Electronic Supplementary Information

Stable Mn(II) Coordination Polymers Demonstrating Proton Conductivity and Quantitative Sensing of Oxytetracycline in Aquaculture

Xu Zhang,^a Yana Zhang,^a Xin Li,^a Jiahui Yu,^a Weijia Chi,^a Zikang Wang,^a Hanwen Zheng,^a

Zhengang Sun*a, Yanyu Zhu*a, Chengqi Jiao*a, b

^a School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China

^b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China.

E-mail: szg188@163.com, summeryyzhu@163.com, jiaochengqi1989@163.com

CONTENTS:

Fig. S1. IR spectrum of Mn-CP4
Fig. S2. PXRD spectra of Mn-CP
Fig. S3. PXRD patterns of Mn-CP soaked in hot deionized water for 6 h and soaked in deionized
water for 24 h (a) and soaked in H_2O with different pH for 24 h (b)5
Fig. S4. TG curve of Mn-CP
Fig. S5. Nyquist plots of Mn-CP at 75-95% RH and 348 K6
Fig. S6. The recyclable performances of proton conduction of Mn–CP under different temperatures
(348 – 368 K, 95% RH) (a), and within 15 h (368 K, 95% RH) (b)6
Fig. S7. Solid–state luminescent spectra of H_2L (a) and Mn-CP (b)7
Fig. S8. The plot of the emission intensities of Mn-CP vs the concentrations of OTC7
Fig. S9. The intensities of Mn–CP among various substances
Fig. S10. The luminescent intensities at 413 nm of Mn-CP after the addition of OTC at different times
Fig. S11. The recyclable study of Mn-CP towards OTC9
Fig. S12. PXRD patterns of Mn-CP after five recycles of sensing for OTC9
Fig. S13. PXRD patterns of Mn-CP before and after detection of OTC10
Fig. S14. IR spectra of Mn-CP before and after detection of OTC10
Fig. S15. Emission decay profiles of Mn-CP suspensions before and after sensing of OTC11
Fig. S16. UV-vis absorption spectra of Mn-CP, organic antibiotics and excitation spectrum of Mn-
CP 11

Fig. S17. UV–vis spectra of Mn-CP in the presence of various concentrations (0–10 μ M) of OTC
solutions12
Fig. S18. HOMO and LUMO energy levels of the OTC and the H ₂ L calculated by density
functional theory (DFT) at B3LYP/6–31G* basis set12
Table S1. Crystal data and structure refinements for Mn-CP
Table S2. Selected bond lengths (Å) and angles (°) for Mn-CP14
Table S3. Compositions of proton conductivity with different MOF materials
Table S4 . Comparison of the proposed sensor for OTC detection with other methods15
Table S5. Luminescent lifetimes of Mn-CP before and after sensing OTC

Fig. S1. IR spectrum of Mn-CP.

Fig. S2. PXRD pattern of Mn-CP.

Fig. S3. PXRD patterns of **Mn-CP** soaked in hot deionized water for 6 h and soaked in deionized water for 24 h (a) and soaked in H₂O with different pH for 24 h (b).

Fig. S5. Nyquist plots of Mn-CP at 75-95% RH and 348 K.

Fig. S6. The recyclable performances of proton conduction of **Mn–CP** under different temperatures (348 – 368 K, 95% RH) (a), and within 15 h (368 K, 95% RH) (b).

Fig. S7. Solid-state luminescent spectra of H₂L (a) and Mn-CP (b).

Fig. S8. Plot of the emission intensities of Mn-CP vs the concentrations of OTC.

Fig. S9. The luminescent intensities at 413 nm of Mn–CP among various substances.

Fig. S10. The luminescent intensities at 413 nm of Mn-CP after the addition of OTC at different times

Fig. S11. The recyclable study of Mn-CP towards OTC

Fig. S12. PXRD patterns of Mn-CP after five recycles of sensing for OTC.

Fig. S13. PXRD patterns of Mn-CP before and after detection of OTC.

Fig. S14. IR spectra of Mn-CP before and after detection of OTC.

Fig. S15. Emission decay profiles of Mn-CP suspensions before and after sensing of OTC.

Fig. S16. UV-vis absorption spectra of Mn-CP, organic antibiotics and excitation spectrum of Mn-CP.

Fig. S17. UV-vis spectra of Mn-CP in the presence of various concentrations (0–10 µM) of OTC solutions.

Fig. S18. HOMO and LUMO energy levels of the OTC and the H₂L calculated by density functional theory (DFT) at B3LYP/6–31G* basis set.

Compound	Mn-CP
Empirical formula	$C_{15}H_{14}Mn_{0.5}O_5P$
Formula weight	332.70
Crystal system	Orthorhombic
Space group	Pnna
a/Å	5.1416(6)
b/Å	25.327(3)
$c/{ m \AA}$	21.599(3)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
γ/°	90
V/Å ³	2812.6(6)
Ζ	8
$ ho_{calc}g/cm^3$	1.571
μ/mm^{-1}	5.421
<i>F</i> (000)	1372
Reflections collected	10314
Independent reflections	2516 [$R_{\rm int} = 0.0751$]
Completeness	100%
Goodness of fit on F^2	1.069
^[a] $R_{l}, wR_{2}[I > 2\sigma(I)]$	0.0617, 0.1473
^[a] R_1 , w R_2 (all data)	0.0811, 0.1597

Table S1. Crystal data and structure refinements for Mn-CP.

 $\overline{[a] R_{I} = \Sigma (|F_{0}| - |F_{C}|) / \Sigma |F_{0}|; wR_{2} = [\Sigma w (|F_{0}| - |F_{C}|)^{2} / \Sigma w F_{0}^{2}]^{1/2}}$

	0 ()	
Mn1–Mn1 ¹		3.1634(12)
Mn1–Mn1 ²		3.1634(12)
Mn1–O1		2.092(3)
Mn1–O1 ³		2.092(3)
Mn1–O2 ⁴		2.175(3)
Mn1–O21		2.289(3)
Mn1–O2 ⁵		2.175(3)
Mn1O2 ⁶		2.289(3)
Mn1 ¹ -Mn1-Mn1 ²		108.71(6)
O1–Mn1–Mn1 ²		140.60(9)
O1–Mn1–Mn1 ¹		83.39(8)
O1 ³ –Mn1–Mn1 ²		83.39(8)
O1 ³ –Mn1–Mn1 ¹		140.60(9)
O1 ³ –Mn1–O1		111.31(17)
O1–Mn1–O2 ⁴		84.80(11)
O1 ³ –Mn1–O2 ⁴		162.93(11)
O1 ³ –Mn1–O2 ⁵		96.78(11)
O1-Mn1-O2 ⁵		85.86(11)
O1-Mn1-O26		96.78(11)
O1-Mn1-O21		162.93(11)
O1 ³ –Mn1–O2 ¹		84.80(11)
O1 ³ –Mn1–O2 ⁶		85.86(11)
$O2^4$ –Mn1–Mn1 ¹		43.45(8)
$O2^1$ –Mn1–Mn1 ¹		80.34(8)
O2 ⁶ -Mn1-Mn1 ²		46.34(7)
O2 ¹ -Mn1-Mn1 ²		43.45(8)
O2 ⁵ -Mn1-Mn1 ²		130.02(9)
O2 ⁴ -Mn1-Mn1 ²		80.34(8)
O2 ⁵ –Mn1–Mn1 ¹		46.34(7)
O2 ⁶ –Mn1–Mn1 ¹		130.02(9)
O21-Mn1-O24		79.86(15)
O2 ⁵ -Mn1-O2 ⁴		89.79(11)
O2 ⁶ -Mn1-O2 ¹		89.79(11)
O2 ⁶ -Mn1-O2 ⁴		86.64(10)
O2 ⁵ -Mn1-O2 ¹		86.64(10)
O2 ⁵ -Mn1-O2 ⁶		175.34(16)

Table S2. Selected bond lengths (Å) and angles (°) for Mn-CP.

Symmetry transformations used to generate equivalent atoms: #1 1–x, 1–y,1–z; #2 –x, 1–y, 1–z; #3 1/2–x, 1–y, +z; #4 3/2–x, 1–y, +z; #5 –1+x, +y, +z; #6 –1/2+x, +y, 1–z.

Table S3. Compositions of proton conductivity with different CPs materials.

Compounds	σ (S cm ⁻¹)	conditions	E _a (eV)	Ref.
$(Hdmbpy)[Dy(H_2dobdc)_2(H_2O)]\cdot 3H_2O$	1.20×10^{-3}	80 °C-100% RH	0.38	[S6]
$\{ [Cd_2(C_2O_4)(2,2"-bpy)_2(H_2O)_4] \cdot L \cdot 3H_2O \}_n$	2.41×10^{-3}	85 °C-98% RH	0.21	[S7]
${[Zn_2(1,2,4,5-BTA)](4,4'-tmdp)_2] \cdot 5H_2O}_n$	$1.09 imes 10^{-4}$	100 °C, 98% RH	0.38	[S8]
${[Zn_2(1,2,4,5-BTA)(4,4'-tmdp)(H_2O)_3] \cdot 2.25H_2O}_n$	1.44×10^{-4}	100 °C, 98% RH	0.32	[S8]
$Cu_4(L)_2(OH)_2(DMF)_2$	$7.40 imes 10^{-4}$	95 °C-95% RH	1.32	[S9]
Mn-CP	$1.07 imes 10^{-4}$	95 °C-95% RH	1.42	This work
${Cd(1,2,4,5-BTA)_{0.5}}_n$	$1.25 imes 10^{-5}$	100 °C, 98% RH	0.40	[S8]
${[Cu(pyz)(5-Hsip)(H_2O)_2] \cdot (H_2O)_2}_n$	$3.50 imes 10^{-5}$	65 °C-95% RH	0.35	[S10]
$\{[Zn_3(Htimb)_2(H_2timb)_2(H_2O)_2(ZnW_{12}O_{40})_2] \cdot 2H_2O\}_n$	2.32×10^{-5}	85 °C-98% RH	0.52	[S11]
${[Ni(Htimb)(H_2O)_3(H_2W_{12}O_{40})_{0.5}] \cdot 3H_2O}_n$	$3.38 imes 10^{-5}$	85 °C-98% RH	0.16	[S11]
$[Zn(Hssa)(1,4-bib) \cdot H_2O]_n$	$3.45 imes 10^{-5}$	60 °C-95% RH	0.28	[S12]
$[Zn_3(ssa)_2(1,4-bib)_3\cdot 4H_2O]_n$	$6.26 imes 10^{-6}$	60 °C-95% RH	0.35	[S12]
$[Cd_5(TCA)_2(H_2O)_2] \cdot 8DMA \cdot 16H_2O$	$1.45 imes 10^{-6}$	80 °C-85% RH	0.74	[S13]
(Imi) ₂ [Bi ₂ (pzdc) ₄]·2H ₂ O	8.41×10^{-6}	85 °C-95% RH	0.31	[S14]

 Table S4. Comparison of the proposed sensor for OTC detection with other methods.

Compounds	K_{sv} (M ⁻¹)	LOD (nM)	Visual detection	Ref.
$2[Zn_2 \cdot L(H_2O)_2]$	_	1.21	No	[S15]
Mn-CP	3.78 × 10 ⁴	4.41	Yes	This work
Ag ⁺ /Tb ³⁺ @UiO-66-(COOH) ₂	_	9.1	Yes	[S16]
$2[Cd(H_2L)\cdot(H_2O)_2]$	_	25.4	No	[S15]
BUT-179	2.96×10^5	25.4	No	[S17]
JNU-104	1.52×10 ⁴	29	Yes	[S18]
EuUCBA.	9.755×10^{3}	118	No	[S19]
Tb-MOF	_	120	Yes	[S20]
Eu-MOF	3.22×10^4	130	Yes	[S21]
BUT-178	$8.29 imes 10^4$	205	No	[S17]
JNU-205-Eu	2.37×10^4	350	Yes	[822]

Table S5. Luminescent lifetimes of Mn–CP before and after sensing OTC.

Compounds	IRF	$\tau_{before} (ns)$	$\tau_{after} (ns)$
Mn-CP	0.67	2.07	1.82

Reference

- S1. F. G. Chen, W. Xu, J. Chen, H. P. Xiao, H. Y. Wang, Z. Y. Chen and J. Y. Ge, Dysprosium(III) Metal–Organic Framework Demonstrating Ratiometric Luminescent Detection of pH, Magnetism, and Proton Conduction, *Inorg. Chem.*, **2022**, *61*, 5388-5396.
- S2. B. C. Wang, X. P. Li, B. B. Hao, C. X. Zhang and Q. L. Wang, Dual-Functional Coordination Polymer with High Proton Conductivity and a Low-Detection-Limit Fluorescent Probe, *J. Phys. Chem. B.*, **2021**, *125*, 12627-12635.
- S3. G. Q. Shi, H. W. Wang, Q. X. Wang and G. Li, Water-mediated proton conductive properties of three water-stable metal-organic frameworks constructed by pyromellitic acid, *J. Solid. State. Chem.*, **2022**, 307, 122874.
- S4. X. Meng, S. Y. Song, X. Z. Song, M. Zhu, S. N. Zhao, L. L. Wu and H. J. Zhang, A tetranuclear copper cluster-based MOF with sulfonate–carboxylate ligands exhibiting high proton conduction properties, *Chem. Commun.*, 2015, 51, 8150-8152.
- S5. D. K. Maity, K. Otake, S. Ghosh, H. Kitagawa and D. Ghoshal, Sulfonic Group Functionalized Mixed Ligand Coordination Polymers: Synthesis, Characterization, Water Sorption, and Proton Conduction Studies, *Inorg. Chem.*, 2017, 56, 1581-1590.
- S6. L. L. Chen, Y. J. Shi, W. W. Wu, J. X. Wang, Y. M. Li, Y. Bai and D. B. Dang, Three new POM-based coordination polymers with 1,3,5-tris(1-imidazolyl)benzene ligand: syntheses, structures and proton conductivity, *CrystEngComm*, 2022, 24, 1556-1563.
- S7. T. Y. Xu, H. J. Nie, J. M. Li and Z. F. Shi, Highly selective sensing of Fe³⁺/Hg²⁺ and proton conduction using two fluorescent Zn(ii) coordination polymers, *Dalton Trans.*, **2020**, *49*, 11129-11141.
- S8. Y. Shen, X. F. Yang, H. B. Zhu, Y. Zhao and W. S. Li, A unique 3D metal-organic framework based on a 12-connected pentanuclear Cd(ii) cluster exhibiting proton conduction, *Dalton Trans.*, 2015, 44, 14741-14746.
- S9. M. A. A. Al-Nubi, A. M. Hamisu, A. Ariffin, J. F. Zhang, G. K. H. Shimizu, H. Jo, K. M. Ok and A. C. Wibowo, A new bismuth coordination polymer with proton conductivity and orangered photoluminescence, *J. Coord. Chem.*, **2021**, *74*, 1810-1822.
- S10. F. Sun, H. H. Xie, X. Liu, S. Y. Pang, S. F. Tang and X. L. Xu, Two luminescent phosphonate metal-organic framework as highly efficient and sensitive sensors for the detections of tetracycline antibiotic in aqueous system, *J. Solid. State. Chem.*, 2023, 322, 123942.
- S11. T. X. Li, Z. X. Chen, Z. S. Zhao and Z. D. Liu, A portable test strip fabricated of luminescent lanthanide-functionalized metal–organic frameworks for rapid and visual detection of tetracycline antibiotics, *Anal. Methods.*, 2023, 15, 4459-4466.

- S12. L. Liu, Q. Chen, J. Lv, Y. P. Li, K. C. Wang and J. R. Li, Stable Metal–Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics, *Inorg. Chem.*, **2022**, *61*, 8015-8021.
- S13. X. Wu, X. Xiong, J. L. Li, D. Luo, K. Wu, Y. B. Wei, X. Y. Liu, W. G. Lu, D. Li and J. He, An Adenine-Based Biological Metal-Organic Framework as an Efficient Luminescent Sensor for Tetracycline Detection, *Eur. J. Inorg. Chem.*, 2022, 2022, e202200278.
- S14. J. X. He, H. Q. Yuan, Y. F. Zhong, X. X. Peng, Y. F. Xia, S. Y. Liu, Q. Fan, J. L. Yang, K. Deng, X. Y. Wang and G. M. Bao, A luminescent Eu³⁺-functionalized MOF for sensitive and rapid detection of tetracycline antibiotics in swine wastewater and pig kidney, *Spectrochim. Acta. A.*, 2022, 277, 121252.
- S15. C. Y. Zhang, K. R. Lu, L. R. Li, W. Lei, M. Z. Xia and F. Y. Wang, A water-stabilized Tb-MOF can be used as a sensitive and selective fluorescence sensor for the detection of oxytetracycline hydrochloride, *Spectrochim. Acta. A.*, 2023, 123379.
- S16. J. J. Hu, K. L. Xie, T. Z. Xiong, M. M. Wang, H. R. Wen, Y. Peng and S. J. Liu, Stable Europium(III) Metal–Organic Framework Demonstrating High Proton Conductivity and Fluorescence Detection of Tetracyclines, *Inorg. Chem.*, 2023, 62, 12001-12008.
- S17. K. Wu, X. Y. Liu, Y. L. Huang, M. Xie, X. Xiong, J. Zheng, W. G. Lu and D. Li, Pyrazine functionalization to boost the antenna effect in rare-earth metal–organic frameworks for tetracycline detection, *Inorg. Chem. Front.*, 2022, 9, 1714-1721.