(†ESI) Electronic Supplementary Information for

Quasi-2D Bi_{0.775}Ln_{0.225}O_{1.5} (Ln = La, Pr, Nd, Sm, Eu): Reversible iodine intercalation

and their evaluation as the anode in the lithium-ion battery system

Priyanka Yadav,¹ Shivangi Rao,¹ O.V. Sreejith,² Ramaswamy Murugan² and Rajamani

Nagarajan^{1*}

¹Materials Chemistry Group, Department of Chemistry

University of Delhi, Delhi-110007 INDIA

²High Energy Density Batteries Research Laboratory, Department of Physics, Pondicherry

University, Puducherry 605 014, INDIA

Fig. S1 PXRD patterns of combusted ashes of Bi_2O_3 - Ln_2O_3 -citric acid complexes. $La_2O_2CO_3$ (JCPDS# 84-1963), $Pr_2O_2CO_3$ (JCPDS# 37-0805), $Nd_2O_2CO_3$ (JCPDS# 37-0806), $Sm_2O_2CO_3$ (JCPDS # 37-0807), and $Eu_2O_2CO_3$ (JCPDS # 25-0334).

Fig. S2 Simultaneous TG/DSC traces of combusted precursors of bismuth-rare earth metalcitric acid where the rare earth metals are La (a), Pr (b), Nd (c), Sm (d), and Eu (e).

Fig. S3 PXRD patterns of Bi_{0.775}Ln_{0.225}O_{1.5} samples' ashes calcined at 270 °C. La₂O₃ (JCPDS# 83-1355), Pr₂O₃ (JCPDS# 78-0309), Nd₂O₃ (JCPDS# 83-1353), Sm₂O₃ (JCPDS# 19-1114) and Eu₂O₃ (JCPDS# 19-0463).

Fig. S4 PXRD patterns of $Bi_{0.775}Ln_{0.225}O_{1.5}$ samples' ashes calcined at 550 °C.

Fig. S5 Lattice refinement of the PXRD patterns of Bi_{0.775}Ln_{0.225}O_{1.5} by the Le Bail method.

Fig. S6 Lattice refinement of the PXRD patterns of iodine intercalated $Bi_{0.775}Ln_{0.225}O_{1.5}$ by the Le Bail method.

Fig. S7 Schematic representation of steps involved in the intercalation of iodine species in $Bi_{0.775}Ln_{0.225}O_{1.5}$.

Fig. S8(a)-(e) Bandgap estimation using Tauc plots of BLO, BPO, BNO, BSO, BEO, BLO-I, BPO-I, BNO-I, BSO-I, and BEO-I samples.

Fig. S9 Thermogravimetric and derivative thermogravimetric traces of BLO-I, BPO-I, BNO-I, BSO-I, and BEO-I samples.

Sample	Combusted ashes	Calcined ashes	Product after iodine intercalation	Product after iodine de- intercalation
BLO		\bigcirc	0	and the second s
BPO			0	
BNO	A.	\bigcirc		and the second s
BSO		C		
BEO*		Harry .	0	

* calcined at 600 °C

Fig. S10 Digital images of the combusted ashes, calcined products, products after iodine intercalation, and products after thermal iodine deintercalation of $Bi_{0.775}Ln_{0.225}O_{1.5}$ samples.

Fig. S11 PXRD patterns of iodine intercalated $Bi_{0.775}Ln_{0.225}O_{1.5}$ samples after calcination in air at 600 °C for 6 h.

Fig. S12 Raman spectrum of iodine deintercalated $Bi_{0.775}Pr_{0.225}O_{1.5}$ sample.

Fig. S13 Cyclic voltammograms with different scan rates of (a) BLO-I, (b) BPO-I, (c) BNO-I, (d) BSO-I, and (e) BEO-I.

Fig. S14 Relationship between anodic and cathodic peak current (i_{pa} and i_{pc}) and the square root of scanning rates ($v^{1/2}$) of BLO-I, BPO-I, BNO-I, BSO-I, and BEO-I samples.

Fig. S15 Frequency response of real part of the impedance of (a) BLO, BPO, BNO, BSO, and BEO samples, (b) BLO-I, BPO-I, BNO-I, BSO-I, and BEO-I samples.

Fig. S16 Galvanostatic charge-discharge performance of iodine intercalated $Bi_{0.775}La_{0.225}O_{1.5}$ sample at (a) 10, (b) 20, (c) 50, (d) repeat 10 mAg⁻¹.

Fig. S17 Galvanostatic charge-discharge performance of iodine intercalated $Bi_{0.775}Pr_{0.225}O_{1.5}$ sample at (a) 10, (b) 20, (c) 50, (d) repeat 10 mAg⁻¹.

Fig. S18 Galvanostatic charge-discharge performance of iodine intercalated $Bi_{0.775}Nd_{0.225}O_{1.5}$ sample at (a) 10, (b) 20, (c) 50, and (d) repeat 10 mAg⁻¹.

Fig. S19 Galvanostatic charge-discharge performance of iodine intercalated $Bi_{0.775}Sm_{0.225}O_{1.5}$ sample at (a) 10, (b) 20, (c) 50, (d) repeat 10 mAg⁻¹.

Fig. S20 Galvanostatic charge-discharge performance of iodine intercalated $Bi_{0.775}Eu_{0.225}O_{1.5}$ sample at (a) 10, (b) 20, (c) 50, (d) repeat 10 mAg⁻¹.

Fig. S21 PXRD pattern of the electroactive BPO-I before and after its use in chargedischarge experiments (500 cycles)

Table S1 Lattice parameters estimated from the lattice refinement of the PXRD patterns of the $Bi_{0.775}Ln_{0.225}O_{1.5}$ (Ln = La, Pr, Nd, Sm, and Eu) samples by the Le Bail method in hexagonal symmetry (*R*-3*m* (#166)).

Formula	Bi _{0.775} La _{0.225} O _{1.5}	Bi _{0.775} Pr _{0.225} O _{1.5}	Bi _{0.775} Nd _{0.225} O _{1.5}	Bi _{0.775} Sm _{0.225} O _{1.5}	Bi _{0.775} Eu _{0.225} O _{1.5}
<i>a</i> (Å)	4.0235 (4)	4.0081 (5)	3.9814 (7)	3.9879 (7)	3.9593 (9)
<i>c</i> (Å)	27.7345 (5)	27.6138 (5)	27.4886 (8)	27.5040 (5)	27.3165 (2)
Cell volume (Å ³)	388.834 (8)	384.195 (8)	378.201 (8)	376.816 (7)	370.849 (2)
Temp. (°C)	25	25	25	25	25
No. of data points	8499	8499	8499	3235	3235
20 range	15-100°	15-100°	15-100°	15-100°	15-100°
R_p	0.0607	0.0780	0.1304	0.0530	0.0593
R_{wp}	0.0806	0.1015	0.1766	0.0685	0.0750
χ^2	0.7033	0.8993	0.8914	1.500	1.835

Table S2 Lattice parameters estimated from the lattice refinement of the PXRD patterns of the iodine intercalated $Bi_{0.775}Ln_{0.225}O_{1.5}$ (Ln = La, Pr, Nd, Sm, and Eu) samples by the Le Bail method in hexagonal symmetry (*R*-3*m* (#166)).

Formula	Bi _{0.775} La _{0.225} O _{1.5}	Bi _{0.775} Pr _{0.225} O _{1.5}	Bi _{0.775} Nd _{0.225} O _{1.5}	Bi _{0.775} Sm _{0.225} O _{1.5}	Bi _{0.775} Eu _{0.225} O _{1.5}
a (Å)	3.9768 (8)	3.9704 (7)	3.9496 (8)	3.9487 (7)	3.9098 (22)
<i>c</i> (Å)	37.465 (24)	37.456 (14)	37.3654 (14)	37.3125 (15)	36.753 (5)
Cell volume (Å ³)	513.133 (27)	511.366 (14)	504.785 (15)	503.844 (15)	486.57 (5)
Temp. (°C)	25	25	25	25	25
No. of data points	9701	9700	9701	9701	3237
2θ range	5-90°	5-90°	5-90°	5-90°	5-90°
R_p	0.0565	0.0579	0.0566	0.0624	0.0611
R_{wp}	0.0739	0.0761	0.0745	0.0822	0.0775
χ^2	0.8026	0.8847	0.7884	0.6813	2.01

2D Materials based on	System	Initial discharge capacity (mAh/g)/ current density(mA/g)	Ref.
Chalcogenides	GaS nanosheets	1730/100	1
	GaSe nanosheets	1100/300	
	WS ₂ NTs	768/100	2
	CoSe	550/100	3
	MoSe ₂	851.1/100	4
	TiS ₂ Nanosheets	~300/50	5
	NiS	1311/100	6
	NiSe ₂	992/100	
	GeS	1232/0.1C	7
	GeS ₂	1099/0.1C	
	SnS	867/0.1C	
	SnS ₂	647/0.1C	
MXene	V ₂ C	467/50	8
	Ti ₂ C	160/0.1C	9
	Nb ₂ CT _x	985/50	10
	Ti ₃ C ₂ T	123.6/1C	11
	Mo ₂ C	136/10	12
	Few-layer Nb ₂ CT _x	746/50	13
Bismuth oxyhalides	Bi _{0.7} Fe _{0.3} OCl	555/50	14
	nanosheets		
	BiOCl	633/100	15
	BiOBr	605/100	
	BiOI	717/30	16
Iodine intercalated Bi _{0.775} La _{0.225} O _{1.5}		278/10	This work
Iodine intercalated Bi _{0.775} Pr _{0.225} O _{1.5}		234/10	_
Iodine intercalated Bi _{0.775} Nd _{0.225} O _{1.5}		227/10	
Iodine intercalated Bi _{0.775} Sm _{0.225} O _{1.5}		250/10	
Iodine intercalated Bi _{0.775} Eu _{0.225} O _{1.5}		273/10	1

 Table S3 Comparison of electrochemical performance of 2D materials as anode in LIBs.

References

1 C. Zhang, S. H. Park, O. Ronan, A. Harvey, A. Seral-Ascaso, Z. Lin, N. McEvoy, C. S. Boland, N. C. Berner, G. S. Duesberg, and P. Rozier, *Small* 2017, **13**, 1701677-1701688.

2 R. Chen, T. Zhao, W. Wu, F. Wu, L. Li, J. Qian, R. Xu, H. Wu, H. M. Albishri, A. S. Al-Bogami, and D. A. El-Hady, *Nano Lett.* 2014, 14, 5899-5904.

3 Y. Li, Y. Xu, Z. Wang, Y. Bai, K. Zhang, R. Dong, Y. Gao, Q. Ni, F. Wu, Y. Liu, and C. Wu, *Adv. Energy Mater.* 2018, **8**, 1800927-1800935.

4 Y. Liu, M. Zhu, and D. Chen, J. Mater. Chem. A, 2015, 3, 11857-11862.

5 D. Y. Oh, Y. E. Choi, D. H. Kim, Y. G. Lee, B. S. Kim, J. Park, H. Sohn, and Y. S. Jung, *J. Mater. Chem. A* 2016, **4**, 10329-10335.

6 H. Fan, H. Yu, X. Wu, Y. Zhang, Z. Luo, H. Wang, Y. Guo, S. Madhavi, and Q. Yan, ACS Appl. Mater. Interfaces 2016, 8, 25261-25267.

7 H. S. Im, Y. R. Lim, Y. J. Cho, J. Park, E. H. Cha, and H. S. Kang, *J. Phys. Chem. C* 2014, **118**, 21884-21888.

8 F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen, L. Wang, Q. Hu, Q. Huang, and A. Zhou, J. Electrochem. Soc. 2017, 164, A709-A713.

9 M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, *Electrochem. Commun.* 2012, **16**, 61-64.

10 J. Zhao, J. Wen, J. Xiao, X. Ma, J. Gao, L. Bai, H. Gao, X. Zhang, and Z. Zhang, J. Energy Chem. 2021, **53**, 387-395.

11 D. D. Sun, M. S. Wang, Z. Y. Li, G. X. Fan, L. Z. Fan, and A. G. Zhou, *Electrochem. Commun.* 2014, 47, 80-83.

12 J. Mei, G. A. Ayoko, C. Hu, J. M. Bell, and Z. Sun, Sustain. Mater. Technol. 2020, 25, e00156.

13 J. B. Zhao, J. Wen, L. N. Bai, J. P. Xiao, R. D. Zheng, X. Y. Shan, L. Li, H. Gao, and X. T. Zhang, *Dalton Trans.* 2019, 48, 14433-14439.

14 Y. Myung, J. Choi, F. Wu, S. Banerjee, E. H. Majzoub, J. Jin, S. U. Son, P. V. Braun, and P. Banerjee, *ACS Appl. Mater. Interfaces* 2017, **9**, 14187-14196.

15 L. Ye, L. Wang, H. Xie, Y. Su, X. Jin, and C. Zhang, *Energy Technol.* 2015, **3**, 1115-1120.

16 C. Chen, P. Hu, X. Hu, Y. Mei, and Y. Huang, Chem. Commun. 2015, 51, 2798-2801.