Supporting Information

Enhanced Thermal Stable Performance in Pr³⁺-doped Vanadate Phosphor by Inhibiting Intervalence Charge Transfer Quenching Channel

Jianxia Liu,^a Chunwei Yang,^a Hong Chai,^{a,b} Yanmei Xin,^a Song Qu,^a and Ning Guo,^{a,*}

^{*a*} Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

^b School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

*Corresponding author: E-mail: guoning@usst.edu.cn

Figure S1. (a) (i)SEM of of $Y_{0.995}VO_4:0.5\%$ Pr³⁺. (ii) SEM of of $Y_{0.995}PO_4:0.5\%$ Pr³⁺. XRD Rietveld refinement patterns of (b) the $Y_{0.995}V_{2/3}P_{1/3}O_4:0.5\%$ Pr³⁺, (c) the $Y_{0.995}V_{1/3}P_{2/3}O_4:0.5\%$ Pr³⁺ and (d) the $Y_{0.995}PO_4:0.5\%$ Pr³⁺.

Figure S2. (a) The elemental mapping analysis images of O, Y, P, and Pr. (b) The EDS spectrum of Y_{0.995}PO₄:0.5% Pr³⁺.

Figure S3. PL spectra of YVO₄ and $Y_{0.995}V_{1-x}P_xO_4:0.5\%Pr^{3+}$ (x = 0, 1/3, 2/3, 1) (λ_{ex} = 325 nm).

Figure S4. Temperature-dependent PL spectra of $Y_{0.995}PO_4:0.5\%$ Pr³⁺ under excitation at 451 nm.

 $Figure \ S5. \ Temperature-dependent \ PL \ spectra \ of \ Y_{0.995} V_{1/3} P_{2/3} O_4: 0.5\% Pr^{3+} \ under \ excitation \ at \ 308 \ nm.$

Figure S6. CIE chromaticity diagram of $Y_{0.995}VO_4:0.5\%$ Pr³⁺ at various temperatures (T = RT, 303K, 523K).

Figure S7. CIE chromaticity diagram of $Y_{0.995}V_{1-x}P_xO_4:0.5\%Pr^{3+}$ at various temperatures (T = 303K-523K). (a) x = 0. (b) x = 1/3. (c) x = 1.

Figure S8. (a) PL and PLE spectra of $YV_{1/3}P_{2/3}O_4$: yPr³⁺ (y = 0.1%, 0.5%, 2%) (λ_{ex} = 325 nm, λ_{em} = 608 nm). Temperature behavior of the integrated intensity of 1D_2 emission of $YV_{1/3}P_{2/3}O_4$: yPr³⁺ (y = 0.1%, 0.5%, 2%) under excitation of (b) the host excitation , (c) the IVCT and (d) the 3P_2 excitation.

Figure S9. (a) PL spectra of $Y_{0.995}V_{1-x}P_xO_4:0.5\%Pr^{3+}$ (x = 0, 1/3, 2/3) (λ_{ex} = 373 nm). (b) PL spectra of $Y_{0.995}V_{1-x}P_xO_4:0.5\%Pr^{3+}$ (x = 0, 1/3, 2/3,1) (λ_{ex} = 456 nm).

Parameter	X=0	X=1/3	X=2/3	X=1
Space group	I41/amd	I41/amd	I41/amd	I41/amd
a (Å)	7.115	7.114	6.967	6.880
b (Å)	7.115	7.114	6.967	6.880
c (Å)	6.286	6.286	6.115	6.018
α (deg)	90	90	90	90
β (deg)	90	90	90	90
γ (deg)	90	90	90	90
V (Å3)	318.185	318.116	296.796	284.873
units, z	4	4	4	4
Rp (%)	4.07	4.99	4.06	4.62
Rwp (%)	6.92	8.32	5.67	6.62
χ^2	3.03	3.66	2.71	3.04

 Table S1. Relevant Rietveld Refinement Parameters and Crystallographic Data.