Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Systematic rare earth doping to adopt R32 huntite structure in NdSc₃(BO₃)₄ crystal.

Artem B. Kuznetsov¹, Konstantin A. Kokh¹, Ekaterina .V. Kaneva², Ammar Y. Jamous^{1,3}, Valery A. Svetlichnyi³, Nadezda G. Kononova¹, Vyacheslav S. Shevchenko¹, Anastasia A. Goreiavcheva¹ and Aleksander E. Kokh¹

¹Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090, Russia

²Vinogradov Institute of geochemistry SB RAS, Irkutsk 664033, Russia ³Tomsk State University, Tomsk 634050, Russia

KEYWORDS Rare earth borate, structure, crystal growth, **Abstract**

Huntite borates with R32 crystal structure have great potential in photonics applications as nonlinear and self-doubling media. This study is focused on determining the type and quantity of impurities responsible for converting the structure of NdSc₃(BO₃)₄ to R32 polymorph. According to the single crystal X-ray diffraction of $R_xNd_ySc_z(BO_3)_4$ (R= Sm-Lu, x+y+z=4), the obtained compounds crystallize in the space group R32 (R = Eu, Er, Tm, Yb) and P3₂21(R = Sm, Gd, Tb, Dy, Ho). Potential limitations to the future use of the crystals were identified, including compositional zonning and the possible presence of other polymorphic forms.

Figure S1. Crystal structure of $NdSc_3(BO_3)_4$: R (R = Sm, Gd, Tb, Dy, Ho, Lu) (sp. gr. $P3_221$) compound projected down the *c* axis. Nd and Sc cations are blue and yellow spheres, BO₃ groups are shown as green triangles (B – green spheres, O – red spheres).

Figure S2. Relationship between the compositions in the melted batch and the compositions of the grown crystals.

	R=Eu	R=Er	R=Tm	R=Yb	
Nd-O1 (×6)	2.43(2)	2.437(5)	2.440(2)	2.441(4)	
m.a.n. (e ⁻)	64.491	64.640	62.859	65.870	
Sc2-O1 (×2)	2.110(2)	2.1243(6)	2.1271(4)	2.1192(6)	
Sc2-O2 (×2)	2.13(2)	2.142(6)	2.149(3)	2.142(5)	
Sc2-O3 (×2)	2.06(1)	2.069(4)	2.070(3)	2.065(4)	
<sc2-o></sc2-o>	2.10	2.112	2.115	2.109	
m.a.n. (e ⁻)	23.772	25.106	26.979	24.269	
B1-O1 (×3)	1.374(7)	1.376(5)	1.378(3)	1.383(5)	
B2-O2	1.36(3)	1.38(1)	1.366(6)	1.365(9)	
B2-O3 (×2)	1.36(1)	1.365(6)	1.368(3)	1.372(4)	
<b2-o></b2-o>	1.36	1.37	1.367	1.370	
O1-B1-O1	120.0	120.0	120	120	
O2-B2-O3	117.9(6)	117.9(3)	118.1(2)	118.1(2)	
O2-B2-O3'	117.9(6)	117.9(3)	118.1(2)	118.1(2)	
O3-B2-O3'	124.2(7)	124.3(6)	123.8(3)	123.9(3)	

Table S1. Selected bond distances (Å) for the coordination polyhedral of the studied $NdSc_3(BO_3)_4$: R (R = Eu, Er, Tm, Yb) samples (sp. gr. R32).

Table S2. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$:R (R = Eu)

	Nd1	Sc2	B1	B2	Σ
O1	0.416 ^(×6)	0.482 ^(×2)	0.994 ^(×3)	-	1.892
O2		0.457 ^{(×2)[×2]}	-	1.049	1.963
O3		$0.542^{(\times 2)[\ \times 2]}$		1.023(×2)	2.107
Σ	2.496	2.962	2.982	3.095	

 $\frac{2}{(\times 2)}$ - valence strengths doubled in the calculation of valence balance at the cations

	Nd1	Sc2	B1	B2	Σ
01	0.406 ^(×6)	0.467(×2)	0.989 ^(×3)	-	1.862
02		0.449 ^{(×2)[×2]}	-	0.978	1.876
03		0.528(×2)[×2]		1.020 ^(×2)	2.076
Σ	2.436	2.888	2.967	3.018	

Table S3. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$:R (R = Er)

 $(\times 2)$ – valence strengths doubled in the calculation of valence balance at the cations

^[×2] – valence strengths doubled in the calculation of valence balance at the anions

Table S4. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$:R (R = Tm)

	Nd1	Sc2	B1	B2	Σ
O1	0.403 ^(×6)	0.464 ^(×2)	0.983 ^(×3)	-	1.850
O2		$0.442^{(\times 2)[\ \times 2]}$	-	1.017	1.901
O3		0.526 ^{(×2)[×2]}		1.011 ^(×2)	2.063
Σ	2.418	2.864	2.949	3.039	

 $(\times 2)$ – valence strengths doubled in the calculation of valence balance at the cations

^[×2] – valence strengths doubled in the calculation of valence balance at the anions

Table S5. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$: R (R = Yb)

				, , , , , , , , , , , , , , , , , , ,	
	Nd1	Sc2	B 1	B2	Σ
01	0.402(×6)	0.472 ^(×2)	$0.970^{(\times 3)}$	-	1.844
O2		$0.449^{(\times 2)[\ \times 2]}$	-	1.020	1.918
03		0.532 ^{(×2)[×2]}		1.000 ^(×2)	2.064
Σ	2.412	2.906	2.910	3.020	

 $(\times 2)$ – valence strengths doubled in the calculation of valence balance at the cations

	R=Sm	R=Eu	R=Gd	R=Tb	R=Dy	R=Ho	R=Er	R=Tm	R=Yb	R=Lu
Crystal data	I									
<i>a</i> (Å)	9.7768(3)	9.7610(3)	9.781(1)	9.7594(6)	9.7577(3)	9.7655(3)	9.7999(4)	9.8072(3)	9.804(1)	9.8013(4)
<i>c</i> (Å)	7.9305(3)	7.9185(2)	7.9407(8)	7.9234(5)	7.9240(3)	7.9374(2)	7.9735(3)	7.9928(3)	7.969(1)	7.9747(3)
$V(Å^3)$	656.48(2)	653.38(2)	657.87(7)	653.56(4)	653.39(2)	655.54(2)	663.08(2)	665.76(2)	663.26(8)	663.46(2)
Ζ	3	3	3	3	3	3	3	3	3	3
Crystal dimensions	0.26×0.24×	0.31×0.30×	0.22×0.19×	0.24×0.22×	0.30×0.19×	0.25×0.22×	0.19×0.18×	0.18×0.17×	0.19×0.12×	0.22×0.10×
(mm)	×0.15	×0.10	×0.09	×0.09	×0.11	×0.10	×0.16	×0.04	×0.05	×0.07
Crystal density	3.794	4.181	3.972	3.865	4.023	4.064	4.231	4.264	4.208	4.049
Data collection	•									
Reflections	30027	5566	29162	31713	19846	88792	8635	9737	12042	19026
measured										
Independent	2121	710	2128	2110	2111	2932	728	733	575	1697
reflections										
$R_{merging} [R_{(int)}] (\%)$	6.2	4.8	4.9	4.5	5.7	6.1	4.2	4.6	3.6	4.4
h_{\min}, h_{\max}	-16, 16	-16, 16	-16, 16	-16, 16	-16, 16	-18, 17	-16, 16	-16, 16	-15, 15	-15, 15
k _{min} , k _{max}	-16, 16	-16, 15	-16, 16	-16, 16	-16, 16	-18, 18	-16, 16	-16, 16	-15, 15	-15, 15
l _{min} , l _{max}	-13, 13	-11, 13	-13, 13	-13, 13	-13, 13	-14, 14	-13, 13	-13, 13	-12, 12	-12, 12
Refinement										
Space group	<i>P</i> 3 ₂ 21	R32	P3 ₂ 21	P3 ₂ 21	P3 ₂ 21	P3 ₂ 21	R32	<i>R</i> 32	<i>R</i> 32	P3 ₂ 21
Reflections used in	1963	701	1929	1995	1899	2582	724	731	573	1563
the refinement (I $>$										
3σ _(I))										
N. of refined	102	44	107	106	107	107	44	44	44	107
parameters										
<i>R</i> ^a [on <i>F</i>] (%)	7.95	5.24	2.12	6.59	6.79	6.64	3.10	1.73	2.81	6.70
$R_{\rm w}^{\rm b}$ [on F] (%)	8.52	5.83	2.92	8.13	8.54	7.35	3.44	1.83	3.46	9.48
Goof ^c	1.0269	1.0704	1.0560	1.0097	1.0248	1.1529	1.0808	1.0836	1.0240	0.9692
$\Delta ho_{min} / \Delta ho_{max} (e^{-}/Å^3)$	-6.95/2.92	-5.60/2.50	-4.70/2.66	-4.53/2.64	-7.37/2.59	-3.89/2.44	-3.52/1.40	-1.90/0.90	-3.26/1.04	-4.92/2.36

Table S6. Selected data on single crystals, data collection and structure refinement parameters of the studied $NdSc_3(BO_3)_4$: R (R = Sm-Lu) samples.

 ${}^{\mathbf{a}}R = \Sigma[|\mathbf{F}_{\mathbf{o}}| - |\mathbf{F}_{\mathbf{c}}|]/\Sigma|\mathbf{F}_{\mathbf{o}}|.$

^b $R_{\mathbf{w}} = [\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]]^{1/2}$; w = Chebyshev optimized weights.^c Goodness-of-fit = $[\Sigma[w(F_o^2 - F_c^2)^2]/(N-p]^{1/2}$, where N and p are the number of reflections and parameters, respectively.

	R=Sm	R=Gd	R=Tb	R=Dy	R=Ho	R=Lu
Nd1-O1 (×2)	2.422(6)	2.419(6)	2.415(6)	2.421(6)	2.424(6)	2.455(6)
Nd1-O2	2.802(5)	2.803(5)	2.791(4)	2.798(5)	2.820(5)	2.805(6)
Nd1-O3 (×2)	2.448(4)	2.447(3)	2.437(3)	2.441(3)	2.445(3)	2.453(4)
Nd1-O4 (×2)	3.009(5)	3.011(4)	2.999(4)	3.007(4)	3.002(4)	3.052(6)
Nd1-O5 (×2)	2.401(6)	2.401(6)	2.381(5)	2.401(6)	2.401(5)	2.438(7)
<nd1-o></nd1-o>	2.596	2.595	2.584	2.593	2.596	2.622
m.a.n. (e ⁻)	54.600	61.132	58.240	61.938	62.257	58.878
Sc1-O2	2.026(8)	2.019(8)	2.023(7)	2.001(8)	2.005(8)	2.007(9)
Sc1-O2'	2.026(7)	2.019(7)	2.023(6)	2.002(7)	2.005(7)	2.007(8)
Sc1-O2"	2.363(7)	2.365(7)	2.340(6)	2.366(7)	2.345(7)	2.432(8)
Sc1-O2'''	2.363(6)	2.365(6)	2.340(6)	2.366(6)	2.346(6)	2.432(7)
Sc1-O5	2.121(5)	2.119(5)	2.130(4)	2.112(5)	2.103(4)	2.083(6)
Sc1-O5	2.122(7)	2.119(6)	2.131(5)	2.113(6)	2.103(6)	2.083(7)
Sc1-06	2.148(4)	2.146(4)	2.136(4)	2.140(4)	2.148(4)	2.178(4)
Sc1-06	2.148(4)	2.147(4)	2.136(4)	2.141(4)	2.148(4)	2.179(4)
<sc1-o></sc1-o>	2.165	2.162	2.157	2.155	2.150	2.175
m.a.n. (e ⁻)	19.194	20.013	18.837	20.286	21.126	20.916
Sc2-O1	2.087(7)	2.093(7)	2.087(6)	2.094(7)	2.079(6)	2.097(7)
Sc2-O3	2.034(4)	2.031(3)	2.035(3)	2.033(3)	2.033(3)	2.038(4)
Sc2-O4	2.146(4)	2.154(4)	2.148(5)	2.149(4)	2.152(4)	2.157(5)
Sc2-O4'	2.161(6)	2.162(5)	2.148(4)	2.156(5)	2.159(5)	2.181(7)
Sc2-O7	2.105(4)	2.104(4)	2.096(3)	2.098(4)	2.096(3)	2.112(5)
Sc2-O7'	2.114(4)	2.119(4)	2.118(3)	2.118(4)	2.121(3)	2.126(4)
<sc2-o></sc2-o>	2.108	2.111	2.105	2.108	2.107	2.119
m.a.n. (e ⁻)	21.253	22.541	21.315	22.602	23.502	26.274
D1 02	1.2.(2)(2)	1.000/0	1.0.(2)(7)	1.0.50/5	1.0.4= (=)	1.050(0)
B1-03	1.363(8)	1.373(7)	1.362(7)	1.359(7)	1.347(7)	1.373(9)
B1-04	1.362(5)	1.358(5)	1.362(5)	1.350(5)	1.359(5)	1.362(6)
B1-05	1.362(9)	1.367(9)	1.369(8)	1.369(9)	1.397(8)	1.36(1)
<b1-o></b1-o>	1.362	1.366	1.364	1.359	1.368	1.365

Table S7. Selected bond distances (Å) for the coordination polyhedra of the studied $NdSc_3(BO_3)_4$: R (R = Sm, Gd, Tb, Dy, Ho, Lu) samples (sp. gr. $P3_221$).

B2-O6	1.294(6)	1.318(5)	1.314(5)	1.304(5)	1.272(5)	1.307(6)
B2-O7 (×2)	1.401(8)	1.391(8)	1.392(7)	1.391(8)	1.410(7)	1.378(9)
<b2-o></b2-o>	1.365	1.367	1.366	1.362	1.364	1.354
B3-O1 (×2)	1.339(6)	1.339(6)	1.337(5)	1.325(5)	1.351(5)	1.310(6)
B3-O2	1.533(9)	1.54(1)	1.532(9)	1.54(1)	1.514(9)	1.56(1)
B3-O2'	1.53(1)	1.54(1)	1.532(9)	1.54(1)	1.51(1)	1.56(1)
<b3-o></b3-o>	1.404	1.406	1.402	1.468	1.458	1.393
O3-B1-O4	117.7(5)	116.9(4)	116.9(4)	117.3(4)	117.8(4)	115.7(5)
O3-B1-O5	125.2(5)	124.8(4)	125.5(4)	124.5(4)	124.7(4)	124.6(5)
O4-B1-O5	117.1(5)	118.3(4)	117.6(4)	118.1(4)	117.4(4)	119.8(5)
O6-B2-O7	123.1(4)	122.0(4)	122.4(5)	122.5(5)	123.4(5)	120.8(5)
O6-B2-O7'	123.1(5)	122.0(5)	122.4(5)	122.5(5)	123.4(5)	120.8(5)
07 - B2 - 07'	113.8(5)	115.9(4)	115.3(4)	115.1(5)	113.1(4)	118.3(5)
01-B3-01'	124.9(8)	125.4(7)	124.5(7)	124.9(7)	122.7(7)	128.2(9)
O1-B3-O2	106.0(4)	105.8(4)	105.7(3)	106.2(4)	107.4(3)	105.8(4)
O1'-B3-O2	124.8(5)	124.5(4)	125.6(4)	124.3(4)	125.5(4)	121.1(5)

	Nd1	Sc1	Sc2	B 1	B2	B3	Σ
01	0.423(×2)	-	0.507	-	-	1.097(×2)	2.027
O2	0.152	0.580 ^(×2) 0.275 ^(×2)	-	-	-	0.637/0.642	1.644/1.649
03	0.395 ^(×2)	-	0.776	1.026	-	-	2.179
04	0.007(×2)	0.087 ^(×2) -	0.445	1 0 2 9		-	1 000
04	0.087(*2)		0.430	1.028	-		1.990
05	0.448 ^(×2)	0.470/0.469	-	1.028	-	-	1.945/1.946
06	-	0.443 ^{(×2) [×2]}	-	-	1.244	-	2.130
07	- 77			0.487	0.000(×2)		1 007
07			0.478	-	$0.922^{(12)}$	-	1.88/
Σ	2.858	2.375/2.985	3.132	3.082	3.088	2.831/2.836	

Table S8. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$:R (R = Sm)

 $(\times 2)$ – valence strengths doubled in the calculation of valence balance at the cations $[\times 2]$ – valence strengths doubled in the calculation of valence balance at the anions

Table S9. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$: R (R = Gd)

	Nd1	Sc1	Sc2	B1	B2	B3	Σ
01	0.427(×2)	-	0.500	-	-	1.097 ^(×2)	2.024
02	0.152	0.589 ^(×2) 0.274 ^(×2)	-	-	-	0.625	1.640
03	0.396(×2)	-	0.574	0.997	-	-	1.967
O4	0.087 ^(×2)	-	0.437 0.430	1.040	-	-	1.994
05	0.448(×2)	0.472(×2)	-	1.014	-	-	1.934
06	-	0.445 ^{(×2)[×2]}	-	-	1.163	-	2.053
07	-	-	0.488 0.472	-	0.948(×2)	-	1.908
Σ	2.868	2.382/3.012	2.901	3.051	3.059	2.819	

 $(\times 2)$ – valence strengths doubled in the calculation of valence balance at the cations

	Nd1	Sc1	Sc2	B 1	B2	B3	Σ
01	0.431 ^(×2)	-	0.507	-	-	1.103(×2)	2.041
02	0.157	0.584 ^(×2) 0.290 ^(×2)	-	-	-	0.639	1.670
03	0.406(×2)	-	0.569	1.028	-	-	2.003
04	0.089(×2)	-	0.443 ^{(×2)[×2]}	1.028	-	-	2.003
05	0.473(×2)	0.460/0.461	-	1.008	-	-	1.941/1.942
06	-	$0.455^{(\times 2)[\ \times 2]}$	-	-	1.176	-	2.086
07	-	-	0.497 0.473	-	0.946(×2)	-	1.916
Σ	2.955	2.411/2.999	2.932	3.064	3.068	2.845	

Table S10. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$:R (R = Tb)

^(×2) – valence strengths doubled in the calculation of valence balance at the cations

^[×2] – valence strengths doubled in the calculation of valence balance at the anions

Table S11. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$:R (R = Dy)

	Nd1	Sc1	Sc2	B1	B2	B3	Σ
01	0.424(×2)	-	0.499	-	-	1.141 ^(×2)	2.064
O2	0.154	$\begin{array}{c} 0.613/0.612 \\ 0.273^{(\times 2)} \end{array}$	-	-	-	0.625	1.664/1.665
03	0.402(×2)	-	0.571	1.037	-	-	2.010
O4	0.087(×2)	-	0.442 0.435	1.064	-	-	2.028
05	0.448(×2)	0.480/0.479	-	1.008	-	-	1.935/1.936
O6	-	0.451 0.450	-	-	1.210	-	2.111
07	-	-	0.495 0.473	-	0.948(×2)	-	1.916
Σ	2.876	2.406/3.085	2.915	3.109	3.106	2.391	

^(×2) – valence strengths doubled in the calculation of valence balance at the cations

	Nd1	Sc1	Sc2	B 1	B2	B3	Σ
01	0.421 ^(×2)	-	0.516	-	-	1.061 ^(×2)	2.064
02	0.145	0.608 ^(×2) 0.287/0.286	-	-	-	0.672/0.679	1.71/1.72
03	0.398(×2)	-	0.571	1.073	-	-	2.042
04	0.089(×2)	-	0.439 0.432	1.037	-	-	1.997
05	0.448(×2)	0.489(×2)	-	0.932	-	-	1.869
O6	-	0.443 ^{(×2)[×2]}	-	-	1.323	-	2.209
07	-	-	0.497 0.470	-	0.899(×2)	-	1.866
Σ	2.857	2.438/3.080	2.925	3.042	3.121	2.794/2.801	

Table S12. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$:R (R = Ho)

^(×2) – valence strengths doubled in the calculation of valence balance at the cations

^[×2] – valence strengths doubled in the calculation of valence balance at the anions

Table S13. Valence balance calculation for studied sample $NdSc_3(BO_3)_4$:R (R = Lu)

	Nd1	Sc1	Sc2	B1	B2	B3	Σ
01	0.387(×2)	-	0.496	-	-	1.190(×2)	2.073
02	0.151(×2)	0.605 ^(×2) 0.236 ^(×2)	-	-	-	0.591	1.583
03	0.389(×2)	-	0.565	0.997	-	-	1.951
04	0.077 (×2)	-	0.434 0.412	1.028	-	-	1.951
05	0.405 ^(×2)	0.512 ^(×2)	-	1.034	-	-	1.951
06	-	0.415 0.414	-	-	1.200	-	2.029
07	-	-	0.480 0.465	-	0.983(×2)	-	1.928
Σ	2.818	2.325/3.063	2.852	3.059	3.166	2.971	

 $(\times 2)$ – valence strengths doubled in the calculation of valence balance at the cations

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0.66725(5)	0.66725(5)	0.5	0.910(1)	0.0001	0.0002(2)	0.0002(2)	-0.0005(2)	-0.00020(6)	0.00020(6)	-0.0002(1)
Sc1	0	0.8744(3)	5/6	0.914(1)	0.0406	0.0019(6)	0.0010(5)	0.1190(9)	0.0022(4)	0.0044(7)	0.0010(3)
Sc2	0.2150(2)	0.6708(1)	0.4973(1)	0.891(1)	0.0007	0.0040(4)	0.001(4)	-0.0040(3)	-0.0006(3)	-0.0016(3)	0.0011(3)
Sm2	0.2150(2)	0.6708(1)	0.4973(1)	0.0410(9)	0.0007	0.0040(4)	0.001(4)	-0.0040(3)	-0.0006(3)	-0.0016(3)	0.0011(3)
01	0.6576(6)	0.8606(6)	0.6829(7)	1	0.0179	0.0082(9)	0.0092(9)	0.0352(9)	0.0029(9)	0.0158(9)	0.0036(8)
O2	0.9628(7)	0.9155(7)	0.4005(8)	0.5	0.0046	0.0036(9)	-0.0001(9)	0.0093(9)	-0.0003(9)	0.0001(9)	0.0002(9)
O3	0.4506(5)	0.4785(5)	0.3212(5)	1	0.0008	0.0017(8)	0.0003(8)	0.0008(8)	0.0000(7)	-0.0011(7)	0.0009(7)
O4	0.3555(5)	0.6008(5)	0.6451(5)	1	0.0035	0.0078(8)	-0.0003(8)	0.0016(8)	-0.0003(8)	-0.0001(8)	0.0008(7)
05	0.6721(6)	0.8668(6)	0.3195(6)	1	0.0154	0.0135(9)	0.0247(9)	0.0133(9)	-0.0144(8)	-0.0128(8)	0.0135(8)
O6	0.8025(6)	0.8025(6)	0	1	0.0360	0.0058(6)	0.058(6)	0.010(1)	0.0034(7)	-0.0034(7)	0.0055(8)
07	0.6612(5)	0.5226(5)	0.0008(5)	1	0.0013	0.0055(8)	-0.0007(8)	-0.0010(8)	0.0009(7)	-0.0013(8)	0.0012(7)
B1	0.8866(6)	0.5439(6)	0.6731(6)	1	0.0009	0.0003(8)	0.0000(8)	0.0004(9)	0.0002(8)	-0.0002(8)	0.0015(8)
B2	0.6701(6)	0.6701(6)	0	1	0.0038	0.0023(6)	0.0023(6)	0.0049(9)	-0.0020(6)	0.0020(6)	0.0004(8)
B3	0.7906(8)	0	2/3	1	0.0393	0.0039(9)	0.0125(9)	0.104(1)	0.0006(9)	0.0003(4)	0.0062(4)

Table S14. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Sm).

Table S15. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Eu).

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0	0	0	0.952(2)	0.0012	0.0012(4)	0.0012(4)	0.0013(5)	0.0000(1)	0.0000(1)	0.0006(2)
Eu1	0	0	0	0.117(2)	0.0012	0.0012(4)	0.0012(4)	0.0013(5)	0.0000(1)	0.0000(1)	0.0006(2)
Sc2	0.5449(5)	0	0	0.808(3)	0.0080	0.0051(9)	0.005(1)	0.014(1)	0.0024(9)	0.0012(4)	0.0023(5)
Eu2	0.5449(5)	0	0	0.108(2)	0.0080	0.0051(9)	0.005(1)	0.014(1)	0.0024(9)	0.0012(4)	0.0023(5)
O1	0.8592(14)	0	0.5	1	0.0041	0.001(2)	0.004(2)	0.008(2)	0.0000(1)	0.0000(1)	0.001(1)
O2	0.592(2)	0	0.5	1	0.0496	0.022(2)	0.066(2)	0.075(2)	-0.061(2)	-0.031(1)	0.033(1)
O3	0.4587(15)	0.1419(13)	0.5152(15)	1	0.0081	0.012(2)	0.003(2)	0.007(2)	0.000(2)	0.003(2)	0.002(2)
B1	0	0	0.5	1	0.0018	0.0000(1)	0.0000(1)	0.005(2)	0	0	0.0000(1)
B2	0.4532(18)	0	0.5	1	0.0070	0.001(2)	0.005(2)	0.016(2)	-0.002(2)	-0.001(1)	0.003(1)

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0.66727(4)	0.66727(4)	0.5	0.909(1)	0.0045	0.0042(1)	0.0042(1)	0.0046(2)	-0.00012(5)	0.00012(5)	0.0017(1)
Gd1	0.66727(4)	0.66727(4)	0.5	0.103(1)	0.0045	0.0042(1)	0.0042(1)	0.0046(2)	-0.00012(5)	0.00012(5)	0.0017(1)
Sc1	0	0.8747(2)	5/6	0.953(1)	0.0321	0.0009(5)	-0.0002(4)	0.0957(9)	0.0008(3)	0.0017(6)	0.0003(3)
Sc2	0.2139(1)	0.6701(1)	0.49740(7)	0.871(1)	0.0011	0.0037(3)	0.0019(3)	-0.0026(3)	-0.0006(2)	-0.0015(2)	0.0012(2)
Gd2	0.2139(1)	0.6701(1)	0.49740(7)	0.0664(9)	0.0011	0.0037(3)	0.0019(3)	-0.0026(3)	-0.0006(2)	-0.0015(2)	0.0012(2)
O1	0.6586(6)	0.8604(6)	0.6831(7)	1	0.0212	0.0068(8)	0.0094(9)	0.0461(9)	-0.018(9)	0.0072(9)	0.0031(8)
O2	0.9627(7)	0.9161(7)	0.4013(7)	0.5	0.0078	0.0034(9)	0.0001(9)	0.0192(9)	-0.0005(9)	0.0000(9)	0.0004(8)
O3	0.4527(4)	0.4791(4)	0.3194(4)	1	0.0026	0.0034(8)	0.0000(8)	0.0047(8)	0.0002(7)	-0.0017(7)	0.0011(7)
O4	0.3555(5)	0.6013(4)	0.6447(5)	1	0.0066	0.0101(8)	0.0020(7)	0.0084(8)	-0.0034(7)	-0.0035(8)	0.0035(7)
05	0.6734(5)	0.8676(6)	0.3202(6)	1	0.0131	0.0112(8)	0.0193(9)	0.0137(8)	-0.0081(8)	-0.0077(8)	0.0112(7)
O6	0.8029(6)	0.8029(6)	0	1	0.0411	0.0089(6)	0.0089(6)	0.1088(10)	0.0048(7)	-0.0048(7)	0.0068(8)
07	0.6624(4)	0.5232(5)	0.0001(4)	1	0.0015	0.0053(8)	-0.0005(8)	-0.0001(8)	-0.0002(6)	-0.0010(7)	0.0013(6)
B1	0.8850(5)	0.5433(5)	0.6722(5)	1	0.0005	0.0001(8)	0.0012(8)	-0.0003(8)	0.0004(7)	0.0006(8)	0.0019(7)
B2	0.6682(5)	0.6682(5)	0	1	0.0023	0.0020(6)	0.0020(6)	0.0011(9)	-0.0007(5)	0.0007(5)	-0.0003(8)
B3	0.7913(8)	0	2/3	1	0.0349	0.0082(9)	0.0295(9)	0.0743(10)	0.0212(9)	0.0106(4)	0.0148(4)

Table S16. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Gd).

Table S17. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Tb).

		<u> </u>		-	• 				,		
Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0.66735(4)	0.66735(4)	0.5	0.884(1)	0.0043	0.0041(1)	0.0041(1)	0.0041(2)	-0.00012(5)	0.00012(5)	0.0016(1)
Tb1	0.66735(4)	0.66735(4)	0.5	0.080(1)	0.0043	0.0041(1)	0.0041(1)	0.0041(2)	-0.00012(5)	0.00012(5)	0.0016(1)
Sc1	0	0.8752(2)	5/6	0.897(1)	0.0341	0.0018(5)	0.0002(4)	0.1003(9)	0.0008(3)	0.0015(6)	0.0005(3)
Sc2	0.2145(2)	0.67030(9)	0.49728(7)	1.015(1)	0.0008	0.0031(3)	0.0017(3)	-0.0031(3)	-0.0004(2)	-0.0015(2)	0.0008(2)
01	0.6578(5)	0.8607(6)	0.6824(7)	1	0.0265	0.0122(8)	0.0126(9)	0.0546(9)	0.0030(9)	0.0207(8)	0.0060(7)
O2	0.9614(6)	0.9156(6)	0.3993(7)	0.5	0.0091	0.0031(9)	0.0032(9)	0.0226(9)	-0.0011(9)	-0.0002(9)	0.0029(8)
O3	0.4533(4)	0.4793(4)	0.3197(4)	1	0.0051	0.0079(8)	0.0032(8)	0.0052(8)	-0.0002(7)	-0.0036(7)	0.0035(7)
O4	0.3559(4)	0.6019(4)	0.6434(4)	1	0.0062	0.0086(8)	0.0040(7)	0.0071(8)	-0.0036(7)	-0.0009(7)	0.0039(7)
05	0.6727(5)	0.8663(5)	0.3217(5)	1	0.0168	0.0154(8)	0.0246(9)	0.0177(8)	-0.0177(8)	-0.0162(8)	0.0155(7)
O6	0.8038(6)	0.8038(6)	0	1	0.0522	0.0078(6)	0.0078(6)	0.1430(10)	0.0037(7)	-0.0037(7)	0.0054(8)
07	0.6624(4)	0.5233(4)	-0.0008(3)	1	0.0030	0.0096(8)	-0.0002(7)	0.0002(8)	0.0003(6)	-0.0009(7)	0.0027(6)
B1	0.8856(5)	0.5432(5)	0.6723(5)	1	0.0007	0.0002(8)	0.0035(8)	0.0011(8)	0.0004(7)	0.0000(8)	0.0030(7)
B2	0.6692(5)	0.6692(5)	0	1	0.0040	0.0021(6)	0.0021(6)	0.0053(9)	-0.0014(5)	0.0014(5)	-0.0009(8)
B3	0.7912(7)	0	2/3	1	0.0401	0.0010(9)	0.0045(8)	0.1159(10)	0.0007(9)	0.0003(4)	0.0023(4)

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0.66732(4)	0.66732(4)	0.5	0.919(1)	0.0039	0.0039(2)	0.0039(2)	0.0031(2)	-0.00014(5)	0.00014(5)	0.0014(1)
Dy1	0.66732(4)	0.66732(4)	0.5	0.103(1)	0.0039	0.0039(2)	0.0039(2)	0.0031(2)	-0.00014(5)	0.00014(5)	0.0014(1)
Sc1	0	0.8751(3)	5/6	0.966(1)	0.0330	0.0012(6)	-0.0004(4)	0.0984(9)	0.0008(3)	0.0016(7)	0.0004(3)
Sc2	0.2142(2)	0.6703(1)	0.49734(7)	0.850(1)	0.0009	0.0035(3)	0.0020(3)	-0.0031(3)	-0.0005(2)	-0.0015(2)	0.0012(2)
Dy2	0.2142(2)	0.6703(1)	0.49734(7)	0.072(1)	0.0009	0.0035(3)	0.0020(3)	-0.0031(3)	-0.0005(2)	-0.0015(2)	0.0012(2)
01	0.6595(5)	0.8618(6)	0.6833(7)	1	0.0207	0.0068(8)	0.0115(9)	0.0419(9)	-0.0025(9)	0.0153(8)	0.0033(8)
O2	0.9632(7)	0.9167(7)	0.4027(8)	0.5	0.0093	0.0041(9)	-0.0003(9)	0.0242(9)	-0.0004(9)	0.0001(9)	0.0010(8)
O3	0.4530(4)	0.4787(4)	0.3194(4)	1	0.0016	0.0031(8)	0.0000(8)	0.0018(8)	0.0001(7)	-0.0012(7)	0.0008(7)
O4	0.3551(5)	0.6008(4)	0.6448(5)	1	0.0045	0.0076(8)	0.0001(7)	0.0045(8)	-0.0005(7)	-0.0003(8)	0.0009(7)
05	0.6738(5)	0.8685(6)	0.3201(6)	1	0.0121	0.0092(8)	0.0205(9)	0.0110(9)	-0.0096(8)	-0.0092(8)	0.0108(7)
O6	0.8030(6)	0.8030(6)	0	1	0.0463	0.0050(6)	0.0050(6)	0.1299(10)	0.0074(7)	-0.0074(7)	0.0033(8)
07	0.6623(4)	0.5234(5)	-0.0004(4)	1	0.0011	0.0059(8)	-0.0010(8)	-0.0008(8)	0.0004(6)	0.0012(7)	0.0018(7)
B1	0.8853(5)	0.5428(5)	0.6723(5)	1	0.0013	0.0005(8)	0.0006(8)	-0.0004(8)	0.0006(7)	0.0001(8)	0.0028(7)
B2	0.6694(5)	0.6694(5)	0	1	0.0016	0.0006(6)	0.0006(6)	0.0026(9)	-0.0012(6)	0.0012(6)	-0.0005(8)
В3	0.7914(8)	0	2/3	1	0.0353	0.0016(9)	0.0058(8)	0.0999(10)	0.0006(9)	0.0003(4)	0.0029(4)

Table S18. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Dy).

Table S	S19 .	Crystallogra	aphic	coordinates.	occur	pancies	and ed	uiva	lent/i	sotror	ic atom	ic dis	placement	parameters	(Ų) of NdSc	(BO)	2)4:R ($(\mathbf{R} =$	Ho)	١.
		er, comegn											p		·	,	$n \sim - n$	1/4 1			/•

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0.66722(4)	0.66722(4)	0.5	0.936(1)	0.0113	0.0122(1)	0.0122(1)	0.0087(1)	-0.00026(4)	0.00026(4)	0.0055(1)
Ho1	0.66722(4)	0.66722(4)	0.5	0.091(1)	0.0113	0.0122(1)	0.0122(1)	0.0087(1)	-0.00026(4)	0.00026(4)	0.0055(1)
Sc1	0	0.8754(2)	5/6	1.006(1)	0.0353	0.0070(5)	0.0065(4)	0.0926(9)	0.0006(3)	0.0012(6)	0.0035(2)
Sc2	0.2137(1)	0.67005(9)	0.49742(5)	0.832(1)	0.0068	0.0107(3)	0.0092(2)	0.0002(2)	-0.0008(2)	-0.0016(1)	0.0046(2)
Ho2	0.2137(1)	0.67005(9)	0.49742(5)	0.090(1)	0.0068	0.0107(3)	0.0092(2)	0.0002(2)	-0.0008(2)	-0.0016(1)	0.0046(2)
01	0.6569(5)	0.8607(5)	0.6827(7)	1	0.0280	0.0192(8)	0.0171(8)	0.0459(9)	0.0068(8)	0.0223(8)	0.0078(8)
O2	0.9645(7)	0.9175(7)	0.3987(7)	0.5	0.0164	0.0086(9)	0.0070(9)	0.0315(9)	-0.0035(9)	0.0020(9)	0.0024(8)
O3	0.4528(4)	0.4784(4)	0.3195(4)	1	0.0102	0.0151(8)	0.0113(8)	0.0065(7)	-0.0008(6)	-0.0027(6)	0.0083(6)
O4	0.3560(5)	0.6017(4)	0.6443(4)	1	0.0130	0.0194(8)	0.0118(7)	0.0099(7)	-0.0042(7)	-0.0035(7)	0.0093(7)
05	0.6752(5)	0.8679(5)	0.3188(5)	1	0.0224	0.0294(8)	0.0343(9)	0.0154(8)	-0.0131(8)	-0.0139(7)	0.0248(7)
06	0.8021(6)	0.8021(6)	0	1	0.0495	0.0137(6)	0.0137(6)	0.1218(10)	0.0057(7)	-0.0057(7)	0.0072(8)
07	0.6618(4)	0.5227(4)	-0.0003(3)	1	0.0081	0.0145(8)	0.0073(8)	0.0045(7)	0.0003(6)	-0.0035(6)	0.0070(6)
B1	0.8862(5)	0.5424(5)	0.6718(4)	1	0.0059	0.0088(8)	0.0105(8)	0.0040(7)	0.0010(7)	0.0020(7)	0.0089(7)
B2	0.6718(5)	0.6718(5)	0	1	0.0083	0.0062(6)	0.0062(6)	0.0087(9)	-0.0049(5)	0.0049(5)	0.0001(8)
B3	0.7929(7)	0	2/3	1	0.0473	0.0090(9)	0.0288(9)	0.1107(10)	0.0076(9)	0.0038(4)	0.0144(4)

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0	0	0	0.964(1)	0.0046	0.0046(1)	0.0046(1)	0.0045(2)	0.0000(1)	0.0000(1)	0.0023(7)
Er1	0	0	0	0.100(1)	0.0046	0.0046(1)	0.0046(1)	0.0045(2)	0.0000(1)	0.0000(1)	0.0023(7)
Sc2	0.5440(1)	0	0	0.658(1)	0.0062	0.0037(3)	0.0035(3)	0.0111(4)	0.0017(2)	0.0009(1)	0.0017(2)
Er2	0.5440(1)	0	0	0.166(1)	0.0062	0.0037(3)	0.0035(3)	0.0111(4)	0.0017(2)	0.0009(1)	0.0017(2)
O1	0.8596(5)	0	0.5	1	0.0064	0.0024(9)	0.0072(10)	0.0113(11)	-0.0009(9)	-0.0004(5)	0.0036(5)
O2	0.5935(8)	0	0.5	1	0.0690	0.024(1)	0.088(1)	0.116(1)	-0.094(1)	-0.0471(5)	0.0443(6)
O3	0.4588(5)	0.1415(5)	0.5144(5)	1	0.0102	0.0156(10)	0.0042(9)	0.0088(10)	0.0001(8)	0.0033(9)	0.0035(8)
B1	0	0	0.5	1	0.0027	0.0025(8)	0.0025(8)	0.0030(12)	0	0	0.0013(4)
B2	0.4531(7)	0	0.5	1	0.0101	0.0056(10)	0.009(1)	0.017(1)	-0.009(1)	-0.0046(5)	0.0048(5)

Table S20. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Er).

Table S21. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Tm).

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0	0	0	0.897(1)	0.0077	0.00746(8)	0.00746(8)	0.0082(1)	0.0000(1)	0.0000(1)	0.00373(4)
Tm1	0	0	0	0.131(1)	0.0077	0.00746(8)	0.00746(8)	0.0082(1)	0.0000(1)	0.0000(1)	0.00373(4)
Sc2	0.54377(6)	0	0	0.782(1)	0.0081	0.0056(1)	0.0052(2)	0.0133(2)	0.0016(1)	0.00081(5)	0.00251(8)
Tm2	0.54377(6)	0	0	0.153(1)	0.0081	0.0056(1)	0.0052(2)	0.0133(2)	0.0016(1)	0.00081(5)	0.00251(8)
O1	0.8595(3)	0	0.5	1	0.0087	0.0045(5)	0.0084(7)	0.0145(8)	-0.0010(6)	-0.0005(3)	0.0042(3)
O2	0.5930(4)	0	0.5	1	0.0697	0.0223(7)	0.0834(10)	0.124(1)	-0.0916(9)	-0.0458(5)	0.0417(5)
O3	0.4588(3)	0.1415(2)	0.5144(3)	1	0.0127	0.0175(7)	0.0068(6)	0.0121(6)	0.0004(5)	0.0033(6)	0.0048(5)
B1	0	0	0.5	1	0.0060	0.0053(6)	0.0053(6)	0.0074(10)	0	0	0.0026(3)
B2	0.4537(4)	0	0.5	1	0.0136	0.0077(7)	0.0145(9)	0.0208(9)	-0.0102(9)	-0.0051(4)	0.0072(5)

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0	0	0	0.966(1)	0.0050	0.0051(2)	0.0051(2)	0.0048(2)	0.0000(1)	0.0000(1)	0.00253(8)
Yb1	0	0	0	0.113(1)	0.0050	0.0051(2)	0.0051(2)	0.0048(2)	0.0000(1)	0.0000(1)	0.00253(8)
Sc2	0.5449(1)	0	0	0.659(1)	0.0051	0.0027(3)	0.0023(3)	0.0103(5)	0.0017(2)	0.0008(1)	0.0012(2)
Yb2	0.5449(1)	0	0	0.149(1)	0.0051	0.0027(3)	0.0023(3)	0.0103(5)	0.0017(2)	0.0008(1)	0.0012(2)
O1	0.8589(5)	0	0.5	1	0.0061	0.0027(9)	0.0043(9)	0.0118(10)	-0.0004(9)	-0.0002(4)	0.0021(4)
O2	0.5925(7)	0	0.5	1	0.0602	0.0190(10)	0.0723(10)	0.107(1)	-0.0776(10)	-0.0388(5)	0.0362(5)
O3	0.4584(5)	0.1419(5)	0.5152(5)	1	0.0096	0.0127(9)	0.0048(9)	0.0085(9)	0.0001(8)	0.0044(9)	0.0023(8)
B1	0	0	0.5	1	0.0037	0.0032(7)	0.0032(7)	0.0047(11)	0	0	0.0016(4)
B2	0.4533(6)	0	0.5	1	0.0099	0.0033(9)	0.0109(10)	0.0180(10)	-0.0102(10)	-0.0051(5)	0.0054(5)

Table S22. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Yb).

Table S23. Crystallographic coordinates, occupancies and equivalent/isotropic atomic displacement parameters ($Å^2$) of NdSc₃(BO₃)₄:R (R = Lu).

Site	x/a	y/b	z/c	Occ.	Ueq	U11	U22	U33	U23	U13	U12
Nd1	0.66687(5)	0.66687(5)	0.5	0.889(1)	0.0059	0.0059(2)	0.0059(2)	0.0054(3)	-0.00024(7)	0.00024(7)	0.0026(2)
Lu1	0.66687(5)	0.66687(5)	0.5	0.078(1)	0.0059	0.0059(2)	0.0059(2)	0.0054(3)	-0.00024(7)	0.00024(7)	0.0026(2)
Sc1	0	0.8745(3)	5/6	0.996(1)	0.0280	-0.0001(6)	-0.0024(5)	0.0871(9)	0.0004(3)	0.0008(7)	-0.0001(3)
Sc2	0.2130(2)	0.6698(1)	0.49795(7)	0.886(1)	0.0008	0.0034(3)	0.0015(3)	-0.0030(3)	-0.0002(3)	-0.0021(2)	0.0008(2)
Lu2	0.2130(2)	0.6698(1)	0.49795(7)	0.108(1)	0.0008	0.0034(3)	0.0015(3)	-0.0030(3)	-0.0002(3)	-0.0021(2)	0.0008(2)
01	0.6616(6)	0.8626(6)	0.6879(7)	1	0.0230	0.0076(9)	0.0068(9)	0.0478(9)	-0.0027 (9)	0.0164(9)	-0.0016(8)
O2	0.9645(8)	0.9150(8)	0.4081(8)	0.5	0.0176	0.0104(9)	-0.0007(9)	0.0424(9)	0.0001(9)	-0.0004(9)	0.0018(9)
O3	0.4540(5)	0.4781(5)	0.3182(5)	1	0.0048	0.0052(8)	0.0057(8)	0.0040(8)	-0.0003(8)	0.0018(8)	0.0032(7)
O4	0.3525(6)	0.5992(6)	0.6495(5)	1	0.0134	0.0245(9)	0.0067(9)	0.0054(8)	0.0018(8)	-0.0025(9)	0.0052(8)
05	0.6775 (6)	0.8720(7)	0.3182(6)	1	0.0201	0.0200(9)	0.0367(9)	0.0171(9)	-0.0193(9)	-0.0151(8)	0.0243(8)
06	0.7987(6)	0.7987 (6)	0	1	0.0408	0.0045(6)	0.0045(6)	0.1167(10)	0.0005(7)	-0.0005(7)	0.0048(9)
O7	0.6630(5)	0.5236(6)	-0.0004(4)	1	0.0026	0.0074(9)	-0.0006(8)	-0.0018(9)	0.0009(7)	-0.0005(8)	0.0023(7)
B1	0.8848(6)	0.5456(6)	0.6717(6)	1	0.0021	0.0017(9)	0.0038(9)	0.0006(9)	0.0010(8)	0.0004(9)	0.0013(8)
B2	0.6654(6)	0.6654(6)	0	1	0.0047	0.0039(6)	0.0039(6)	0.0038(9)	-0.0013(6)	0.0013(6)	-0.0001(9)
B3	0.7887(9)	0	2/3	1	0.0374	0.0178(9)	0.0297(8)	0.0688(10)	0.0281(8)	0.0140(4)	0.0149(4)