Zn</sup>                                                     | 2 <sup>Zn</sup>                                                       | 3 <sup>Zn</sup>                                                     | 4 <sup>Zn</sup>                  | <b>5<sup>Zn</sup></b> (BF4)2 | 6 <sup>Zn</sup>                | 7 <sup>Zn</sup>                           |
|--------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|------------------------------|--------------------------------|-------------------------------------------|
| CCDC                                             | 2191754                                                              | 2236890                                                              | 2208800                                                               | 2286781                                                             | 2265576                          | 2226860                      | 2265573                        | 2281940                                   |
| deposition                                       |                                                                      |                                                                      |                                                                       |                                                                     |                                  |                              |                                |                                           |
| number                                           | 272                                                                  | 1.47                                                                 | 1.45                                                                  | 150                                                                 | 140                              | 146                          | 207                            | 140                                       |
| temp (K)                                         | 273                                                                  | 147                                                                  | 145                                                                   | 150                                                                 | 149                              | 146                          | 297                            | 148                                       |
| formula                                          | C <sub>27</sub> H <sub>25</sub> N <sub>3</sub> O <sub>2</sub><br>SZn | C <sub>29</sub> H <sub>29</sub> N <sub>3</sub> O <sub>2</sub><br>SZn | C <sub>27</sub> H <sub>25</sub> N <sub>3</sub> O <sub>2</sub><br>SeZn | C <sub>21</sub> H <sub>20</sub> N <sub>4</sub> O <sub>4</sub><br>Zn | $C_{21}H_{21}Br_2N_3$<br>$O_2Zn$ | C42H40B2<br>F8N6O4Zn2        | $C_{21}H_{20}BrN_3$<br>$O_2Zn$ | $C_{25}H_{21}N_5O_2$<br>S <sub>2</sub> Zn |
| formula<br>weight                                | 520.93                                                               | 548.98                                                               | 567.83                                                                | 457.78                                                              | 572.60                           | 997.16                       | 491.68                         | 552.96                                    |
| Crystal<br>system                                | orthorhombic                                                         | monoclinic                                                           | orthorhombic                                                          | orthorhombic                                                        | triclinic                        | triclinic                    | orthorhombic                   | monoclinic                                |
| space group                                      | Pca2 <sub>1</sub>                                                    | $P2_1/n$                                                             | Pca2 <sub>1</sub>                                                     | Pbca                                                                | P1                               | P1                           | Pbca                           | $P2_1/n$                                  |
| a, Å                                             | 19.047(6)                                                            | 11.2316(14)                                                          | 19.1361(8)                                                            | 15.507(4)                                                           | 7.734(2)                         | 9.8506(14)                   | 15.2257(12)                    | 9.4688(5)                                 |
| b, Å                                             | 12.115(4)                                                            | 14.8312(18)                                                          | 12.0931(5)                                                            | 11.929(3)                                                           | 8.957(3)                         | 10.1305(15)                  | 12.0543(9)                     | 13.1273(8)                                |
| c, Å                                             | 10.586(4)                                                            | 15.672(2)                                                            | 10.4127(4)                                                            | 21.331(5)                                                           | 16.769(5)                        | 10.4984(13)                  | 21.5492(17)                    | 20.2985(11)                               |
| α, deg                                           | 90                                                                   | 90                                                                   | 90                                                                    | 90                                                                  | 96.920(10)                       | 105.549(12)                  | 90                             | 90                                        |
| β, deg                                           | 90                                                                   | 103.532(13)                                                          | 90                                                                    | 90                                                                  | 92.869(10)                       | 90.387(11)                   | 90                             | 97.877(2)                                 |
| γ, deg                                           | 90                                                                   | 90                                                                   | 90                                                                    | 90                                                                  | 92.869(10)                       | 91.566(12)                   | 90                             | 90                                        |
| V, Å <sup>3</sup>                                | 2442.7(14)                                                           | 2538.1(6)                                                            | 2409.65(17)                                                           | 3945.9(17)                                                          | 1062.3(5)                        | 1008.8(2)                    | 3955.0(5)                      | 2499.3(2)                                 |
| Ζ                                                | 4                                                                    | 4                                                                    | 4                                                                     | 8                                                                   | 2                                | 1                            | 8                              | 4                                         |
| ρcalcd, gm/cm <sup>3</sup>                       | 1.417                                                                | 1.437                                                                | 1.565                                                                 | 1.541                                                               | 1.790                            | 1.641                        | 1.651                          | 1.470                                     |
| μ, mm <sup>-1</sup>                              | 1.120                                                                | 1.082                                                                | 2.560                                                                 | 1.282                                                               | 4.940                            | 1.279                        | 3.284                          | 1.182                                     |
| $\theta$ range, deg                              | 1.992-                                                               | 1.916-                                                               | 2.715-                                                                | 2.318-                                                              | 2.600-                           | 2.866-                       | 2.353-                         | 2.267-                                    |
| completeness                                     | 23.889                                                               | 0.998                                                                | 0.998                                                                 | 0.998                                                               | 0.988                            | 0.982                        | 0.992                          | 0.998                                     |
| to $\theta$ , %                                  | 1.000                                                                | 0.990                                                                | 0.770                                                                 | 0.770                                                               | 0.900                            | 0.962                        | 0.772                          | 0.990                                     |
| reflections collected                            | 38165                                                                | 23582                                                                | 26224                                                                 | 28645                                                               | 10448                            | 8880                         | 41854                          | 26743                                     |
| independent<br>reflections                       | 4728                                                                 | 4813                                                                 | 4240                                                                  | 3477                                                                | 4001                             | 3498                         | 3740                           | 4744                                      |
| R(int)                                           | 0.0690                                                               | 0.1444                                                               | 0.0579                                                                | 0.1141                                                              | 0.0428                           | 0.0865                       | 0.0514                         | 0.0648                                    |
| Restraints <sup>b</sup>                          | 1                                                                    | 0                                                                    | 1                                                                     | 5                                                                   | 0                                | 0                            | 0                              | 0                                         |
| parameters                                       | 309                                                                  | 328                                                                  | 309                                                                   | 270                                                                 | 257                              | 290                          | 255                            | 264                                       |
| Max., min.                                       | 0.7453,                                                              | 1.00000,                                                             | 0.7453,                                                               | 0.7452,                                                             | 0.7453,                          | 1.00000,                     | 0.7453,                        | 0.7453,                                   |
| transmission                                     | 0.5752                                                               | 0.25991                                                              | 0.5300                                                                | 0.6011                                                              | 0.4585                           | 0.61984                      | 0.5103                         | 0.6076                                    |
| R1 <sup>c</sup> (wR2) <sup>d</sup>               | 0.0309                                                               | 0.0777                                                               | 0.0289                                                                | 0.0451                                                              | 0.0399                           | 0.0757                       | 0.0262                         | 0.0805                                    |
| [I>2sigma(I)]                                    | (0.0567)                                                             | (0.1676)                                                             | (0.0550)                                                              | (0.1051)                                                            | (0.1045)                         | (0.1615)                     | (0.0611)                       | (0.2142)                                  |
| R1°(wR2)°                                        | 0.0551 (0.0640)                                                      | 0.1338 (0.2056)                                                      | 0.0371 (0.0584)                                                       | 0.0735 (0.1249)                                                     | 0.0461 (0.1084)                  | 0.1155<br>(0.1864)           | 0.0366 (0.0656)                | 0.1220 (0.2486)                           |
| GOF(F2) <sup>e</sup>                             | 1.009                                                                | 1.024                                                                | 1.048                                                                 | 1.037                                                               | 1.020                            | 1.019                        | 1.026                          | 1.026                                     |
| <sup>f</sup> max, min<br>peaks e Å <sup>-3</sup> | 0.295,                                                               | 0.992,                                                               | 0.334,<br>-0.264                                                      | 0.439,                                                              | 2.162,<br>-0.638                 | 0.887,<br>-1.094             | 0.469,<br>-0.380               | 1.667,<br>-2.072                          |

<sup>a</sup>Mo Ka radiation ( $\lambda = 0.71073$  Å). <sup>b</sup>**3**<sup>Zn</sup>, disordered nitrite. <sup>c</sup>R1 =  $\Sigma$ ||Fo|-|Fc||/ $\Sigma$ |Fo|. <sup>d</sup>wR2 = { $\Sigma$ [w(Fo2-Fc2)2]/ $\Sigma$ [w(Fo2)2]}<sup>1/2</sup>. <sup>e</sup>GOF = { $\Sigma$ [w(Fo2-Fc2)2]/(n-p)}<sup>1/2</sup>, where n is the number of data and p is the number of refined parameters. <sup>f</sup>electron density near: **1a**<sup>Zn</sup>, phenyl ring of benzenethiolate; **1b**<sup>Zn</sup>, sulfur atom; **2**<sup>Zn</sup>, selenium atom; **3**<sup>Zn</sup>, one pyridyl ring of the ligand; **4**<sup>Zn</sup>, methyl group of the ligand; **5**<sup>Zn</sup>(BF4)<sub>2</sub>, zinc atom; **6**<sup>Zn</sup>, bromine atom; **7**<sup>Zn</sup>, phenyl ring of the ligand.

| Compounds                          | 1a <sup>Fe</sup>    | 1b <sup>Fe</sup>        | 2 <sup>Fe</sup>                                                    | 5 <sup>Fe</sup> (BPh <sub>4</sub> ) <sub>2</sub> | 8 <sup>Fe</sup>          |
|------------------------------------|---------------------|-------------------------|--------------------------------------------------------------------|--------------------------------------------------|--------------------------|
| CCDC deposition                    | 2227144             | 2227145                 | 2233141                                                            | 2233689                                          | 2288735                  |
| number                             |                     |                         |                                                                    |                                                  |                          |
| temp (K)                           | 155                 | 160                     | 148                                                                | 145                                              | 125                      |
| formula                            | $C_{27}H_{25}FeN_3$ | $C_{29}H_{29}FeN_3O_2S$ | C <sub>27</sub> H <sub>25</sub> FeN <sub>3</sub> O <sub>2</sub> Se | $C_{90}H_{76}B_2Fe_2$                            | $C_{42}H_{40}Fe_2N_8O_9$ |
| Tormula                            | $O_2S$              |                         |                                                                    | N <sub>6</sub> O <sub>4</sub>                    |                          |
| formula weight                     | 511.41              | 539.46                  | 558.31                                                             | 1438.88                                          | 912.52                   |
| Crystal system                     | orthorhombic        | monoclinic              | orthorhombic                                                       | triclinic                                        | monoclinic               |
| space group                        | Pca2 <sub>1</sub>   | $P2_1/n$                | Pca2 <sub>1</sub>                                                  | P1                                               | $P2_1/c$                 |
| a, Å                               | 19.0369(15)         | 11.3033(5)              | 19.172(5)                                                          | 11.1974(12)                                      | 10.613(4)                |
| b, Å                               | 12.0159(9)          | 14.9444(6)              | 12.076(3)                                                          | 12.5730(12)                                      | 15.673(6)                |
| c, Å                               | 10.4305(8)          | 15.7897(7)              | 10.439(3)                                                          | 14.8997(12)                                      | 14.617(6)                |
| α, deg                             | 90                  | 90                      | 90                                                                 | 103.670(3)                                       | 90                       |
| β, deg                             | 90                  | 103.715(4)              | 90                                                                 | 110.022(3)                                       | 100.532(12)              |
| γ, deg                             | 90                  | 90                      | 90                                                                 | 104.957(3)                                       | 90                       |
| V, Å <sup>3</sup>                  | 2385.9(3)           | 2591.2(2)               | 2416.7(11)                                                         | 1778.1(3)                                        | 2390.5(16)               |
| Ζ                                  | 4                   | 4                       | 4                                                                  | 1                                                | 2                        |
| $\rho_{calcd}, gm/cm^3$            | 1.424               | 1.383                   | 1.534                                                              | 1.344                                            | 1.268                    |
| μ, mm <sup>-1</sup>                | 0.750               | 0.694                   | 2.160                                                              | 0.468                                            | 0.664                    |
| 0 man an dag                       | 2.730-              | 1.902-                  | 2.713-                                                             | 2.767-                                           | 2.549-                   |
| $\theta$ range, deg                | 25.675              | 25.681                  | 25.776                                                             | 25.070                                           | 25.841                   |
| completeness to $\theta$ , %       | 0.997               | 0.991                   | 0.998                                                              | 0.990                                            | 0.988                    |
| reflections collected              | 22153               | 24063                   | 23000                                                              | 16800                                            | 22154                    |
| independent                        | 4519                | 4868                    | 4643                                                               | 6248                                             | 4562                     |
| reflections                        |                     |                         |                                                                    |                                                  |                          |
| R(int)                             | 0.0462              | 0.0440                  | 0.0552                                                             | 0.0618                                           | 0.0631                   |
| Restraints <sup>b</sup>            | 1                   | 0                       | 1                                                                  | 1                                                | 4                        |
| parameters                         | 309                 | 328                     | 309                                                                | 468                                              | 273                      |
| Max., min.                         | 1.00000,            | 1.00000,                | 0.7453,                                                            | 0.7452,                                          | 0.7453,                  |
| transmission                       | 0.69378             | 0.75874                 | 0.6194                                                             | 0.6730                                           | 0.5331                   |
| R1 <sup>c</sup> (wR2) <sup>d</sup> | 0.0305              | 0.0296                  | 0.0305                                                             | 0.0659                                           | 0.0545                   |
| [I>2sigma(I)]                      | (0.0637)            | (0.0743)                | (0.0644)                                                           | (0.1421)                                         | (0.1467)                 |
| $R1^{\circ}(wR2)^{\circ}$          | 0.0347              | 0.0327                  | 0.0398                                                             | 0.1019                                           | 0.0727                   |
|                                    | (0.0663)            | (0.0764)                | (0.0683)                                                           | (0.1637)                                         | (0.1604)                 |
| GOF(F2) <sup>e</sup>               | 1.036               | 1.027                   | 1.036                                                              | 1.035                                            | 1.092                    |
| fmax min peaks e $\lambda^{-3}$    | 0.181,              | 0.363,                  | 0.232,                                                             | 1.401,                                           | 0.391                    |
| max, mm peaks,e.A                  | -0.270              | -0.279                  | -0.373                                                             | -0.561                                           | -0.617                   |

Table S11. X-ray crystallographic data for compounds 1a<sup>Fe</sup>, 1b<sup>Fe</sup>, 2<sup>Fe</sup>, 5<sup>Fe</sup>(BPh<sub>4</sub>)<sub>2</sub> and 8<sup>Fe</sup>.<sup>a</sup>

<sup>a</sup>Mo Ka radiation ( $\lambda = 0.71073$  Å). <sup>b</sup>**8**<sup>Fe</sup>, disordered nitrite and aldehyde group. <sup>c</sup>R1 =  $\Sigma$ ||Fo|-|Fc||/ $\Sigma$ |Fo|. <sup>d</sup>wR2 = { $\Sigma$ [w(Fo2-Fc2)2]/ $\Sigma$ [w(Fo2)2]}<sup>1/2</sup>. <sup>e</sup>GOF = { $\Sigma$ [w(Fo2-Fc2)2]/(n-p)}<sup>1/2</sup>, where n is the number of data and p is the number of refined parameters. <sup>f</sup>electron density near: **1a**<sup>Fe</sup>, iron atom; **1b**<sup>Fe</sup>, phenyl ring of the ligand; **2**<sup>Fe</sup>, selenium; **5**<sup>Fe</sup>(BPh<sub>4</sub>)<sub>2</sub>, phenyl ring of the ligand; **8**<sup>Fe</sup>, disordered nitrite.



Figure S1. <sup>1</sup>H NMR (300 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>).



Figure S2. <sup>13</sup>C NMR (75 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>).



Figure S3. <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$  (1b<sup>Zn</sup>).



Figure S4. <sup>13</sup>C NMR (150 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$  (1b<sup>Zn</sup>).



Figure S5. <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>).



Figure S6. <sup>13</sup>C NMR (151 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>).



FigureS7. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(ONO)] (3<sup>Zn</sup>).



Figure S8. <sup>13</sup>C NMR (150 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(ONO)] (3<sup>Zn</sup>).



Figure S9. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of  $[(Py2ald)Zn(Br)_2] (4^{Zn})$ .



Figure S10. <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) spectrum of  $[(Py2ald)Zn(Br)_2] (4^{Zn})$ .



Figure S11. <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$ .



Figure S12. <sup>13</sup>C NMR (75 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn]<sub>2</sub>(BF<sub>4</sub>)<sub>2</sub>(5<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>).



Figure S13. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(Br)] (6<sup>Zn</sup>).



Figure S14. <sup>13</sup>C NMR (150 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(Br)] (6<sup>Zn</sup>).


Figure S15. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) spectrum of [(Py2ald)Zn(mnt)] (7<sup>Zn</sup>).



Figure S16. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) spectrum of [(Py2ald)Zn(mnt)] (7<sup>Zn</sup>).



Figure S17. <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) spectrum of[(Py2ald)Zn(mnt)] (7<sup>Zn</sup>).



**Figure S18.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2$  ( $5^{Zn}(BF_4)_2$ ) shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0846, observed data, green line).



**Figure S19.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BF_4)_2(5^{Fe}(BF_4)_2)$  shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0904, observed data, green line).



**Figure S20.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0902, observed data, green line).



Figure S21. IR spectra (ATR) of [(Py2ald)Zn(ONO)] ( $3^{Zn}$ ) along with that of  $[(Py2ald)Zn]_2(BF_4)_2$  ( $5^{Zn}(BF_4)_2$ ) used as a control.



Figure S22. IR spectra (KBr pellet) of [(Py2ald)Zn(mnt)] ( $7^{Zn}$ ) shows v<sub>O-H (H-bonded)</sub> = 3485 cm<sup>-1</sup>, v<sub>CN</sub> = 2195 cm<sup>-1</sup> and v<sub>CHO</sub> = 1652 cm<sup>-1</sup>.



**Figure S23.** Electronic absorption spectroscopic signatures for the iron compounds in CH<sub>2</sub>Cl<sub>2</sub> (0.25 mM).



Figure S24. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>).



**Figure S25.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Fe(SPh)] ( $1a^{Fe}$ ), recorded in a coaxial NMR tube, with DMSO-d<sup>6</sup> inside. Inset shows a shift in the peak of DMSO-d<sup>6</sup>. Solution magnetic moment ( $\mu_{eff}$ ) = 4.63 BM (calculated spin only magnetic moment = 4.90 BM).



Figure S26. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Fe(SC<sub>6</sub>H<sub>4</sub>-2,6-Me<sub>2</sub>)] (1b<sup>Fe</sup>).



Figure S27. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of[(Py2ald)Fe(SC<sub>6</sub>H<sub>4</sub>-2,6-Me<sub>2</sub>)] (1b<sup>Fe</sup>).recorded in a coaxial NMR tube, with DMSO-d<sup>6</sup> inside. Inset shows a shift in the peak of DMSO-d<sup>6</sup>. Solution magnetic moment ( $\mu_{eff}$ ) = 4.71 BM (calculated spin only magnetic moment = 4.90 BM).



Figure S28. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>).



**Figure S29.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of[(Py2ald)Fe(SePh)] ( $2^{Fe}$ ) recorded in a coaxial NMR tube, with DMSO-d<sup>6</sup> inside. Inset shows a shift in the peak of DMSO-d<sup>6</sup>. Solution magnetic moment ( $\mu_{eff}$ ) = 4.79 BM (calculated spin only magnetic moment = 4.90 BM).



Figure S30. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Fe]<sub>2</sub>(BF<sub>4</sub>)<sub>2</sub>(5<sup>Fe</sup>(BF<sub>4</sub>)<sub>2</sub>).



**Figure S31.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Fe]_2(BF_4)_2(5^{Fe}(BF_4)_2)$ recorded in a coaxial NMR tube, with inside DMSO-d<sup>6</sup>, inset shows a shift in the peak of DMSO-d<sup>6</sup>. Solution magnetic moment ( $\mu_{eff}$ ) = 8.52 BM (calculated spin only magnetic moment = 8.94 BM).



Figure S32. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Fe]<sub>2</sub>(BPh<sub>4</sub>)<sub>2</sub>(5<sup>Fe</sup>(BPh<sub>4</sub>)<sub>2</sub>).



**Figure S33.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Fe]_2(BPh_4)_2(5^{Fe}(BPh_4)_2)$ , recorded in a coaxial NMR tube, with DMSO-d<sup>6</sup> inside, inset shows a shift in the peak of DMSO-d<sup>6</sup>. Solution magnetic moment ( $\mu_{eff}$ ) = 8.62 BM (calculated spin only magnetic moment = 8.94 BM).



Figure S34. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O](8<sup>Fe</sup>).



**Figure S35.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O](**8**<sup>Fe</sup>),recorded in a coaxial NMR tube, with DMSO-d<sup>6</sup> inside, inset shows a shift in the peak of water.Solution magnetic moment ( $\mu_{eff}$ ) = 2.43 BM (calculated spin only magnetic moment considering 10 unpaired electrons = 10.95 BM and calculated spin only magnetic moment for only two unpaired electron is 2.83).



**Figure S36.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with 1 equiv of ( $Cp_2Fe$ )( $BF_4$ ), shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0845, observed data, green line).



**Figure S37.** <sup>1</sup>H NMR (300 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with 1 equiv of (Cp<sub>2</sub>Fe)(BF<sub>4</sub>).



**Figure S38.** GC-MS data for the identification and yield (31%) calculation of diphenyl disulfide produced in the reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with 1 equiv of (Cp<sub>2</sub>Fe)(BF<sub>4</sub>).



**Figure S39.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of  $[(Py2ald)Zn(ONO)](3^{Zn})$  with 1 equiv of PhSH shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, green line; 410.0844, observed data, purple line).



**Figure S40.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(ONO)] (**3**<sup>Zn</sup>) with 1 equiv of PhSH.



**Figure S41.** GC-MS data shows that no diphenyldisulfide was generated in the reaction of [(Py2ald)Zn(ONO)] (**3**<sup>Zn</sup>) with 1 equiv of NaSPh.



**Figure S42.** GC-MS data for the identification and yield (32%) calculation of diphenyldisulfide produced in the reaction of [(Py2ald)Zn(ONO)] (**3**<sup>*Z*n</sup>) with 1 equiv of PhSH.



**Figure S43.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) obtained from the reaction of [(Py2ald)Zn(ONO)] (**3**<sup>Zn</sup>) with 2 equiv of PhSH.



**Figure S44.** GC-MS data for the identification and yield (38%) calculation of diphenyldisulfide produced in the reaction of [(Py2ald)Zn(ONO)] (**3**<sup>Zn</sup>) with 2 equiv of PhSH.



**Figure S45.** IR spectra of [(TPP)Co(NO)] ( $v_{NO} = 1696 \text{ cm}^{-1}$ ) generated by the trapping of NO gas (generated by the reaction of [(Py2ald)Zn(ONO)] ( $\mathbf{3}^{\mathbf{Zn}}$ ) with PhSH, PhCH<sub>2</sub>SH and PhSeH) by (TPP)Co<sup>II</sup>.



**Figure S46.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of (TPP)Co<sup>II</sup> after trapping the NO gas generated by the reaction of [(Py2ald)Zn(ONO)] (**3**<sup>Zn</sup>) with (a) <sup>*t*</sup>BuSH (2 equiv), (b) PhCH<sub>2</sub>SH (2 equiv), (c) PhSH (1 equiv), (d) PhSH ( 2 equiv) and (e) PhSeH (2 equiv).



**Figure S47.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of [(Py2ald)Zn(SePh)] (**2**<sup>Zn</sup>) obtained from the reaction of [(Py2ald)Zn(ONO)] (**3**<sup>Zn</sup>) with 2 equiv of PhSeH.



**Figure S48.** Gas chromatographic data for the identification and yield calculation (35%) of diphenyldiselenide produced in the reaction of [(Py2ald)Zn(ONO)] ( $3^{Zn}$ ) with 2 equiv of PhSeH.



**Figure S49.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2((BF_4)_2 (\mathbf{5}^{Zn}(BF_4)_2))$  obtained from the reaction of  $[(Py2ald)Zn(ONO)] (\mathbf{3}^{Zn})$  and 2 equiv of PhCH<sub>2</sub>SH.



**Figure S50.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2((BF_4)_2 (5^{Zn}(BF_4)_2) \text{ obtained}$  from the reaction of  $[(Py2ald)Zn(ONO)] (3^{Zn})$  and 2 equiv of PhCH<sub>2</sub>SH shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, green line; 410.0842, observed data, purple line).



**Figure S51.** Gas chromatographic data for the identification and yield calculation of dibenzyldisulfide produced in the reaction of [(Py2ald)Zn(ONO)] (**3**<sup>Zn</sup>) with 2 equiv of PhCH<sub>2</sub>SH. Yields: 32% (PhCH<sub>2</sub>S-SCH<sub>2</sub>Ph), 53% (unreacted PhCH<sub>2</sub>SH).



Figure S52. <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of the unreacted [(Py2ald)Zn(ONO)]  $(3^{Zn})$  obtained from the reaction of  $3^{Zn}$  with 2 equiv of 'BuSH. Note that the yield of NO in this reaction was only 9%.



**Figure S53.** Cyclic voltammograms of  $1a^{Fe}$  (a)  $1b^{Fe}$  (b),  $2^{Fe}$  (c),  $5^{Fe}$  (d), and  $8^{Fe}$  (e) in CH<sub>2</sub>Cl<sub>2</sub> (multiple scans, scan rate = 100 mV/scan). See Figure S54 for the cyclic voltammograms of Zn(II) complexes which helped to identify the redox events related with the Py2ald<sup>1–</sup> ligand.



Figure S54. Cyclic voltammograms of  $1a^{Zn}$  (a)  $1b^{Zn}$  (b),  $2^{Zn}$  (c),  $5^{Zn}$  (d), and  $3^{Zn}$  (e) in CH<sub>2</sub>Cl<sub>2</sub> (multiple scans, scan rate = 100 mV/scan).



**Figure S55.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction between [(Py2ald)Fe(SPh)] (**1a**<sup>Fe</sup>) with 1 equiv of (Cp<sub>2</sub>Fe)(BF<sub>4</sub>) in the presence of NaBPh<sub>4</sub>, shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0928, observed data, green line).



**Figure S56.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction between [(Py2ald)Fe(SePh)] (**2**<sup>Fe</sup>) with 1 equiv of  $(Cp_2Fe)(BF_4)$ ) in the presence of NaBPh<sub>4</sub>, shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0872, observed data, green line).



**Figure S57.** GC-MS data for the identification and yield (33%) calculation of diphenyl disulfide produced in the reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with 1 equiv of (Cp<sub>2</sub>Fe)(BF<sub>4</sub>) in the presence of NaBPh<sub>4</sub>.



**Figure S58.** GC-MS data for the identification and yield (34%) calculation of diphenyl diselenide produced in the reaction of [(Py2ald)Fe(SePh)] (**2**<sup>Fe</sup>) with 1 equiv of  $(Cp_2Fe)(BF_4)$  in the presence of NaBPh<sub>4</sub>.



**Figure S59.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of  $[(Py2ald)Fe(S-C_6H_4-2,6-Me_2)]$  (**1b**<sup>Fe</sup>) with 1 equiv of  $(Cp_2Fe)(BF_4)$  in the presence of NaBPh\_4, shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0916, observed data, green line).



**Figure S60.** GC-MS data for the identification and yield (33%) calculation of 1, 2-bis(2,6dimethylphenyl)disulfide produced in the reaction of  $[(Py2ald)Fe(S-C_6H_4-2,6-Me_2)]$  (**1b**<sup>Fe</sup>) with 1 equiv of (Cp<sub>2</sub>Fe)(BF<sub>4</sub>) in the presence of NaBPh<sub>4</sub>.



**Figure S61.** IR spectra of [(TPP)Co(NO)] ( $v_{NO} = 1696 \text{ cm}^{-1}$ ) obtained by the trapping of NO gas which was generated by the reaction of [(Py2ald)Fe]<sub>2</sub>(BF<sub>4</sub>)<sub>2</sub> (**5**<sup>Fe</sup>(BF<sub>4</sub>)<sub>2</sub>) and [(Py2ald)Fe(EPh)] (E = S, **1a**<sup>Fe</sup>, E = Se, **2**<sup>Fe</sup>) with 4 and 3 equiv of (Bu<sub>4</sub>N)(NO<sub>2</sub>), respectively.



**Figure S62.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra of (TPP)Co<sup>II</sup> after trapping the NO gas which was generated by the reaction of  $[(Py2ald)Fe]_2(BF_4)_2$  (**5**<sup>Fe</sup>(BF<sub>4</sub>)<sub>2</sub>) and [(Py2ald)Fe(EPh)] (E = S, **1a**<sup>Fe</sup>, E = Se, **2**<sup>Fe</sup>) with 4 and 3 equiv of (Bu<sub>4</sub>N)(NO<sub>2</sub>), respectively.



**Figure S63.** GC-MS data for the identification and yield (35%) calculation of diphenyldisulfide produced in the reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with 3 equiv of (Bu<sub>4</sub>N)(NO<sub>2</sub>).



**Figure S64.** Gas chromatographic data for the identification and yield calculation of diphenyldiselenide (38%) produced in the reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with 3 equiv of (Bu<sub>4</sub>N)(NO<sub>2</sub>).



**Figure S65.** IR spectra (ATR) of [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O] (**8**<sup>Fe</sup>) and the corresponding <sup>15</sup>N labelled compound, **8**<sup>Fe</sup>(<sup>15</sup>NO<sub>2</sub>).



**Figure S66** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BF_4)_2$  (**5**<sup>Fe</sup>(BF\_4)\_2) obtained from the reaction between  $[{(Py2ald)(ONO)Fe}_2-\mu_2-O]$  (**8**<sup>Fe</sup>) and 4 equiv of Cp<sub>2</sub>Co shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0870, observed data, green line).



**Figure S67.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BF_4)_2(\mathbf{5}^{Fe}(BPh_4)_2)$  obtained from the reaction between  $[{(Py2ald)(ONO)Fe}_2-\mu_2-O]$  ( $\mathbf{8}^{Fe}$ ) with 4 equiv of PhSH (in the presence of 2 equiv of NaBPh<sub>4</sub>) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0913, observed data, green line).



**Figure S68.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BF_4)_2(5^{Fe}(BPh_4)_2)$  obtained from the reaction between  $[{(Py2ald)(ONO)Fe}_2-\mu_2-O](8^{Fe})$  with 4 equiv of PhSeH (in the presence of 2 equiv of NaBPh<sub>4</sub>) shows the presence of  $[(Py2ald)Fe]^+$  (m/z:402.0905, simulated data, orange line; 402.0934, observed data, green line).



**Figure S69.** IR spectra of [(TPP)Co(NO)] ( $v_{NO} = 1696 \text{ cm}^{-1}$ ) obtained by the trapping of NO gas which was generated by the reaction of [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O] (**8**<sup>Fe</sup>) with 4 and 6 equiv of PhEH (E = S, Se).



**Figure S70.** <sup>1</sup>H NMR (400 MHz, CDCl3) spectra of (TPP)Co<sup>II</sup> after trapping the NO gas generated by the reaction of [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O] (**8**<sup>Fe</sup>) with 4 and 6 equiv of PhEH (E = S, Se).



**Figure S71.** GC-MS data for the identification and yield calculation (1.34 equiv) of diphenyldisulfide produced in the reaction of  $[{(Py2ald)(ONO)Fe}_2-\mu_2-O]$  (**8**<sup>Fe</sup>) with 4 equiv PhSH.



**Figure S72.** GC-MS data for the identification and yield calculation (1.32 equiv) of diphenyldiselenide produced in the reaction of [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O] (**8**<sup>Fe</sup>) with 4 equiv PhSeH.



**Figure S73.** GC-MS data for the identification and yield (1.41 equiv) calculation of diphenyldisulfide produced in the reaction of  $[{(Py2ald)(ONO)Fe}_2-\mu_2-O](8^{Fe})$  with 6 equiv of PhSH.



**Figure S74.** GC-MS data for the identification and yield calculation (1.41 equiv) of diphenyldiselenide produced in the reaction of [{(Py2ald)(ONO)Fe}<sub>2</sub>- $\mu_2$ -O] (**8**<sup>Fe</sup>) with 6 equiv of PhSeH.



**Figure S75.** GC-MS data for the identification and yield (58%) calculation of methylphenyl sulfide produced in the reaction of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with MeI in 1:1 ratio.



**Figure S76.** GC-MS data for the identification and yield (56%) calculation of benzyl(phenyl)sulfide produced in the reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with PhCH<sub>2</sub>Br in 1:1 ratio.


% yield for S-phenyl ethanethioate:



**Figure S77.** GC-MS data for the identification and yield (62%) calculation of S-phenyl ethanethioate produced in the reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with MeCOCl in 1:1 ratio.



**Figure S78.** GC-MS data for the identification and yield (72%) calculation of S-phenyl benzothioate produced in the reaction of [(Py2ald)Zn(SPh)] (1a<sup>Zn</sup>) with PhCOCl in 1:1 ratio.



**Figure S79.** Gas chromatographic data for the identification and yield (38%) calculation of bis(phenylthio)methane produced in the reaction of [(Py2ald)Zn(SPh)] (1 $a^{Zn}$ ) with CH<sub>2</sub>Br<sub>2</sub> in 1:1 ratio.



**Figure S80.** Gas chromatographic data for the identification and yield (69%) calculation of methylphenyl sulfide produced in the reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with MeI in 1:1 ratio.



**Figure S81.** GC-MS data for the identification and yield (88%) calculation of benzyl(phenyl)sulfide produced in the reaction of [(Py2ald)Fe(SPh)] (**1a**<sup>Fe</sup>) with PhCH<sub>2</sub>Br in 1:1 ratio.



**Figure S82.** GC-MS data for the identification and yield (62%) calculation of S-phenyl ethanethioate produced in the reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with MeCOCl in 1:1 ratio.



**Figure S83.** GC-MS data for the identification and yield (83%) calculation of S-phenyl benzothioate produced in the reaction of [(Py2ald)Fe(SPh)] (1a<sup>Fe</sup>) with PhCOCl in 1:1 ratio.



**Figure S84.** GC-MS data for the identification and yield (46%) calculation of bis(phenylthio)methane produced in the reaction of [(Py2ald)Fe(SPh)] (**1a**<sup>Fe</sup>) with CH<sub>2</sub>Br<sub>2</sub> in 1:1 ratio.



**Figure S85.** GC-MS data for the identification and yield (33%) calculation of methyl(phenyl)selane produced in the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with MeI in 1:1 ratio.



**Figure S86.** GC-MS data for the identification and yield (57%) calculation of benzyl(phenyl)selane produced in the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with PhCH<sub>2</sub>Br in 1:1 ratio.



**Figure S87.** GC-MS data for the identification and yield (45%) calculation of Se-phenyl ethaneselenoate produced in the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with MeCOCl in 1:1 ratio.



**Figure S88.** GC-MS data for the identification and yield (57%) calculation of Se-phenyl benzoselenoate produced in the reaction of  $[(Py2ald)Zn(SePh)](2^{Zn})$  with PhCOCl in 1:1 ratio.



**Figure S89.** GC-MS data for the identification and yield (37%) calculation of bis(phenylselanyl)methane produced in the reaction of  $[(Py2ald)Zn(SePh)](2^{Zn})$  with  $CH_2Br_2$  in 1:1 ratio.



**Figure S90.** GC-MS data for the identification and yield (31%) calculation of methyl(phenyl)selane produced in the reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with MeI in 1:1 ratio.



**Figure S91.** GC-MS data for the identification and yield (70%) calculation of benzyl(phenyl)selane produced in the reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with PhCH<sub>2</sub>Br in 1:1 ratio.



**Figure S92.** GC-MS data for the identification and yield (48%) calculation of Se-phenyl ethaneselenoate produced in the reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with MeCOCl in 1:1 ratio.



**Figure S93.** GC-MS data for the identification and yield (63%) calculation of Se-phenyl benzoselenoate produced in the reaction of [(Py2ald)Fe(SePh)] (**2**<sup>Fe</sup>) with PhCOCl in 1:1 ratio.



**Figure S94.** GC-MS data for the identification and yield (44%) calculation of bis(phenylselanyl)methane produced in the reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with CH<sub>2</sub>Br<sub>2</sub> in 1:1 ratio.



**Figure 95.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with MeI in DMF.



**Figure S96.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with PhCH<sub>2</sub>Br in DMF.



**Figure S97.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with MeC(O)Cl in DMF.



**Figure S98.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with PhC(O)Cl in MeCN.



**Figure S99.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with CH<sub>2</sub>Br<sub>2</sub> in DMF.



**Figure S100.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SePh)] (**2**<sup>Zn</sup>) with MeI in DMF solution.



**Figure S101.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SePh)] (**2**<sup>Zn</sup>) with PhCH<sub>2</sub>Br in DMF.



**Figure S102.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SePh)] (**2**<sup>Zn</sup>) with MeC(O)Cl in DMF solution.



**Figure S103.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SePh)] (**2**<sup>Zn</sup>) with PhC(O)Cl in MeCN.



**Figure S104.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SePh)] (**2**<sup>Zn</sup>) with CH<sub>2</sub>Br<sub>2</sub> in DMF.



**Figure S105.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with MeI shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0825, observed data, green line).



**Figure S106.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with PhCH<sub>2</sub>Br shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0829, observed data, green line).



**Figure S107.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with MeC(O)Cl, which shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0837, observed data, green line).



**Figure S108.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with PhC(O)Cl, shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0887, observed data, green line).



**Figure S109.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with  $CH_2Br_2$  shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0858, observed data, green line).



**Figure S110.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of  $[(Py2ald)Zn(SePh)](2^{Zn})$  with MeI shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0850, observed data, green line).



**Figure S111.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of  $[(Py2ald)Zn(SePh)](2^{Zn})$  with PhCH<sub>2</sub>Br, which shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0846, observed data, green line).



**Figure S112.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with MeC(O)Cl shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0841, observed data, green line).



**Figure S113.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of  $[(Py2ald)Zn(SePh)](2^{Zn})$  with PhC(O)Cl, which shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0839, observed data, green line).



**Figure S114.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with CH<sub>2</sub>Br<sub>2</sub> shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0853, observed data, green line).



**Figure S115.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  ( $5^{Fe}(BPh_4)_2$ ) obtained from the reaction of [(Py2ald)Fe(SPh)] ( $1a^{Fe}$ ) with MeI ((in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0888, observed data, green line).



**Figure S116.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SPh)] (**1a**<sup>Fe</sup>) with PhCH<sub>2</sub>Br (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, green line; 402.0919, observed data, orange line).



**Figure S117.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SPh)] (**1a**<sup>Fe</sup>) with MeC(O)Cl (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0880, observed data, green line).



**Figure S118.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SPh)] (**1a**<sup>Fe</sup>) with PhC(O)Cl (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0896, observed data, green line).



**Figure S119.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SPh)] (**1a**<sup>Fe</sup>) with CH<sub>2</sub>Br<sub>2</sub> (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0945, observed data, green line).



**Figure S120.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  ( $5^{Fe}(BPh_4)_2$ ) obtained from the reaction of [(Py2ald)Fe(SePh)] ( $2^{Fe}$ ) with MeI (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0928,observed data, purple line).



**Figure S121.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SePh)] (**2**<sup>Fe</sup>) with PhCH<sub>2</sub>Br (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0932, observed data, green line).



**Figure S122.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SePh)] (**2**<sup>Fe</sup>) with MeC(O)Cl (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0916, simulated data, orange line; 402.0901, observed data, green line).



**Figure S123.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SePh)] (**2**<sup>Fe</sup>) with PhC(O)Cl (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0920, observed data, green line).



**Figure S124.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SePh)] (**2**<sup>Fe</sup>) with CH<sub>2</sub>Br<sub>2</sub> (in the presence of 2 equiv of NaBPh\_4) shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0916, observed data, green line).



Figure S125. GC-MS data for the identification and yield calculation of 1-methyl-2phenyldisulfide (Me-S-S-Ph, yield = 46%) produced in the reaction of [(Py2ald)Zn(SPh)]  $(1a^{Zn})$  with S<sub>8</sub> and MeI.



Figure S126. Gas chromatographic data for the identification and yield calculation of 1-benzyl-2-phenyldisulfide (PhCH<sub>2</sub>-S-S-Ph, yield = 58%) produced in the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with S<sub>8</sub> and PhCH<sub>2</sub>Br in 1:1 ratio.



**Figure S127.** GC-MS data for the identification and yield calculation of 1-(2,6dimethylphenyl)-2-methyldisulfide (Me-S-S-2,6-Me<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, yield = 46%) produced in the reaction of [(Py2ald)Zn(SC<sub>6</sub>H<sub>4</sub>-2,6-Me<sub>2</sub>)] (**1b**<sup>Zn</sup>) with S<sub>8</sub> and MeI.



**Figure S128.** GC-MS data for the identification and yield calculation of 1-benzyl-(2,6-dimethylphenyl)-2-methyldisulfide (PhCH<sub>2</sub>-S-S-2,6-Me<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, yield = 38%) produced in the reaction of [(Py2ald)Zn(SC<sub>6</sub>H<sub>4</sub>-2,6-Me<sub>2</sub>)] (**1b**<sup>Zn</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br.



**Figure S129.** GC-MS data for the identification and yield calculation of methyl(phenylselanyl)sulfide (Me-S-Se-Ph, yield = 11%) produced in the reaction of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>) with S<sub>8</sub> and MeI.



Figure S130. GC-MS data for the identification and yield calculation of ethyl(phenylselanyl)sulfide (Et-S-Se-Ph, yield = 13%) produced in the reaction of [(Py2ald)Zn(SePh)] (2<sup>Zn</sup>) with S<sub>8</sub> and EtBr.



Figure S131. GC-MS data for the identification and yield calculation of 1-methyl-2phenyldisulfide (Me-S-S-Ph, yield = 58%) produced in the reaction of [(Py2ald)Fe(SPh)] $(1a^{Fe})$  with S<sub>8</sub> and MeI.



Figure S132. GC-MS data for the identification and yield calculation of 1-benzyl-2-phenyldisulfide (PhCH<sub>2</sub>-S-S-Ph, yield = 61%) produced in the reaction of [(Py2ald)Fe(SPh)] ( $1a^{Fe}$ ) with S<sub>8</sub> and PhCH<sub>2</sub>Br.



**Figure S133.** GC-MS data for the identification and yield calculation of 1-(2,6dimethylphenyl)-2-methyldisulfide (Me-S-S-2,6-Me<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, yield = 62%) produced in the reaction of [(Py2ald)Fe(SC<sub>6</sub>H<sub>4</sub>-2,6-Me<sub>2</sub>)] (**1b**<sup>Fe</sup>) with S<sub>8</sub> and MeI.



**Figure S134.** GC-MS data for the identification and yield calculation of 1-benzyl-(2,6-dimethylphenyl)-2-methyldisulfide (PhCH<sub>2</sub>-S-S-2,6-Me<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, yield = 71%) produced in the reaction of [(Py2ald)Fe(SC<sub>6</sub>H<sub>4</sub>-2,6-Me<sub>2</sub>)] (**1b**<sup>Fe</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br.



**Figure S135.** GC-MS data for the identification and yield calculation of methyl(phenylselanyl)sulfide (Me-S-Se-Ph, yield = 14%) produced in the reaction of [(Py2ald)Fe(SePh)] (**2**<sup>Fe</sup>) with S<sub>8</sub> and MeI.



Figure S136. Gas chromatographic data for the identification and yield calculation of ethyl(phenylselanyl)sulfide (Et-S-Se-Ph, yield = 15%) produced in the reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with S<sub>8</sub> and EtBr.



**Figure S137.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with S<sub>8</sub> and MeI.



**Figure S138.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SPh)] (**1a**<sup>Zn</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br.


**Figure S139.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of  $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$  (**1b**<sup>Zn</sup>) with S<sub>8</sub> and MeI.



**Figure S140.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of  $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$  (**1b**<sup>Zn</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br.



**Figure S141.** <sup>1</sup>H NMR (600 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SePh)] (**2**<sup>Zn</sup>) with S<sub>8</sub> and MeI.



**Figure S142.** <sup>1</sup>H NMR (400 MHz, DMSO-d<sup>6</sup>) spectrum of  $[(Py2ald)Zn]_2(BF_4)_2$  (**5**<sup>Zn</sup>(BF<sub>4</sub>)<sub>2</sub>) obtained from the reaction of [(Py2ald)Zn(SePh)] (**2**<sup>Zn</sup>) with S<sub>8</sub> and EtBr.



**Figure S143.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) with S<sub>8</sub> and MeI shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0815, observed data, green line).



**Figure S144.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of [(Py2ald)Zn(SPh)] ( $1a^{Zn}$ ) S<sub>8</sub> and PhCH<sub>2</sub>Br, which shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0849, observed data, green line).



**Figure S145.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of  $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$  (**1b**<sup>Zn</sup>) with S<sub>8</sub> and MeI, which shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0819, observed data, green line).



**Figure S146.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2(5^{Zn}(BF_4)_2)$  obtained from the reaction of  $[(Py2ald)Zn(SC_6H_4-2,6-Me_2)]$  (1b<sup>Zn</sup>) with S<sub>8</sub> and PhCH<sub>2</sub>Br shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0831, observed data, green line).



**Figure S147.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2$  ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with S<sub>8</sub> and MeI shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0837, observed data, green line).



**Figure S148.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Zn]_2(BF_4)_2$  ( $5^{Zn}(BF_4)_2$ ) obtained from the reaction of [(Py2ald)Zn(SePh)] ( $2^{Zn}$ ) with S<sub>8</sub> and EtBr shows the presence of  $[(Py2ald)Zn]^+$  (m/z: 410.0847, simulated data, orange line; 410.0849, observed data, green line).



**Figure S149.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (**5**<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SPh)] (**1a**<sup>Fe</sup>) with S<sub>8</sub> and MeI, which shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0924, observed data, green line).



**Figure S150.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  ( $5^{Fe}(BPh_4)_2$ ) obtained from the reaction of [(Py2ald)Fe(SPh)] ( $1a^{Fe}$ ) with S<sub>8</sub> and PhCH<sub>2</sub>Br, which shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0923, observed data, green line).



**Figure S151.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  ( $5^{Fe}(BPh_4)_2$ ) obtained from the reaction of  $[(Py2ald)Fe(SC_6H_4-2,6-Me_2)]$  ( $1b^{Fe}$ ) with S<sub>8</sub> and MeI, which shows the presence of  $[(Py2ald)Fe]^+$  (m/z:402.0905, simulated data,orange line; 402.0908,observed data, green line).



**Figure S152.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  ( $5^{Fe}(BPh_4)_2$ ) obtained from the reaction of  $[(Py2ald)Fe(SC_6H_4-2,6-Me_2)]$  ( $1b^{Fe}$ ) with S<sub>8</sub> and PhCH<sub>2</sub>Br shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0888, observed data, green line).



**Figure S153.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  ( $5^{Fe}(BPh_4)_2$ ) obtained from the reaction of [(Py2ald)Fe(SePh)] ( $2^{Fe}$ ) with S<sub>8</sub> and MeI, which shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0929, observed data, green line).



**Figure S154.** Mass spectrometric data (in MeCN) for  $[(Py2ald)Fe]_2(BPh_4)_2$  (5<sup>Fe</sup>(BPh\_4)\_2) obtained from the reaction of [(Py2ald)Fe(SePh)] (2<sup>Fe</sup>) with S<sub>8</sub> and EtBr, which shows the presence of  $[(Py2ald)Fe]^+$  (m/z: 402.0905, simulated data, orange line; 402.0921, observed data, green line).