Ultra-fast synthesis of hierarchical SAPO-11 molecular sieves using carbon materials under

microwave radiation condition

Dejiang Zheng^a, Xinchun Liu^a, Yuling Shan^a, Shitao Yu^a, Xiaosheng Wang^b, Yuxiang Liu^{1, *}

^a State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and

Technology, Qingdao, China

^b State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China

^{*}Corresponding author. E-mail addresses: liuyx@qust.edu.cn.

Fig. S1. XRD patterns of SAPO-11 synthesized at different crystallization temperatures heated by oven (A), microwave (B), and microwave with carbon (C); XRD patterns of SAPO-11M/W synthesized with microwave radiation power of 0 W (D), 300 W (E), and 600 W (F) for various time. (All samples are uncalcined)

Fig. S2. XRD patterns of SAPO-11 synthesized with different carbon (A) of (a) Graphene, (b) Graphene oxide, (c) Activated carbon and (d) Biochar. The weight ratio between carbon materials and Pseudoboehmite is 1:110. Effect of hydroxyl radical quencher (i.e., tert-butanol) on the phase structure of SAPO-11 (B). The amount of tert-butanol is controlled by the volume ratio of tert-butanol: silicon sol: (a) 0, (b) 2, (c) 4, (d) 8, and (e) 16 mL. Effect of synthesis atmosphere on the phase structure of SAPO-11 (C): synthesized in air atmosphere (a), synthesized in N₂ atmosphere (b) and synthesized in N₂ atmosphere with hydroxyl radical quencher (weight ratio between hydroxyl radical quencher and silicon sol= 10:1) (c). (All samples are uncalcined)

Fig. S3. XRD patterns of SAPO-5 synthesized by adding biochar under 180 °C for 5 min. (Samples are uncalcined)

Fig. S4. ²⁹Si MAS NMR spectra of (a) SAPO-11M(B), (b) SAPO-11M(GO), (c) SAPO-

11M(AC) and (d) SAPO-11M(G).

Fig. S5. SEM (a, b, d, e, g, h, j, k, m and n) and TEM (c, f, i, l and o) images of SAPO-11 prepared with adding different types of carbon of (A) carbon-free, (B) biochar, (C) graphene oxide, (D) activated carbon and (E) graphene.

Fig. S6 Product distribution of stearic acid deoxygenation using different catalysts. Conversion of stearic

acids is >99%. Impregnation amount of nickel is similar (5 wt%) in catalysts.

Fig. S7 Ni 2p orbit XPS spectra of (A) Ni/SAPO-11W and (B) Ni/SAPO-11M(B) catalysts.

Fig. S8. TEM images (A and B) and particle size distributions (C and D) of nickel in Ni/SAPO-11W (A and C) and Ni/SAPO-11M(B) (B and D).

Fig. S9. H₂-TPR fitted curves of (A) Ni/SAPO-11W and (B) Ni/SAPO-11M(B).

Samples	SBET	SMicro	V _{Micro}	V _{Meso}	V _{Total}	
	(m²/g)	(m²/g)	(cm ³ /g)	(cm ³ /g)	(cm ³ /g)	
SAPO-11W	171	112	0.05	0.12	0.17	
SAPO-11M(B)	224	101	0.05	0.23	0.28	
SAPO-11M(GO)	241	119	0.06	0.24	0.30	
SAPO-11M(AC)	194	84	0.05	0.22	0.27	
SAPO-11M(G)	227	111	0.06	0.23	0.29	

Table S1. Textural Properties of SAPO-11W, SAPO-11M(B), SAPO-11M(GO), SAPO-11M(AC) and SAPO-11M(G).

	Loading amount of nickel		C ₁₅ -C ₁₈ paraffin	
Catalysts	(wt%)	Conv. (%)	selec. (%)	
1	1 wt%	83.5	78.9	
2	3 wt%	92.4	87.0	
3	5 wt%	99.6	98.1	
4	7wt%	99.8	95.2	

Table S2. Catalytic performance of catalysts

Reaction conditions:290 °C, 3 h, 4 MPa H_2

Catalysts	Conv. (%)	C_{15} - C_{18} selec. (%)	
Ni/SAPO-11H*	99.3±0.2	92.2 ± 0.2	
Ni/SAPO-11M(B)*	99.6±0.2	98.1 ± 0.1	
Ni/SAPO-11M(AC)*	99.3±0.1	97.5 ± 0.3	
Ni/SAPO-11M(GO)*	99.6±0.2	95.9±0.2	
Ni/SAPO-11M(G)*	99.6±0.1	93.9±0.2	
Ni/SAPO-11H [#]	87.5±1.3	29.6±2.2	
Ni/SAPO-11M(B)#	94.4±0.6	53.9±1.7	
Ni/SAPO-11M(AC) [#]	93.2 ± 0.5	43.0±2.4	
Ni/SAPO-11M(GO) [#]	95.2 ± 0.8	40.1 ± 1.9	
Ni/SAPO-11M(G) [#]	92.9±1.3	44.2±2.3	

Table S3. Catalytic performance of catalysts

Notes:

*Reaction temperature 290 °C; Reaction duration: 3h; Loading amount of Ni: 5wt% #Reaction temperature 230 °C; Reaction duration: 3h; Loading amount of Ni: 5wt%

Sample	Ni/SAPO-11W	Ni/SAPO-11M(B)	
Concentration of nickel (wt%)*	4.3	4.1	

Table S4. Concentration of nickel in Ni/SAPO catalysts

*detected by ICP-MS.

Catalyst	Concentration of surface metallic particles(%)			
Ni/SAPO-11W	35.2			
Ni/SAPO-11M(B)	48.3			

Table S5 Concentration of surface metallic particles determined by CO chemisorption

research					
Catalysts	Reaction	Conv. C	C ₁₅ -C ₁₈ paraffin	Iso-paraffins selec. (%)	Ref.
	conditions	(%)	selec. (%)		
Ni/SAPO-11	300 °C,	96.2	93.0	9.8	1
	4.0 MPa H ₂ , 3h				1
Ni/SAPO-11	290 °C,	97.6	92.2	10.3	2
	4.0 MPa H ₂ , 3h				2
Ni/SAPO-11	290 °C,	92.4	98.4	7.9	2
	2.0 MPa H ₂ , 3h				3
Ni/SAPO-11M(B)	290 °C,	99.6	98.1	8.9	Current
	4.0 MPa H ₂ , 3h				research

Table S6. Comparison of catalytic performance between published results and current

References:

1 Y. Wu, J. Duan, X. Li, K. Wu, J. Wang, J. Zheng, S. Li, D. Wang, Z. Zheng, Renew. Energ., 2023,

218, 119372.

2 Y. Liu, D. Zheng, H. Yu, X. Liu, S. Yu, X. Wang, L. Li, J. Pang, X. Liu, Z. Yan, Micropor. Mesopor. Mat., 2020, **303**, 110280.

3 D. Zheng, D. Guo, Z. Wang, X. Wang, Y. Shan, X. Liu, Z. Yan, S. Yu, Y. Liu, Chem. Eng. J.,

2023, **451**, 138929.

Detection of hydroxyl radicals (OH')

The method to determine the formation of hydroxyl radicals is based on previous publication. (C. Tai, J. Peng, J. Liu, G. Jiang, H. Zou, *Anal. Chim. Acta.*, 2004, **527**, 73-80.) Hydroxyl radicals react with DMSO to generate formaldehyde, which is reacted with 2,4-dinitrophenylhydrazine (DNPH) to generate corresponding hydrazone (DNPH₀), which is analyzed by the high performance liquid chromatography-ultraviolet detector forusing an external standard working curve method.

Assuming that DMSO consumes all hydroxyl radicals, the amount of OH^{\bullet} produced is calculated based on equations (1-3). The concentration of $DNPH_0$ indirectly determines the concentration of hydroxyl radicals.

$$C_{2}H_{6}OS + OH^{*} \rightarrow CH_{3}SOOH + \bullet CH_{3}$$

$$\bullet CH_{3} + O_{2} \rightarrow CH_{3}OO \bullet$$

$$(1)$$

$2CH_3OO \bullet \rightarrow HCHO + CH_3OH + O_2 \tag{3}$

Test methods

Mobile phase: acetonitrile/water=60/40(V/V), flow rate: 0.6 mL/min, column: Waters XBridge BEH C₁₈ (4.6*150 mm, 2.7 µm), oven temperature: 25 °C, UV detector wavelength: 355 nm, injection volume: 20 µL.

The synthesis method is similar to 2.2 (main article), but it is necessary to add 8 mL of 250 mmol/L DMSO standard solutions to the Teflon-lined microwave autoclave before microwave heating, and then heat under microwave conditions. After the reaction is completed and the temperature drops to room temperature, take 2 mL of the suspension and filter it with a 0.45 μ m

filter. Then add 2.5 mL of H_3PO_4 and NaH_2PO_4 buffer with pH 4.0, 0.2 mL of 6 mmol/L DNPH standard solution and 0.3 mL of ultrapure water. The mixture was kept at room temperature for 30 minutes, and then detected by HPLC.

Establishment of standard working curve

Prepare a series of acetonitrile solutions of DNPH₀ with concentrations of 0.00036, 0.00072, 0.00108, 0.00144, and 0.0018 μ g/mL. The standard solution was placed in an aqueous solution at 60 °C to react for 20 minutes. Take 20 μ L of sample for analysis, and establish a standard working curve of DNPH₀ peak area and concentration, as shown in Fig. S10. The results show that the standard curve has a good linearity in the concentration range of 0.00036-0.0018 μ g/mL, R²=0.9998.

Fig. S10. The relationship between DNPH₀ concentration and peak area