Electronic supplementary information

Synergistic Effect of K and Zn on Fe-based Catalysts for Efficient

CO₂ Hydrogenation

Jia-Min Lyu,^a Shen Yu,^{*a} Zhan Liu,^{abc} He-You Du,^{ab} Min-Hui Sun,^a Chun-Mu Guo,^a Yi-Long Wang,^d Yu Li,^a Li-Hua Chen,^{*a} and Bao-Lian Su^{*ae}

^a Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.

^b International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China.

^c Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, Hubei, China.

^d School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China.

^e Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.

* To whom correspondence should be addressed: <u>ironman@whut.edu.cn</u>; <u>chenlihua@whut.edu.cn</u>; <u>bao-lian.su@unamur.be</u>

Supplementary Figures and Tables

Fig. S1 XRD patterns of γ -Al₂O₃ support material and calcined sample Fe/Al.

Fig. S2 SEM images of (a) calcined support γ -Al₂O₃, (b) Fe/Al, (c) 10K- Fe/Al, and (d) 10Zn-Fe/Al material.

Fig. S3 (a–c) N₂ adsorption–desorption isotherms and (d–f) pore diameter distribution curves of calcined samples modified with different amounts of K, calcined samples modified with different amounts of Zn, and calcined samples modified with K and Zn.

Fig. S4 XRD patterns of reduced samples modified with (a) different amounts of K, (b) different amounts of Zn, and (c) K and Zn.

Fig. S5 (a–c) N_2 adsorption–desorption isotherms and (d–f) pore diameter distribution curves of reduced samples modified with different amounts of K, reduced samples modified with different amounts of Zn, and reduced samples modified with K and Zn.

Fig. S6 (a–c) CO_2 conversion, (d–f) selectivity to CH_4 , (–) selectivity to C_2 – C_4 olefins of catalysts modified with different amounts of K, Zn, or K and Zn as a function of reaction temperature.

Fig. S7 Selectivity to (a–c) CO, (d–f) C_2 - C_4 paraffins, (g–h) C_{5+} hydrocarbons of catalysts modified with different amounts of K, Zn or K and Zn as a function of reaction temperature.

		2	1	1			
As-prepared	$\mathbf{S}_{\mathrm{BET}}$	V_{tol}	D _{meso}	Reduced sample	$\mathbf{S}_{\mathrm{BET}}$	V_{tol}	D _{meso}
sample	(m^{2}/g)	$(cm^{3/g})$	(nm)	Reduced sample	(m^{2}/g)	$(cm^{3/g})$	(nm)
γ-Al ₂ O ₃	261	0.88	12.9	-	-	-	-
Fe/Al	202	0.29	4.8	Fe/Al	160	0.23	4.8
5K-Fe/Al	159	0.25	7.0	5K-Fe/Al	123	0.21	7.2
10K-Fe/Al	117	0.17	4.4	10K-Fe/Al	142	0.13	17.2
15K-Fe/Al	78	0.15	4.5	15K-Fe/Al	54	0.11	6.9
2Zn-Fe/Al	199	0.26	5.1	2Zn-Fe/Al	144	0.21	6.4
5Zn-Fe/Al	126	0.21	5.5	5Zn-Fe/Al	153	0.30	5.9
10Zn-Fe/Al	172	0.31	6.3	10Zn-Fe/Al	171	0.35	6.3
2Zn-10K-Fe/Al	117	0.22	5.9	2Zn-10K-Fe/Al	103	0.23	7.6

Table S1 Textural data from N_2 adsorption-desorption tests.

Reduction condition: 0.2 MPa, 450°C for 4 h in pure H_2 with a flow of 25 mL/min

Deduced secondar	Fe/Al	5K-	10K-	15K-	2Zn-	5Zn-	10Zn-	2Zn-10K-
Reduced samples		Fe/Al						
Fe particle diameter (nm)	18	18	28	35	16	22	23	24

Table S2 Calculated Metal Fe particle size of samples reduced at 450°C for 4 h by the Debye-Scherrer equation

Sample	conversion		Selectivity						
	CO ₂	CO	CH_4	$C_2^{=}-C_4^{=}$	$C_2^{-}-C_4^{-}$	C ₂ -C ₄	C ₅₊		
Fe/Al	42	6	39	0	18	18	37		
5K-Fe/Al	78	4	23	6	18	24	49		
10K-Fe/Al	63	11	13	18	7	25	51		
15K-Fe/Al	82	2	13	16	7	23	62		
20K-Fe/Al	81	3	13	17	6	23	61		
5Zn-Fe/Al	55	3	37	0	21	21	39		
10Zn-Fe/Al	47	5	35	0	16	16	44		
2Zn-10K-Fe/Al	77	3	14	17	8	25	58		

Table S3 Catalytic performance of catalysts

Reaction condition: 340°C, 3.0 MPa, and 6360 mL/g/h with reactant gas $H_2/CO_2 = 3/1$.