Ultra-fast synthesis of hierarchical SAPO-11 molecular sieves using carbon materials under

microwave radiation condition

Dejiang Zheng^a, Xinchun Liu^a, Yuling Shan^a, Shitao Yu^a, Xiaosheng Wang^b, Yuxiang Liu^{1, *}

^a State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and

Technology, Qingdao, China

^b State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China

^{*}Corresponding author. E-mail addresses: liuyx@qust.edu.cn.

Fig. S1. XRD patterns of SAPO-11 synthesized at different crystallization temperatures heated by oven (A), microwave (B), and microwave with carbon (C); XRD patterns of SAPO-11M/W synthesized with microwave radiation power of 0 W (D), 300 W (E), and 600 W (F) for various time. (All samples are uncalcined)

Fig. S2. XRD patterns of SAPO-11 synthesized with different carbon (A) of (a) Graphene, (b) Graphene oxide, (c) Activated carbon and (d) Biochar. The weight ratio between carbon materials and Pseudoboehmite is 1:110. Effect of hydroxyl radical quencher (i.e., tert-butanol) on the phase structure of SAPO-11 (B). The amount of tert-butanol is controlled by the volume ratio of tert-butanol: silicon sol: (a) 0 , (b) 2 , (c) 4 , (d) 8 , and (e) **16 mL. Effect of synthesis atmosphere on the phase structure of SAPO-11 (C): synthesized in air atmosphere (a), synthesized in N² atmosphere (b) and synthesized in N² atmosphere with hydroxyl radical quencher (weight ratio between hydroxyl radical quencher and silicon sol= 10:1) (c). (All samples are uncalcined)**

Fig. S3. XRD patterns of SAPO-5 synthesized by adding biochar under 180 ℃ for 5 min. (Samples are uncalcined)

Fig. S4. ²⁹Si MAS NMR spectra of (a) SAPO-11M(B), (b) SAPO-11M(GO), (c) SAPO-

11M(AC) and (d) SAPO-11M(G).

Fig. S5. SEM (a, b, d, e, g, h, j, k, m and n) and TEM (c, f, i, l and o) images of SAPO-11 **prepared with adding different types of carbon of (A) carbon-free, (B) biochar, (C) graphene oxide, (D) activated carbon and (E) graphene.**

Fig. S6 Product distribution of stearic acid deoxygenation using different catalysts. Conversion of stearic

acids is >99%. Impregnation amount of nickel is similar (5 wt%) in catalysts.

Fig. S7 Ni 2p orbit XPS spectra of (A) Ni/SAPO-11W and (B) Ni/SAPO-11M(B) catalysts.

Fig. S8. TEM images (A and B) and particle size distributions (C and D) of nickel in Ni/SAPO-11W (A and C) and Ni/SAPO-11M(B) (B and D).

Fig. S9. H2-TPR fitted curves of (A) Ni/SAPO-11W and (B) Ni/SAPO-11M(B).

THAT AND SAT U-THAT GA								
Samples	S_{BET}	S _{Micro}	$\mathbf{V}_{\mathbf{Micro}}$	$\mathbf{V_{Meso}}$	$\mathbf{V_{Total}}$			
	(m^2/g)	(m^2/g)	cm^3/g	$\text{(cm}^3/\text{g})$	cm^3/g			
SAPO-11W	171	112	0.05	0.12	0.17			
$SAPO-11M(B)$	224	101	0.05	0.23	0.28			
$SAPO-11M(GO)$	241	119	0.06	0.24	0.30			
$SAPO-11M(AC)$	194	84	0.05	0.22	0.27			
$SAPO-11M(G)$	227	111	0.06	0.23	0.29			

Table S1. Textural Properties of SAPO-11W, SAPO-11M(B), SAPO-11M(GO), SAPO-11M(AC) and SAPO-11M(G).

-

Table S2. Catalytic performance of catalysts

Reaction conditions:290 ℃, 3 h, 4 MPa H²

Catalysts	Conv. $(\%)$	C_{15} - C_{18} selec. $($ %)	
$Ni/SAPO-11H*$	99.3 ± 0.2	92.2 ± 0.2	
$Ni/SAPO-11M(B)*$	$99.6 + 0.2$	98.1 ± 0.1	
$Ni/SAPO-11M(AC)*$	99.3 ± 0.1	97.5 ± 0.3	
$Ni/SAPO-11M(GO)*$	99.6 ± 0.2	95.9 ± 0.2	
$Ni/SAPO-11M(G)*$	99.6 ± 0.1	93.9 ± 0.2	
$Ni/SAPO-11H$ #	87.5 ± 1.3	29.6 ± 2.2	
$Ni/SAPO-11M(B)$ [#]	94.4 ± 0.6	53.9 ± 1.7	
$Ni/SAPO-11M(AC)#$	93.2 ± 0.5	43.0 ± 2.4	
$Ni/SAPO-11M(GO)#$	$95.2 + 0.8$	40.1 ± 1.9	
$Ni/SAPO-11M(G)#$	92.9 ± 1.3	44.2 ± 2.3	

Table S3. Catalytic performance of catalysts

Notes:

***Reaction temperature 290 ^oC; Reaction duration: 3h; Loading amount of Ni: 5wt% #Reaction temperature 230 ^oC; Reaction duration: 3h; Loading amount of Ni: 5wt%**

Table S4. Concentration of nickel in Ni/SAPO catalysts

***detected by ICP-MS.**

Catalyst	Concentration of surface metallic particles $\%$)			
$Ni/SAPO-11W$	35.2			
$Ni/SAPO-11M(B)$	48.3			

Table S5 Concentration of surface metallic particles determined by CO chemisorption

research								
Catalysts	Reaction	Conv. (%)	C_{15} - C_{18} paraffin	Iso-paraffins	Ref.			
	conditions		selec. $(\%)$	selec. $(\%)$				
Ni/SAPO-11	300 °C,	96.2	93.0	9.8	1			
	4.0 MPa H_2 , 3h							
$Ni/SAPO-11$	290 °C,	97.6	92.2	10.3	$\overline{2}$			
	4.0 MPa H_2 , 3h							
Ni/SAPO-11	290 °C,	92.4	98.4	7.9	3			
	2.0 MPa H_2 , 3h							
$Ni/SAPO-11M(B)$	290 °C,	99.6	98.1	8.9	Current			
	4.0 MPa H_2 , 3h				research			

Table S6. Comparison of catalytic performance between published results and current

References:

1 Y. Wu, J. Duan, X. Li, K. Wu, J. Wang, J. Zheng, S. Li, D. Wang, Z. Zheng, *Renew. Energ.*, 2023,

218, 119372.

2 Y. Liu, D. Zheng, H. Yu, X. Liu, S. Yu, X. Wang, L. Li, J. Pang, X. Liu, Z. Yan, *Micropor. Mesopor. Mat.*, 2020, **303**, 110280.

3 D. Zheng, D. Guo, Z. Wang, X. Wang, Y. Shan, X. Liu, Z. Yan, S. Yu, Y. Liu, *Chem. Eng. J.*,

2023, **451**, 138929.

Detection of hydroxyl radicals (OH• **)**

The method to determine the formation of hydroxyl radicals is based on previous publication. (C. Tai, J. Peng, J. Liu, G. Jiang, H. Zou, *Anal. Chim. Acta.*, 2004, **527**, 73-80.) Hydroxyl radicals react with DMSO to generate formaldehyde, which is reacted with 2,4 dinitrophenylhydrazine (DNPH) to generate corresponding hydrazone (DNPH $_0$), which is analyzed by the high performance liquid chromatography-ultraviolet detector forusing an external standard working curve method.

Assuming that DMSO consumes all hydroxyl radicals, the amount of OH• produced is calculated based on equations (1-3). The concentration of $DNPH₀$ indirectly determines the concentration of hydroxyl radicals.

$$
C_2H_6OS + OH^* \to CH_3SOOH + \bullet CH_3
$$
\n
$$
\bullet CH_3 + O_2 \to CH_3OO\bullet
$$
\n
$$
2CH_3OO\bullet \to HCHO + CH_3OH + O_2
$$
\n(3)

(3)

Test methods

Mobile phase: acetonitrile/water=60/40(V/V), flow rate: 0.6 mL/min, column: Waters XBridge BEH C₁₈ (4.6*150 mm, 2.7 µm), oven temperature: 25 °C, UV detector wavelength: 355 nm, injection volume: 20 μL.

The synthesis method is similar to 2.2 (main article), but it is necessary to add 8 mL of 250 mmol/L DMSO standard solutions to the Teflon-lined microwave autoclave before microwave heating, and then heat under microwave conditions. After the reaction is completed and the temperature drops to room temperature, take 2 mL of the suspension and filter it with a 0.45 μm filter. Then add 2.5 mL of H_3PO_4 and NaH_2PO_4 buffer with pH 4.0, 0.2 mL of 6 mmol/L DNPH standard solution and 0.3 mL of ultrapure water. The mixture was kept at room temperature for 30 minutes, and then detected by HPLC.

Establishment of standard working curve

Prepare a series of acetonitrile solutions of $DNPH₀$ with concentrations of 0.00036, 0.00072, 0.00108, 0.00144, and 0.0018 μg/mL. The standard solution was placed in an aqueous solution at 60 °C to react for 20 minutes. Take 20 μL of sample for analysis, and establish a standard working curve of $DNPH₀$ peak area and concentration, as shown in Fig. S10. The results show that the standard curve has a good linearity in the concentration range of 0.00036-0.0018 μ g/mL, R²=0.9998.

Fig. S10. The relationship between DNPH⁰ concentration and peak area