# **Supporting Information**

## Electrochemical reduction of nitrite to ammonia on amorphous

## MoO<sub>3</sub> nanosheets

Tingting Wu<sup>a\*</sup>, Fengyu Zhang<sup>a</sup>, Jingxuan Wang<sup>a</sup>, Xiaoxu Liu<sup>a</sup>, Ye Tian<sup>a</sup>, Ke Chu<sup>b\*</sup>

<sup>a</sup> College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China

<sup>b</sup> School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070,

China

\*Corresponding author. wutingtinghnu@126.com (T.T. Wu), chuk630@mail.lzjtu.cn (K. Chu)

### **Experimental Section**

#### Synthesis of am-MoO<sub>3</sub>

All chemicals were used as received without further purification. 0.24 g molybdenum metal powder was dissolved in 30 mL  $H_2O_2$  aqueous solution. The solution was then transferred into the Teflon vessel and heated at 180 °C for 18 h. After cooling to room temperature, the resulting solution was then transferred into a supercritical CO<sub>2</sub> apparatus which was treated at 180 °C for 5 h under 10 MPa, the resulting products were collected by centrifuging, washing with deionized water/ethanol and drying under vacuum, obtaining am-MoO<sub>3</sub>. For comparison, pristine MoO<sub>3</sub> was prepared by the same procedure without supercritical CO<sub>2</sub> treatment.

#### **Electrochemical experiments**

Electrochemical measurements were carried out using a CHI-760E electrochemical workstation employing a three-electrode cell system consisting of a am-MoO<sub>3</sub> working electrode, an Ag/AgCl reference electrode and a Pt foil counter electrode. All the potentials were referenced to a reversible hydrogen electrode (RHE) by the following equation: E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.198 V + 0.059 × pH. Electrochemical NO<sub>2</sub>RR measurements were conducted in an H-type electrochemical cell containing 0.5 M Na<sub>2</sub>SO<sub>4</sub> with 0.1 M NaNO<sub>2</sub> separated by Nafion 211 membrane. Prior to use, the Nafion membrane was pretreated by heating it in a 5% H<sub>2</sub>O<sub>2</sub> aqueous solution at 80 °C for 1 h, followed by rinsing with deionized water at 80 °C for another 1 h. After each chronoamperometry test for 0.5 h electrolysis at a specific potential, the liquid products were analyzed using colorimetric methods with UV-vis absorbance spectrophotometer (MAPADA P5), while the gas products were analyzed using gas chromatography (Shimadzu GC2010).

### **Determination of NH3**

The generated NH<sub>3</sub> was determined by an indophenol blue method[1]. Typically, 0.5 mL of electrolyte was extracted from the electrochemical reaction vessel and subsequently diluted tenfold with deionized water. Then 2 mL of diluted solution was removed into a clean vessel followed by sequentially adding NaOH solution (2 mL, 1 M) containing  $C_7H_6O_3$  (5 wt.%) and  $C_6H_5Na_3O_7$  (5 wt.%), NaClO (1 mL, 0.05 M),

and  $C_5FeN_6Na_2O$  (0.2 mL, 1wt.%) aqueous solution. After incubation for 2 hours at room temperature. The mixed solution was measured in UV-Vis at 655 nm. The concentration-absorbance curves were calibrated using a range of concentrations in a standard NH<sub>4</sub>Cl solution. Subsequently, the NH<sub>3</sub> yield rate and Faradaic efficiency (FE) were calculated using the following equation:

$$NH_3 \text{ yield} = (c \times V) / (17 \times t \times A)$$
(1)

Faradaic efficiency was calculated by the following equation:

$$FE = (5 \times F \times c \times V) / (17 \times Q) \times 100\%$$
(2)

where c ( $\mu$ g mL<sup>-1</sup>) is the measured NH<sub>3</sub> concentration, V (mL) is the volume of electrolyte in the cathode chamber, t (s) is the electrolysis time and A is the surface area of CC (1×1 cm<sup>2</sup>), F (96500 C mol<sup>-1</sup>) is the Faraday constant, Q (C) is the total quantity of applied electricity.

#### **Determination of N<sub>2</sub>H<sub>4</sub>**

 $N_2H_4$  in electrolyte was quantitatively determined by a Watt and Chrisp method[2]. To prepare the coloring solution, a combination of 300 mL C<sub>2</sub>H<sub>5</sub>OH, 5.99 g C<sub>9</sub>H<sub>11</sub>NO, and 30 mL HCl was mixed. Subsequently, 5 mL of the coloring solution was introduced to 5 mL of the electrolyte. After the incubation for 20 min at room temperature, the mixed solution was subjected to UV-vis measurement using the absorbance at 455 nm wavelength. The concentration-absorbance curve is calibrated by a series of concentrations of standard  $N_2H_4$  solutions.

#### Characterizations

X-ray diffraction (XRD) pattern was performed on a Rigaku D/max 2400 diffractometer. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were carried out on a Tecnai G<sup>2</sup> F20 microscope. Electron paramagnetic resonance (EPR) measurements were recorded on a Bruker ESP-300 spectrometer.

#### **Calculation details**

DFT calculations were performed using a plane-wave technique with exchangecorrelation interactions modeled by the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional, as implemented in the Cambridge sequential total energy package (CASTEP). The van der Waals interaction was described by using the DFT-D correction method. A cutoff energy of 450 eV was chosen and the  $4\times4\times1$  Monkhorst-Pack mesh was used in Brillouin zone sampling. The convergence tolerance was set to be  $1.0 \times 10^{-5}$  eV for energy and 0.02 eV Å<sup>-1</sup> for force. Crystalline MoO<sub>3</sub> (010) was modeled by a  $4 \times 4$  supercell, and a vacuum region of 15 Å was used to separate adjacent slabs. Amorphous MoO<sub>3</sub> was built by relaxing the crystalline MoO<sub>3</sub> (010) at 500 K, and the ordered atomic arrangement could be damaged. am-MoO<sub>3</sub> was modeled by removing one surface O atom of amorphous MoO<sub>3</sub>.

The free energies ( $\Delta$ G, 298 K) for each reaction were given after correction:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{3}$$

where  $\Delta E$  is the adsorption energy,  $\Delta ZPE$  is the zero-point energy difference and  $T\Delta S$  is the entropy difference between the gas phase and adsorbed state.



Fig. S1. (a) UV-vis absorption spectra of  $NH_4^+$  assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of  $NH_3$  concentrations.



Fig. S2. (a) UV-vis absorption spectra of  $N_2H_4$  assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of  $N_2H_4$  concentrations.



Fig. S3. Effects of (a) pH and (b) use of  $D_2O$  on  $FE_{NH3}$  of am-MoO<sub>3</sub> at -0.6 V.

It is seen in Fig. S3a that the neutral electrolyte (pH=7) facilitates the achievement of the high NO<sub>2</sub>RR performance, while the performance is compromised in acidic (pH=1.2) and alkaline (pH=13) environments, especially in acidic electrolyte. This can be explained by that (1) at low pH, the competing HER would be enhanced and can greatly suppress the NO<sub>2</sub>RR, while (2) at high pH, the available protons are too limited to provide the sufficient proton source for hydrogenating nitrogen species during the NO<sub>2</sub>RR electrolysis, as electrocatalytic NO<sub>2</sub><sup>-</sup>-to-NH<sub>3</sub> conversion is known to be a hydrogenation process[3]. Regarding the influence of D<sub>2</sub>O, it is seen in Fig. S3b that the use of D<sub>2</sub>O instead of H<sub>2</sub>O can slightly reduce the NO<sub>2</sub>RR activity, which can be attributed to that the D-O bond of D<sub>2</sub>O is more challenging to break during the catalytic reaction than H-O bond of H<sub>2</sub>O[4]. Therefore, using D<sub>2</sub>O as the solvent causes a lack of protons compared to H<sub>2</sub>O as the solvent, leading to the compromised NO<sub>2</sub>RR activity.



Fig. S4. CV measurements at different scanning rates for (a, c) MoO<sub>3</sub> and (b, d) am-MoO<sub>3</sub>, and corresponding calculated ECSA.



Fig. S5. Comparison of the ECSA-normalized  $\rm NH_3$  yield rates and  $\rm FE_{\rm NH3}$  between  $\rm MoO_3$  and am-MoO\_3 at -0.6 V.



Fig. S6. Amounts of produced  $NH_3$  on am-MoO<sub>3</sub> under different conditions: (1) electrolysis in  $NO_2^{-1}$ -containing solution at -0.6 V, (2) electrolysis in  $NO_2^{-1}$ -free solution at -0.6 V, (3) electrolysis in  $NO_2^{-1}$ -containing solution at open-circuit potential (OCP), (4) before electrolysis.



Fig. S7. Optimized structures of reaction intermediates on MoO<sub>3</sub>.



Fig. S8. (a) Initial and simulated snapshots for the dynamic process of NO<sub>2</sub><sup>-</sup> and H on am-MoO<sub>3</sub>, and their corresponding (b) RDF curves.

As shown in Fig. S8a, an obvious aggregation of  $NO_2^-$  on am-MoO<sub>3</sub> is observed after simulation. The calculated radial distribution function (RDF, Fig. S8b) curves show an enhanced am-MoO<sub>3</sub>/NO<sub>2</sub><sup>-</sup> interaction in comparison with am-MoO<sub>3</sub>/H interaction[64], suggesting the preferred coverage of  $NO_2^-$  on am-MoO<sub>3</sub> than H.

| Catalyst                               | Electrolyte                                                                    | NH <sub>3</sub> yield rate<br>(mg h <sup>-1</sup> cm <sup>-2</sup> ) | FE <sub>NH3</sub>     | Reference |
|----------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|-----------|
| P-TiO <sub>2</sub> /TP                 | 0.1 M Na <sub>2</sub> SO <sub>4</sub><br>(0.1 M NO <sub>2</sub> -)             | 560.8                                                                | 90.6%@-0.6 V          | [5]       |
| CoB@TiO <sub>2</sub> /TP               | 0.1 M Na <sub>2</sub> SO <sub>4</sub><br>(400 ppm NO <sub>2</sub> -)           | 233.1                                                                | 95.2%@-0.7 V          | [6]       |
| Ag@NiO/CC                              | 0.1 M NaOH<br>(0.1 M NO <sub>2</sub> -)                                        | 338.3                                                                | 96.1%@-0.7 V          | [7]       |
| Ni <sub>2</sub> P/NF                   | 0.1 M PBS<br>(200 ppm NO <sub>2</sub> -)                                       | 191.3                                                                | 90.2±3.0% @-<br>0.3 V | [8]       |
| CF@Cu <sub>2</sub> O                   | 0.1 M PBS<br>(0.1 M NO <sub>2</sub> -)                                         | 441.8                                                                | 94.2% @-0.6 V         | [9]       |
| MoS <sub>2</sub> NSs                   | 0.5 M Na <sub>2</sub> SO <sub>4</sub><br>(0.1 M NO <sub>2</sub> <sup>-</sup> ) | 528.8                                                                | 93.52% @-0.5<br>V     | [10]      |
| Ni-TiO <sub>2</sub> /TP                | 0.1 M NaOH<br>(0.1 M NO <sub>2</sub> -)                                        | 380.27                                                               | 94.89% @-0.5<br>V     | [11]      |
| NiS <sub>2</sub> @TiO <sub>2</sub> /TM | 0.1 M NaOH<br>(0.1 M NO <sub>2</sub> -)                                        | 485.4                                                                | 92.1% @-0.5 V         | [12]      |
| ITO@TiO <sub>2</sub> /TP               | 0.5 M LiClO <sub>4</sub><br>(0.1 M NO <sub>2</sub> -)                          | 411.3                                                                | 82.6% @-0.5 V         | [13]      |
| am-MoO <sub>3</sub>                    | 0.5 M Na <sub>2</sub> SO <sub>4</sub><br>(0.1 M NO <sub>2</sub> -)             | 480.4                                                                | 94.8% @-0.6 V         | This work |

Table S1. Comparison of the optimum  $NH_3$  yield rate and  $NH_3$ -Faradic efficiency (FE<sub>NH3</sub>) for the recently reported NO<sub>2</sub>RR electrocatalysts at ambient conditions

#### References

- [1]. P. Li, Z. Jin, Z. Fang and G. Yu, *Energy Environ. Sci.*, 2021, 14, 3522-3531.
- [2]. G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- [3]. K. Chen, Y. Zhang, J. Xiang, X. Zhao, X. Li and K. Chu, ACS Energy Lett., 2023, 8, 1281-1288.
- [4]. Y. Li, S. Zhang, W. Xu, C. Jiang, L. Shao, S. Wang and J. Wang, J. Mater. Chem. A, 2023, 11, 4000-4006.
- [5]. L. Ouyang, X. He, S. Sun, Y. Luo, D. Zheng, J. Chen, Y. Li, Y. Lin, Q. Liu, A. M. Asiri and X. Sun, J. Mater. Chem. A, 2022, 10, 23494-23498.
- [6]. L. Hu, D. Zhao, C. Liu, Y. Liang, D. Zheng, S. Sun, Q. Li, Q. Liu, Y. Luo, Y. Liao, L. Xie and X. Sun, *Inorg. Chem. Front.*, 2022, 9, 6075-6079.
- [7]. Q. Liu, G. Wen, D. Zhao, L. Xie, S. Sun, L. Zhang, Y. Luo, A. Ali Alshehri, M. S. Hamdy, Q. Kong and X. Sun, J. Colloid Interf. Sci., 2022, 623, 513-519.
- [8]. G. Wen, J. Liang, L. Zhang, T. Li, Q. Liu, X. An, X. Shi, Y. Liu, S. Gao, A. M. Asiri, Y. Luo, Q. Kong and X. Sun, J. Colloid Interf. Sci., 2022, 606, 1055-1063.
- [9]. Q. Chen, X. An, Q. Liu, X. Wu, L. Xie, J. Zhang, W. Yao, M. S. Hamdy, Q. Kong and X.

Sun, Chem. Commun., 2022, 58, 517-520.

- [10]. L. Yi, P. Shao, H. Li, M. Zhang, X. Peng, K. Chen, X. Liu and Z. Wen, J. Power Sources, 2023, 559, 232668.
- [11]. Z. Cai, C. Ma, D. Zhao, X. Fan, R. Li, L. Zhang, J. Li, X. He, Y. Luo, D. Zheng, Y. Wang, B. Ying, S. Sun, J. Xu, Q. Lu and X. Sun, *Mater. Today Energy*, 2023, **31**, 101220.
- [12]. X. He, L. Hu, L. Xie, Z. Li, J. Chen, X. Li, J. Li, L. Zhang, X. Fang, D. Zheng, S. Sun, J. Zhang, A. Ali Alshehri, Y. Luo, Q. Liu, Y. Wang and X. Sun, J. Colloid Interf. Sci., 2023, 634, 86-92.
- [13]. S. Li, J. Liang, P. Wei, Q. Liu, L. Xie, Y. Luo and X. Sun, *eScience*, 2022, 2, 382-388.