Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Cytotoxic Pt(II) complexes containing alizarine:

a selective carrier for DNA metalation

Rossella Caligiuri,^{a±} Lara Massai,^{e±} Andrea Geri,^e Loredana Ricciardi,^c Nicolas Godbert,^{a,b} Giorgio Facchetti,^{f*} Maria Giovanna Lupo,^g Ilaria Rossi,^h Giulia Coffetti, ^f Martina Moraschi,^f Emilia Sicilia,^d Vincenzo Vigna,^d Luigi Messori,^e Nicola Ferri,^{g,i} Gloria Mazzone,^{d*} Iolinda Aiello,^{a,b,c*} Isabella Rimoldi^f

^a MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy.

^b LPM-Laboratorio Preparazione Materiali, STAR-Lab, Università della Calabria, Via Tito Flavio, 87036 Rende (CS), Italy

^c CNR -Nanotec, UoS di Cosenza, Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy.

^d Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy

^e Department of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy

^f Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy

^{g.}Department of Medicine, University of Padova, Italy

^{h.}Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy

ⁱVeneto Institute of Molecular Medicine, Padua, Italy

± These authors equally contributed to the work.

Table of Contents

Figure S1. ¹H- and ¹³C-NMR spectra of compound 1b.

Figure S2. ¹H- and ¹³C-NMR spectra of compound 2b.

Figure S3. ¹H- and ¹³C-NMR spectra of compound **3b**.

Figure S4. ¹H- and ¹³C-NMR spectra of compound 4b.

Figure S5. ¹H- and ¹³C-NMR spectra of compound **5b**.

Figure S6. ¹H- and ¹³C-NMR spectra of compound 6b.

Figure S7. ¹H- and ¹³C-NMR spectra of compound 7b.

Figure S8. ¹H- and ¹³C-NMR spectra of compound 8b.

Figure S9. ¹H- and ¹³C-NMR spectra of compound 9b.

Figure S10. ¹⁹⁵Pt-NMR of dichloride precursor 2a.

Figure S11. ¹⁹⁵Pt-NMR of dichloride precursor 6a.

Figure S12. ¹⁹⁵Pt-NMR of dichloride precursor 7a.

Figure S13. HPLC of compound 2b in presence of KI as internal standard (peak 1).

Figure S14. HPLC of compound 6b in presence of KI as internal standard (peak 1).

Figure S15. HPLC of compound 7b in presence of KI as internal standard (peak 1).

Table TS1. ¹H and ¹³C chemical shift (δ , *ppm*) computed in DMSO for the two possible isomers of complexes **3b-6b**.

Table TS2. The shortest H-H distance (Å) between N^N and aliz ligands computed in DMSO for the depicted isomers *cis* and *trans* of complexes **3b-6b**, where H3 can be phenyl H (**3b**, **4b** and **6b**) or methyl H (**5b**).

Figure S16. NOESY bidimensional experiment of compound 5b.

Figure S17. Optimized structure of complexes 1b-9b.

Table TS3. Cartesian Coordinates of the optimized structures for the complexes.

Figure S18. Absorption spectra over time (t = 0, 3, 6, and 24 h) of Pt(II) complexes [(N^N)Pt(aliz)] (A) **1b**, (B) **2b**, (C) **3b**, (D) **4b**, (E) **5b**, (F) **6b**, (G) **7b**, (H) **8b** and of (I) **9b** in DMSO/buffer solution (DMSO 0.5% v/v) at room temperature, $1 \cdot 10^{-5}$ M.

Figure S19. TDDFT simulated absorption spectra of Pt(II) complexes [(N^N)Pt(aliz)] 1b-2b (A), 3b-6b (B), 7b-9b (C) in aqueous environment.

Table TS4. TDDFT calculated electronic excitation energies (eV), absorption wavelength (nm), oscillator strength (f) and main configuration in water.

Figure S20. Natural Transition Orbitals (NTOs) for selected electronic transitions.

Figure S21. (A) Deconvoluted ESI-Q-TOF spectra of ODN with cisplatin; **(B)** Deconvoluted ESI-Q-TOF spectra of RNase with cisplatin in a 1:1 molecule to platinum ratio. All spectra were recorded at 24 h.

Figure S22. Binding study of GSH with compounds **2b**, **6b** and **7b** in 20 % physiological D_2O solution-DMSO*d*6: stack plot of ¹H-NMR for aliphatic region.

Figure S23. Free energy profiles for NAM attack to Pt^{II} complexes 2b, 6b, 7b, 2a, 6a and 7a.

Figure S1. ¹H- and ¹³C-NMR spectra of compound 1b.

Figure S2. ¹H- and ¹³C-NMR spectra of compound 2b.

Figure S3. ¹H- and ¹³C-NMR spectra of compound **3b**.

Figure S4. ¹H- and ¹³C-NMR spectra of compound 4b.

Figure S5. ¹H- and ¹³C-NMR spectra of compound 5b.

Figure S6. ¹H- and ¹³C-NMR spectra of compound 6b.

9,852 9,852 9,853 9,855 9,955 9,

Figure S7. ¹H- and ¹³C-NMR spectra of compound 7b.

Figure S8. ¹H- and ¹³C-NMR spectra of compound 8b.

Figure S9. ¹H- and ¹³C-NMR spectra of compound 9b.

mither manual and we with a second second and the second

-1920 -1940 -1960 -2000 -2020 -2040 -2060 -2080 -2100 -2120 -2140 -2160 -2180 -2200 -2220 -2240 -2260 -2380 -2300 -2320 -2340 -2360 -2380 -2400 -2420 -2440 -2460 f1 (ppm)

Figure S10. ¹⁹⁵Pt-NMR dichloride precursor 2a.

Figure S11. ¹⁹⁵Pt-NMR dichloride precursor 6a.

manunal and the second and the secon

Figure S12. ¹⁹⁵Pt-NMR dichloride precursor 7a.

Figure S13. HPLC of compound 2b in presence of KI as internal standard (peak 1).

Figure S14. HPLC of compound 6b in presence of KI as internal standard (peak 1).

tR		Area	Height	Area%	Height%	Quantity	NTP	Resolutio	Symmetry
								n	Factor
	2,042	3459561	426282	41,796	53,098	N/A	1694	5,282	1,524
	3,392	4817710	376543	58,204	46,902	N/A	1866	N/A	1,522

Figure S15. HPLC of compound 7b in presence of KI as internal standard (peak 1).

Table TS1. ¹H and ¹³C chemical shift (δ , *ppm*) computed in DMSO for the two possible isomers of complexes **3b-6b**.

		cis	trans				
3b	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	Label	δ (ppm)	Label	δ (ppm)			
^{1}H	H17	9.40	H17	9.79			
	H37	9.09	H37	9.14			
	H39	9.00	H39	9.01			
	H27	8.64	H27	8.66			
	H31	8.47	H40	8.48			
	H40	8.46	H31	8.46			
	H41	8.44	H41	8.44			
	H21	8.24	H21	8.25			
	H22	8.22	H22	8.33			
	H26	7.49	H26	7.49			
	H11	5.05	H11	5.03			

	H12	4.97	H12	4.95	
	H6	4.36	H6	4.23	
	H8	4.29	H8	4.09	
¹³ C	C23	204.78	C23	204.97	
	C30	202.01	C30	202.41	
	C14	192.84	C14	193.18	
	C13	187.16	C13	184.93	
	C9	179.27	C9	179.25	
	C10	168.85	C10	168.73	
	C20	157.96	C20	157.61	
	C28	152.79	C28	152.80	
	C36	151.50	C36	151.72	
	C32	151.40	C32	151.36	
	C38	151.00	C38	151.11	
	C33	144.94	C33	145.05	
	C35	144.42	C35	144.50	
	C16	143.58	C16	143.53	
	C15	141.08	C15	140.94	
	C24	140.18	C24	140.50	
	C25	139.39	C25	139.24	
	C18	136.87	C18	136.40	
	C19	133.46	C19	134.70	
	C7	66.52	C7	66.15	

	Label	δ (ppm)	Label	δ (ppm)
¹H	H12	10.29	H12	10.00
	H15	9.21	H15	9.19
	H23	9.21	H23	9.16
	H31	9.05	H31	9.04
	H44	8.91	H44	8.91
	H41	8.84	H41	8.87
	H43	8.65	H43	8.66
	H14	8.57	H29	8.52
	H29	8.54	H14	8.49
	H30	8.49	H30	8.48
	H27	8.41	H27	8.44
	H28	7.55	H28	7.60
	H36	6.29	H37	6.40
	H37	6.27	H36	6.38
¹³ C	C32	184.99	C32	185.93
	C34	182.61	C34	183.88
	C9	170.65	C9	170.38
	C6	164.97	C6	166.45
	C38	148.68	C38	148.39
	C7	143.43	C7	143.36
	C13	138.89	C13	138.90
	C21	133.97	C21	133.77
	C8	133.53	C8	133.58

	C20	132.72	C20	132.62
	C24	131.63	C24	131.66
	C25	131.12	C25	131.19
	C39	129.58	C39	129.59
	C10	129.02	C10	128.94
	C40	128.59	C40	128.47
	C42	128.08	C42	128.17
	C22	126.49	C22	126 51
	C26	126.10	C26	126.27
	C17	123.25	C17	120.27
	C11	123.33	C11	122.05
	C12	123.07	C11 C19	122.51
	C16	122.03	C16	123.21
	C10	117.61	C10	117.10
	019	28	C19	117.10
		23 29		27
		22 21 24		18 26
		28 10 25 30	40 45	30 3 9 34
		32 31	42 8	35 16 33
	45 3	15 15 33 34	42 41	1 6 15 30
5h	48 45 44 4	2 6 10	43 46 7	2 19 25
55	42 41 8 3	5 1 9 10 17 26	47 10	5 31 20
	43 46 7	3 27		32 32 24 29
	47 10		12	48 50 22 23
	12 3	7 49 48 58	14 11	22 28
	14 11	51	13	51
	13			
	Label	δ (ppm)	Label	δ (ppm)
¹Н	H22	9.02	H22	9.11
	H30	8.94	H30	9.00
	H26	8.42	H28	8.46
	H28	8.41	H26	8.46
	H29	8 38	H29	8 43
	H14	8 30	H14	8 37
	H13	8 01	H13	8 15
	H27	7 30	H27	7 50
	H127	5.03	H44	5 13
	LI26	4 11	L144	4.24
	H30 H2E	4.11	H45	4.24
	1140	3.70		3:35
	H49	5.74		2.75
		5.50		5.72
	H47	3.29	H47	3.35
	H43	3.16	H43	3.23
	H51	2.95	H51	3.17
	H40	2.92	H40	3.00
	H45	2.62	H45	2.60
	H42	2.38	H42	2.42
12 -	H46	1.86	H46	1.91
¹³ C	C31	202.11	C31	204.40
	C33	200.08	C33	202.44
	C9	192.78	C9	192.32
	C6	184.61	C6	185.82
	C37	181.60	C37	182.60
	C7	175.60	C7	176.42
	C12	156.77	C12	157.10
	C10	154.56	C10	155.33
	C20	153.25	C20	152.90
	C19	151.86	C23	151.62
	C23	150.70	C19	151.25
	C24	150.32	C24	150.91
	C21	144.10	C21	145.04

C25	143.69	C25	144.36	
C11	143.25	C11	144.30	
C17	139.06	C16	140.62	
C16	139.05	C17	138.81	
C15	135.89	C15	136.22	
C18	132.68	C18	133.86	
C8	70.94	C8	70.81	
C39	47.13	C39	47.59	
C38	45.13	C38	45.52	
C48	39.50	C48	40.08	
C41	34.96	C41	35.19	

	Label	δ (ppm)	Label	δ (ppm)
^{1}H	H12	9.23	H12	9.62
	H23	9.02	H23	9.13
	H31	8.94	H31	9.01
	H15	8.41	H15	8.48
	H29	8.41	H29	8.48
	H27	8.40	H27	8.45
	H30	8.38	H30	8.44
	H14	8.10	H14	8.26
	H28	7.43	H28	7.47
	H45	4.77	H45	4.80
	H37	4.52	H37	4.59
	H36	3.76	H36	3.75
	H48	3.35	H48	3.39
	H44	3.09	H41	3.26
	H41	3.04	H44	3.13
	H43	2.60	H43	2.65
	H47	2.29	H47	2.19
	H46	2.01	H46	2.12
¹³ C	C32	202.06	C32	204.92
	C34	200.29	C34	202.33
	C6	191.95	C6	193.25
	C9	186.07	C9	185.13
	C7	179.53	C7	179.34
	C38	164.04	C38	165.35
	C10	156.56	C10	158.26
	C13	155.24	C13	155.40
	C21	153.31	C21	152.86
	C20	151.71	C24	151.69
	C24	150.78	C20	151.41
	C25	150.26	C25	151.07
	C22	144.13	C22	145.03
	C26	143.70	C26	144.50
	C11	142.69	C11	143.35
	C17	139.65	C17	140.45
	C18	138.65	C18	139.23

C16	136.19	C16	136.40	
C19	132.70	C19	134.60	
C8	73.40	C8	72.23	
C40	44.13	C40	45.12	
C39	42.26	C39	43.73	
C42	32.55	C42	34.07	

Table TS2. The shortest H-H distance (Å) between N^N and aliz ligands computed in DMSO for the depicted isomers *cis* and *trans* of complexes **3b-6b**, where H3 can be phenyl H (**3b**, **4b** and **6b**) or methyl H (**5b**).

	3	b	4	b	5	b	6	ib
	cis	trans	cis	trans	cis	trans	cis	trans
d1	4.613		4.322		3.849		4.373	
d2		5.304		5.335		5.051		5.497

Figure S16. NOESY bidimensional experiment of complex **5b**. Note that proton numbers (H_{13} and H_{27}) are relative to the numbering used in Table S1.

Figure S17. Optimized structure of complexes 1b-9b. Bond distances in ${\rm \AA}$ are reported.

	1b				2b		
Atomic				Atomic			
number	х	у	Z	number	х	у	Z
78	-0.910122	-1.251887	-0.743086	78	-1.744085	-0.327380	-0.000052
8	-0.871532	0.391788	-1.957562	8	0.143607	0.439021	0.000011
8	1.095772	-0.879837	-0.665257	8	-0.718142	-2.088677	-0.000223
7	-2.952606	-1.628596	-0.843320	6	1.077023	-0.514911	-0.000065
7	-0.955362	-2.908089	0.514404	6	0.605657	-1.876089	-0.000191
6	1.416812	0.197610	-1.400079	7	-2.761322	1.482573	0.000017
6	-3.351603	-2.565316	0.254411	7	-3.670974	-1.104212	-0.000021
6	0.363250	0.886843	-2.095066	6	-4.211047	1.276493	0.000141
6	0.669019	2.030121	-2.873447	6	-4.672318	-0.034760	0.000110
6	2.034519	2.465288	-2.945969	6	-6.475996	2.078762	0.000389
6	3.031867	1.768059	-2.263274	6	-6.039095	-0.305524	0.000212
6	2.733161	0.644217	-1.495339	1	-7.181242	2.903488	0.000503
6	1.369699	4.401107	-4.436598	1	-4.730717	3.362279	0.000313
6	0.027755	3.980229	-4.373165	6	-6.940514	0.758982	0.000351
6	-0.955575	4.712817	-5.051121	6	-5.106573	2.343861	0.000283
1	-1.986406	4.381452	-4.997004	1	-8.006857	0.558052	0.000432
6	-0.612090	5.848336	-5.780983	1	-6.383802	-1.334882	0.000183
6	0.722581	6.265040	-5.843413	6	1.510474	-2.934062	-0.000276
6	1.707378	5.543154	-5.174269	6	2.467659	-0.254127	-0.000031
1	4.055218	2.117931	-2.337650	6	2.879435	-2.675283	-0.000245
1	3.513059	0.106252	-0.964298	1	1.131517	-3.951419	-0.000369
1	-1.382135	6.409622	-6.301340	6	3.374010	-1.369456	-0.000124
1	0.990741	7.150036	-6.412303	6	2.987112	1.116741	0.000102
1	2.746139	5.852333	-5.212399	1	3.580636	-3.501973	-0.000311
6	-0.375870	2.766622	-3.599290	6	4.825673	-1.179327	-0.000086
8	-1.573316	2.431813	-3.599843	6	4.467445	1.307236	0.000140
6	2.432741	3.645325	-3.726161	8	2.250393	2.125338	0.000226
8	3.617065	4.018557	-3.798834	6	5.350042	0.208240	0.000050
6	-2.267710	-3.616957	0.379900	8	5.621187	-2.146601	-0.000128
1	-0.188965	-3.554603	0.324397	6	4.989163	2.607681	0.000274
1	-0.838160	-2.594044	1.479792	6	6.733975	0.428760	0.000095
1	-2.219796	-4.232600	-0.521366	6	6.366183	2.817175	0.000318
1	-2.441313	-4.264752	1.242691	1	4.307405	3.450591	0.000345
1	-3.433421	-1.980984	1.173842	1	7.403684	-0.423965	0.000025
1	-3.502787	-0.770811	-0.787683	6	7.241239	1.725373	0.000228
1	-3.168296	-2.054437	-1.746896	1	6.758445	3.829359	0.000424
1	-4.321162	-3.019459	0.035152	1	8.314627	1.887223	0.000262
				1	-2.494994	2.039136	-0.817016
				1	-2.494857	2.039185	0.816971
				1	-3.813852	-1.704228	0.817122
				1	-3.813954	-1.704119	-0.817227

Table TS3. Cartesian Coordinates of the optimized structures for the complexes.

3b-cis					3b-1	trans		
Atomic				Atomic				
number	х	У	Z	number	х	У	z	
78	-1.977880	-0.560751	-0.103532	78	-1.977880	-0.560751	-0.103532	
7	-3.884743	-1.376659	-0.159081	7	-3.884743	-1.376659	-0.159081	
7	-3.079140	1.149859	-0.081954	7	-3.079140	1.149859	-0.081954	
8	-0.885424	-2.316613	-0.049703	8	-0.110965	0.266790	-0.055351	
8	0.041529	0.182562	-0.199740	8	-0.893108	-2.285186	-0.112787	

1	-4.136312 -1.566376 -1.131197	1	-4.136312 -1.566376 -1.131197
6	-4.858667 -0.410101 0.429803	6	-4.858667 -0.410101 0.429803
1	-3.941903 -2.266236 0.337311	1	-3.941903 -2.266236 0.337311
6	-4.412170 0.993003 0.131233	6	-4.412170 0.993003 0.131233
6	-2.572495 2.379818 -0.316067	6	-2.572495 2.379818 -0.316067
1	-4.864464 -0.564930 1.512951	1	-4.864464 -0.564930 1.512951
1	-5.866775 -0.595164 0.052335	1	-5.866775 -0.595164 0.052335
6	0.442859 -2.164951 -0.068394	6	0.852133 -0.660621 -0.049102
6	0.936917 -0.818391 -0.147621	6	0.426513 -2.032256 -0.081657
6	-5.272016 2.085726 0.109665	6	-5.272016 2.085726 0.109665
6	-3.382315 3.505886 -0.336711	6	-3.382315 3.505886 -0.336711
1	-1.504131 2.431912 -0.486668	1	-1.504131 2.431912 -0.486668
6	1.358245 -3.243907 -0.014260	6	2.234922 -0.357907 -0.013513
6	2.307434 -0.569576 -0.170156	6	1.364234 -3.062503 -0.079621
6	-4.753215 3.358254 -0.121904	6	-4.753215 3.358254 -0.121904
1	-6.332329 1.929903 0.274939	1	-6.332329 1.929903 0.274939
1	-2.938412 4.476553 -0.524848	1	-2.938412
6	0.896293 -4.636525 0.066328	6	2.713982 1.030817 0.021507
6	2.762655 -2.953566 -0.040120	6	3.174301 -1.441833 -0.011600
6	3.206758 -1.633131 -0.116838	6	2.724901 -2.762295 -0.044497
1	2.657347 0.456839 -0.229934	1	1.018628 -4.091799 -0.105050
1	-5.410518 4.221199 -0.139846	1	-5.410518
6	1.926368 -5.717684 0.119352	6	4.189205 1.265606 0.058401
8	-0.304957 -4.955232 0.092091	8	1.953229 2.013921 0.022070
6	3.774810 -4.018210 0.011945	6	4.625246 -1.209314 0.024879
1	4.274025 -1.443472 -0.134979	1	3.457586 -3.561372 -0.041982
6	3.303037 -5.424225 0.093354	6	5.104643 0.196035 0.060189
6	1.508099 -7.052510 0.197012	6	4.667889 2.581852 0.091556
8	4.993304 -3.770064 -0.010243	8	5.442557 -2.146756 0.026603
6	4.237769 -6.466383 0.144726	6	6.480416 0.457680 0.095484
6	2.443788 -8.083048 0.247856	6	6.037369 2.833677 0.126414
1	0.445729 -7.268258 0.216760	1	3.954955 3.398729 0.089601
6	3.812131 -7.789941 0.221624	6	6.946391 1.769422 0.128464
1	5.294201 -6.222261 0.123439	1	7.171394 -0.378170 0.096620
1	2.109428 -9.114223 0.307812	1	6.398224 3.857317 0.152063
1	4.541688 -8.593006 0.261163	1	8.013900 1.965410 0.155710

	4b	-cis			4b-t	rans	
Atomic				Atomic			
number	х	У	Z	number	х	у	Z
78	-0.852266	-0.995129	-0.324163	78	-0.890696	-1.167513	-0.623704
8	1.098802	-0.458298	-0.041166	8	-0.878050	0.421409	-1.910598
8	-0.801083	0.648325	-1.538380	8	1.099272	-0.733326	-0.536915
7	-2.794955	-1.514071	-0.589072	7	-2.872643	-1.602187	-0.687192
7	-0.909943	-2.687683	0.897567	7	-0.904477	-2.789481	0.670423
6	0.401105	1.211108	-1.546123	6	1.407158	0.309864	-1.325824
6	-3.264358	-2.484925	0.221380	6	-3.298068	-2.532216	0.198727
6	-2.320279	-3.101968	1.213966	6	-2.290142	-3.124915	1.140640
6	1.436546	0.616529	-0.733743	6	0.345132	0.939205	-2.061080
6	-4.585882	-2.923530	0.175628	6	-4.639186	-2.909297	0.297088
6	-4.939279	-1.349649	-1.611986	6	-5.103713	-1.366964	-1.498606
1	-3.182312	-0.174537	-2.112561	1	-3.360033	-0.293859	-2.219742
6	-5.431191	-2.345304	-0.769009	6	-5.550948	-2.315498	-0.577020

1	-5.572090	-0.880241	-2.353552	1	-5.787606	-0.888611	-2.190344
1	-6.464141	-2.665476	-0.841610	1	-6.600360	-2.591286	-0.535765
6	2.728152	1.195182	-0.716403	6	0.631988	2.049493	-2.891703
6	2.971038	2.361317	-1.519446	6	1.989290	2.504975	-2.983564
6	1.946102	2.904646	-2.292463	6	2.996583	1.863810	-2.261719
6	0.672825	2.342767	-2.310220	6	2.715048	0.776444	-1.436508
6	5.372797	2.440169	-0.729571	6	1.294564	4.335183	-4.590034
6	5.144132	1.302552	0.061583	6	-0.041153	3.899043	-4.499923
6	6.190154	0.782508	0.833250	6	-1.034212	4.569662	-5.225987
1	6.002077	-0.094774	1.438880	1	-2.060314	4.228131	-5.150045
6	7.444335	1.382056	0.820351	6	-0.706229	5.657759	-6.031373
6	7.670217	2.514960	0.032076	6	0.622151	6.089305	-6.120737
6	6.638663	3.038819	-0.737547	6	1.616271	5.430037	-5.402488
1	2.159087	3.783750	-2.887152	1	4.013751	2.227823	-2.351308
1	-0.121292	2.769864	-2.912282	1	3.501905	0.282026	-0.874357
1	8.246729	0.970559	1.421928	1	-1.483528	6.170499	-6.589647
1	8.647507	2.983699	0.021225	1	0.878210	6.937360	-6.748399
1	6.794078	3.915092	-1.354142	1	2.650127	5.752334	-5.459688
6	3.805216	0.624873	0.105375	6	-0.426587	2.733906	-3.646929
8	3.668064	-0.368311	0.822493	8	-1.621214	2.392200	-3.607603
6	4.282809	3.019414	-1.562698	6	2.367791	3.646748	-3.828175
8	4.501928	4.019609	-2.256752	8	3.544211	4.040905	-3.914649
1	-0.436993	-3.442883	0.401215	1	-0.511329	-3.591977	0.173924
1	-0.390224	-2.547728	1.761317	1	-0.300850	-2.628891	1.477407
6	-3.618239	-0.949030	-1.496147	6	-3.759088	-1.026977	-1.529830
6	-4.994071	-3.956207	1.190529	6	-4.980895	-3.930755	1.348992
6	-2.479977	-4.632761	1.217743	6	-2.485032	-4.646841	1.330922
1	-1.879955	-5.046240	2.030372	1	-1.992786	-4.933863	2.264054
6	-3.958274	-5.097951	1.326239	6	-3.972614	-5.097821	1.325791
1	-4.123723	-5.599152	2.281247	1	-4.165283	-5.752006	2.180074
1	-5.095260	-3.449168	2.157778	1	-4.956829	-3.445224	2.334343
1	-2.554502	-2.697236	2.203001	1	-2.418299	-2.623149	2.106558
1	-2.052460	-5.003189	0.281134	1	-1.956220	-5.157464	0.518396
1	-4.147460	-5.836741	0.545254	1	-4.160790	-5.689015	0.424439
1	-5.977402	-4.362593	0.948585	1	-5.998735	-4.301182	1.200603

5b-cis

5b-trans

Atomic				Atomic			
number	х	у	Z	number	х	у	Z
78	-0.932845	-1.068768	-0.904391	78	-1.069411	-1.256320	-0.985069
8	1.079153	-0.759899	-0.829723	8	-0.943402	0.482438	-2.083992
8	-0.804558	0.610603	-2.091133	8	0.949152	-1.033733	-0.994577
7	-0.923203	-2.707943	0.363490	7	-1.070554	-2.944807	0.195156
7	-2.962210	-1.536913	-0.885620	7	-3.116102	-1.629553	-0.859449
6	1.478162	0.291617	-1.524891	6	0.315484	0.896005	-2.231580
6	-3.301526	-2.436444	0.083933	6	-3.430815	-2.515579	0.134848
6	-2.223812	-2.717773	1.105715	6	-2.291181	-2.876414	1.057943
6	0.444032	1.034088	-2.202584	6	1.336856	0.073177	-1.647755
6	-4.550063	-3.041983	0.143889	6	-4.707945	-3.048232	0.293199
6	-5.179919	-1.679301	-1.734523	6	-5.394870	-1.665286	-1.555280
6	-5.506297	-2.634762	-0.788763	6	-5.706429	-2.592326	-0.573386
1	-5.910766	-1.352227	-2.462475	1	-6.154727	-1.306383	-2.240054
1	-6.495359	-3.078887	-0.777581	1	-6.716728	-2.981302	-0.486015
6	2.825679	0.706200	-1.631784	6	0.684454	2.077434	-2.923422
6	3.125568	1.872652	-2.414693	6	2.077660	2.407636	-3.020906
6	2.098780	2.570705	-3.049959	6	3.040633	1.579181	-2.444234
6	0.772012	2.163110	-2.951335	6	2.680795	0.419069	-1.760193

6	5.589564 1.609084 -1.909836	6	1.521284 4.502752 -4.330330
6	5.305882 0.466646 -1.143434	6	0.152349 4.187719 -4.237171
6	6.356118 -0.226325 -0.529683	6	-0.791767 5.043178 -4.820084
1	6.124303 -1.105132 0.058399	1	-1.843656 4.792072 -4.742804
6	7.669172 0.206678 -0.674692	6	-0.383067 6.195723 -5.486908
6	7.950060 1.344556 -1.437670	6	0.978317 6.507317 -5.579032
6	6.914469 2.040088 -2.050022	6	1.924438 5.663729 -5.002904
1	2.355069 3.446839 -3.631951	1	4.085176 1.854689 -2.535393
1	-0.021903 2.708026 -3.449588	1	3.432900 -0.222606 -1.310541
1	8.474641 -0.338409 -0.195999	1	-1.122789 6.852013 -5.935132
1	8.973268 1.683703 -1.551558	1	1.297343 7.405450 -6.098962
1	7.112788 2.922992 -2.644476	1	2.982912 5.891357 -5.065356
6	3.903121 -0.035195 -0.962202	6	-0.322039 2.959034 -3.530047
8	3.715666 -1.037178 -0.269154	8	-1.544130 2.735325 -3.482714
6	4.496465 2.369067 -2.578481	6	2.542928 3.613769 -3.721072
8	4.763770 3.377690 -3.243459	8	3.750552 3.897985 -3.810916
1	-0.808371 -3.572784 -0.166245	1	-1.088777 -3.799337 -0.367726
1	-0.144236 -2.658642 1.018406	1	-0.235269 -2.993579 0.781191
6	-3.889082 -1.148476 -1.793921	6	-4.083726 -1.202356 -1.711212
6	-4.805828 -4.145358 1.141605	6	-4.949100 -4.133142 1.315705
6	-2.449662 -3.974772 1.976280	6	-2.515723 -4.131506 1.932705
1	-2.763151 -3.644968 2.970261	1	-2.702793 -3.795544 2.957760
6	-3.512422 -4.920999 1.413082	6	-3.692704 -4.997425 1.474737
1	-3.695328 -5.729009 2.124775	1	-3.867573 -5.790712 2.207742
1	-5.185212 -3.723044 2.080093	1	-5.211900 -3.687542 2.284996
1	-2.174301 -1.840289 1.755694	1	-2.120305 -2.015921 1.712700
1	-1.495531 -4.491671 2.107720	1	-1.588076 -4.713439 1.957894
1	-3.163834 -5.380880 0.481966	1	-3.462718 -5.482668 0.517867
1	-5.586110 -4.804132 0.753833	1	-5.807712 -4.733910 1.001069
6	-3.511276 -0.162696 -2.853767	6	-3.746626 -0.247622 -2.813848
1	-3.184893 0.777500 -2.407960	1	-3.471596 0.731593 -2.413055
1	-2.668138 -0.530322 -3.441753	1	-2.900557 -0.608415 -3.403731
1	-4.357244 0.023696 -3.514387	1	-4.609794 -0.123303 -3.470243

-			
6	h_	ric	
	U-	LI3	

6b-trans

Atomic			Atomic			
number	х у	Z	number	х	у	Z
78	-1.226543 -1.221490	-0.836721	78	-0.893505	-1.249289	-0.737509
8	-1.076310 0.427237	-2.029531	8	-0.865276	0.404972	-1.924909
8	0.777548 -0.908063	-0.653501	8	1.111304	-0.896508	-0.690870
7	-3.282929 -1.527586	-1.031735	7	-0.926153	-2.941790	0.481746
7	-1.395428 -2.857696	0.351024	7	-2.891372	-1.603578	-0.777674
6	0.175362 0.887179	-2.106081	6	0.371572	0.889035	-2.088447
6	-2.680197 -3.346988	0.465527	6	-3.287803	-2.699963	-0.041507
6	-3.702902 -2.683006	-0.239187	6	-2.293962	-3.433636	0.635161
6	1.170408 0.161685	-1.359372	6	1.431303	0.185781	-1.422531
6	-2.977219 -4.481451	1.265657	6	-4.651051	-3.089519	0.041726
6	-0.626600 -4.594601	1.812113	6	-5.175539	-1.216106	-1.390926
1	0.584469 -3.039442	0.879062	1	-3.443846	-0.037113	-1.992438
6	-1.899900 -5.103171	1.946485	6	-5.600054	-2.306044	-0.663548
1	0.219361 -5.045050	2.317540	1	-5.873320	-0.595875	-1.941096
1	-2.093235 -5.973493	2.565651	1	-6.650691	-2.575590	-0.620780
6	0.555718 2.019734	-2.864297	6	0.669767	2.032660	-2.867766
6	1.937742 2.414343	-2.858668	6	2.036713	2.455660	-2.965838
6	2.873333 1.685176	-2.122090	6	3.041931	1.746741	-2.307022
6	2.501451 0.568119	-1.377554	6	2.749365	0.620404	-1.539927

6	1.415213 4.357714 -4.390438	6	1.357659 4.401079 -4.438999
6	0.058847 3.974962 -4.404656	6	0.013832 3.990623 -4.350696
6	-0.859912 4.729348 -5.146373	6	-0.976539 4.731326 -5.009153
1	-1.902535 4.432772 -5.154699	1	-2.008704 4.407894 -4.935939
6	-0.441331 5.847347 -5.863948	6	-0.638109 5.864901 -5.744412
6	0.905668 6.225677 -5.849411	6	0.698271 6.271441 -5.831463
6	1.827546 5.483390 -5.116102	6	1.690049 5.541394 -5.181651
1	3.910301 2.000496 -2.133340	1	4.066478 2.088333 -2.400394
1	3.232864 0.004346 -0.806773	1	3.534904 0.071906 -1.028460
1	-1.162833 6.424179 -6.434169	1	-1.413448 6.432495 -6.249816
1	1.233261 7.096713 -6.408300	1	0.962459 7.154940 -6.404495
1	2.873481 5.768506 -5.097973	1	2.730167 5.842844 -5.239357
6	-0.422473 2.782132 -3.647173	6	-0.384231 2.779793 -3.570282
8	-1.632316 2.479214 -3.709631	8	-1.583548 2.454109 -3.545514
6	2.408562 3.578403 -3.612397	6	2.428468 3.635824 -3.750639
8	3.611887 3.924620 -3.612715	8	3.613773 3.999561 -3.844713
1	-3.798195 -0.695997 -0.729874	1	-0.333985 -3.674721 0.082190
1	-3.530057 -1.673098 -2.014658	1	-0.528333 -2.723916 1.399195
6	-0.405406 -3.463361 1.002987	6	-3.805959 -0.888881 -1.428467
6	-4.325568 -4.918835 1.333721	6	-4.976341 -4.230663 0.820558
6	-5.003115 -3.122084 -0.160544	6	-2.630137 -4.537067 1.384613
1	-5.785315 -2.603832 -0.706193	1	-1.859165 -5.098317 1.903685
6	-5.310974 -4.252113 0.636418	6	-3.986853 -4.934383 1.473829
1	-6.340152 -4.590119 0.692013	1	-4.240409 -5.806156 2.067475
1	-4.563187 -5.784925 1.943057	1	-6.015429 -4.536189 0.890557

7b

8b

Atomic				Atomic			
number	х	у	Z	number	х	у	Z
78	-1.521037	-0.268502	-0.002590	78	-0.898044	-1.360968	-0.876509
8	0.401782	0.403815	-0.010286	8	-0.872272	0.353199	-1.970027
8	-0.573824	-2.069781	0.003373	8	1.108098	-1.044281	-0.865796
7	-2.483821	1.514976	-0.006959	7	-0.957475	-3.082286	0.218011
7	-3.448292	-0.897029	0.006342	7	-2.911048	-1.692541	-0.880968
6	0.761991	-1.925694	0.000689	6	0.368994	0.826783	-2.142905
6	-3.847672	1.452172	-0.000015	6	-3.275752	-2.822985	-0.202425
6	1.294510	-0.593520	-0.003826	6	1.431151	0.069003	-1.547226
6	-4.610237	2.618934	0.002716	6	-4.613788	-3.245709	-0.080706
6	-2.574758	3.900869	-0.012295	6	-5.216232	-1.302287	-1.379991
1	-0.778553	2.683752	-0.018336	1	-3.529205	-0.061773	-1.984721
6	-3.968328	3.854887	-0.003218	6	-5.599754	-2.442900	-0.697323
1	-2.037203	4.841804	-0.016956	1	-5.947559	-0.665341	-1.863674
1	-4.551639	4.769222	-0.000553	1	-6.645005	-2.727267	-0.630201
6	2.696625	-0.397958	-0.001988	6	0.668828	2.005707	-2.867018
6	3.546255	-1.553028	-0.003995	6	2.041387	2.402122	-2.986764
6	2.993762	-2.834578	-0.003257	6	3.049664	1.639848	-2.395333
6	1.613692	-3.027807	0.000466	6	2.754822	0.481885	-1.678467
6	5.604150	-0.075356	-0.000555	6	1.368400	4.424549	-4.356686
6	4.777336	1.064034	0.006053	6	0.017736	4.045232	-4.239779
6	5.360788	2.337778	0.012749	6	-0.972749	4.831788	-4.842346
1	4.716194	3.209471	0.018017	1	-2.010256	4.532081	-4.746735
6	6.746498	2.479014	0.012547	6	-0.627310	5.979352	-5.552244
6	7.567100	1.345338	0.005936	6	0.715870	6.355126	-5.667551
6	6.996877	0.074996	-0.000423	6	1.707679	5.580357	-5.071691
1	3.661409	-3.688585	-0.005050	1	4.078219	1.964785	-2.502773
1	1.187682	-4.026780	0.002516	1	3.541934	-0.108651	-1.218979
1	7.188631	3.470599	0.017458	1	-1.402430	6.581689	-6.016058

1	8.647239	1.455061	0.005866	1	0.985406	7.249602	-6.220713
1	7.619021	-0.813228	-0.005290	1	2.752856	5.858293	-5.151658
6	3.287233	0.949322	0.005920	6	-0.388359	2.820101	-3.486449
8	2.609627	1.991003	0.014957	8	-1.596601	2.539936	-3.411430
6	5.012621	-1.437537	-0.007335	6	2.438600	3.609239	-3.728026
8	5.750524	-2.438031	-0.015744	8	3.628771	3.951212	-3.836510
6	-1.861368	2.708985	-0.013154	6	-3.859280	-0.948591	-1.456797
6	-4.392760	0.088882	0.003971	6	-2.223317	-3.571929	0.389132
6	-5.749611	-0.230658	0.003653	6	-2.498243	-4.751549	1.108081
6	-6.137054	-1.568344	0.008097	6	-1.395153	-5.435660	1.666451
6	-3.821243	-2.190822	0.011366	6	0.070557	-3.744582	0.755351
6	-5.159496	-2.562593	0.012787	6	-0.120794	-4.927844	1.487136
1	-3.019319	-2.918965	0.013814	1	1.056847	-3.324320	0.598303
1	-5.418942	-3.614712	0.016922	1	0.746141	-5.427663	1.903126
1	-7.190007	-1.828220	0.007787	1	-1.557081	-6.349550	2.229073
1	-6.493498	0.556457	-0.000753	6	-4.879773	-4.451367	0.655017
1	-5.691674	2.561734	0.011118	6	-3.867738	-5.171772	1.223396
				1	-4.080363	-6.080690	1.776949
				1	-5.910411	-4.777868	0.749095

	9	Эb	
Atomic			
number	х	У	Z
78	1.396880	1.983418	-1.464109
8	1.436986	3.692045	-2.563085
8	3.403709	2.287510	-1.447961
7	-0.615253	1.662361	-1.471716
7	1.318041	0.269910	-0.363373
6	3.736798	3.396729	-2.131861
6	-0.999548	0.543681	-0.791007
6	2.681565	4.158929	-2.732733
6	-2.339706	0.148749	-0.681850
6	-2.905605	2.087462	-1.995181
1	-1.196673	3.297430	-2.591833
6	-3.309507	0.954313	-1.306481
1	-3.626704	2.729166	-2.487627
1	-4.356378	0.683219	-1.244692
6	2.990094	5.334589	-3.458018
6	4.365164	5.722227	-3.574820
6	5.367280	4.955097	-2.979105
6	5.063443	3.800695	-2.260168
6	3.707559	7.746349	-4.950118
6	2.354262	7.375812	-4.835256
6	1.369924	8.167347	-5.441289
1	0.330382	7.874264	-5.347088
6	1.724053	9.311301	-6.152757
6	3.069810	9.678320	-6.266133
6	4.055561	8.898520	-5.666745
1	6.398063	5.273551	-3.084636
1	5.845578	3.206507	-1.796935
1	0.953708	9.917635	-6.619304
1	3.346079	10.569948	-6.820558
1	5.102646	9.169665	-5.745168
6	1.939056	6.154691	-4.080653
8	0.729123	5.882110	-4.006651
6	4.771380	6.925645	-4.317591
8	5.963810	7.259851	-4.423971

6	-1.547961	2.419863	-2.062480
6	0.055151	-0.216377	-0.187417
6	-0.209698	-1.386799	0.536341
6	0.885937	-2.070117	1.094953
6	2.351801	-0.389056	0.174978
6	2.163270	-1.564370	0.910640
1	3.335601	0.033897	0.010638
1	3.028741	-2.065119	1.328291
1	0.721955	-2.979201	1.660668
6	-2.640253	-1.065967	0.067780
6	-1.597314	-1.818165	0.663270
6	-3.131532	-3.308484	1.455169
6	-4.166159	-2.562179	0.864706
1	-3.357214	-4.213565	2.012013
1	-5.198909	-2.884987	0.961119
7	-1.859367	-2.945117	1.359245
7	-3.929291	-1.452562	0.177453

Figure S18. Absorption spectra over time (t = 0, 3, 6, and 24 h) of Pt(II) complexes [(N^N)Pt(aliz)] (A) **1b**, (B) **2b**, (C) **3b**, (D) **4b**, (E) **5b**, (F) **6b**, (G) **7b**, (H) **8b** and of (I) **9b** in DMSO/buffer solution (DMSO 0.5% v/v) at room temperature, $1 \cdot 10^{-5}$ M.

Figure S19. TDDFT simulated absorption spectra of Pt(II) complexes 1b-2b (A), 3b-6b (B), 7b-9b (C) in aqueous environment.

	Band	energy	wavelength	Main configuration	f	Theoretical Assignment
1b	I	2.40	517	H→L (99%)	0.277	ML _{aliz} CT
	II	3.91	318	H-4→L (80%)	0.072	$IL_{aliz}CT$
2b	I	2.42	513	H→L (99%)	0.288	ML _{aliz} CT
	II	3.90	318	H-4→L (70%)	0.075	IL _{aliz} CT
3b	I	2.39	518	H→L (99%)	0.294	ML _{aliz} CT
	II	3.90	318	H-5→L (88%)	0.070	IL _{aliz} CT
4b	L	2.39	519	H→L (99%)	0.303	ML _{aliz} CT
	II	3.90	318	H-5→L (82%)		IL _{aliz} CT
5b	I	2.38	520	H→L (99%)	0.314	ML _{aliz} CT
	II	3.91	318	H-6→L (87%)	0.075	$IL_{aliz}CT$
6b	I	2.39	520	H→L (99%)	0.325	ML _{aliz} CT
	II	3.89	319	H-5→L (65%)	0.064	IL _{aliz} CT
7b	L	2.34	529	H→L (93%)	0.396	MLCT
	II	3.89	319	H-5→L (78%)	0.076	$IL_{aliz}CT$
8b	I	2.34	531	H→L (92%)	0.422	MLCT
	Ш	3.83	324	H-5→L (78%)	0.101	IL _{aliz} CT
0		2.26	525		0.440	
90	I	2.36	525	H→L (94%)	0.410	MLCT
	II	3.88	319	H-4→L (59%)	0.102	MLCT/LLCT

Table TS4. TDDFT calculated electronic excitation energies (eV), absorption wavelength (nm), oscillator strength (f) and main configuration in water.

^aOnly selected excited states were considered.

Figure S20. Natural Transition Orbitals (NTOs) for selected electronic transitions.

Figure S21. (A) Deconvoluted ESI-Q-TOF spectra of ODN with cisplatin; **(B)** Deconvoluted ESI-Q-TOF spectra of RNase with cisplatin in a 1:1 molecule to platinum ratio. All spectra were recorded at 24 h.

Figure S22. Binding study of GSH with compounds **2b**, **6b** and **7b** in 20 % physiological D_2O solution-DMSO*d*6: stack plot of ¹H-NMR for aliphatic region.

Figure S23. Free energy profiles for NAM attack to Pt^{II} complexes 2b, 6b, 7b, 2a, 6a and 7a.