Supporting Information (SI) for Alkali to alkaline earth metals: A DFT study of monolayer TiSi₂N₄ for metal ion batteries

Sheraz Ahmad,¹ H. U. Din,^{2, 3*} Cuong Q. Nguyen,^{4,5,*} Son-Tung Nguyen⁶, C. Nguyen⁷

¹School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Nankai University, Tianjin 300350, P. R. China.

²Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

³Department of Physics, Bacha Khan University, Charsadda, KP, Pakistan

⁴Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

⁵Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam

⁶Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam

⁷Le Quy Don Technical University, Hanoi 10000, Vietnam

Corresponding authors: H. U. Din (025264@kist.re.kr),

C. Q. Nguyen (nguyenquangcuong3@duytan.edu.vn)

Figure S1. Vacuum optimization of monolayer $TiSi_2N_4$

Table S1. Lattice parameters (a=b in Å), PBE and HSE06 band gaps (E_g), bond lengths (Å), bond angle (θ), Force constants (N/m), Poisson's ratio, Young's Modulus (Y_{2D}), Shear Modulus (G), Formation Enthalpy (eV) and Dipole moment (μ) of monolayer TiSi₂N₄.

TiSi ₂ N ₄	Values			
a=b (Å)	2.916			
PBE band (E _g)	1.649 (Indirect)			
HSE06 band (E_g)	2.611 (Indirect)			
N-Ti (Å)	2.063			
N-Si (Å)	1.75/1.76			
N-Ti-N (θ)	70.63			
N-Si-N (θ)	107.07			
Ti-N-Si (θ)	125.31			
C ₁₁ (N/m)	725.52			
C ₁₂ (N/m)	232.29			
C ₆₆ (N/m)	247.11			
Poisson's ratio	0.319			
Young's modulus (Y _{2D})	625.25			
Shear Modulus (G)	247.11			
Formation Enthalpy	-3.298			
Dipole moment (µ)	-1.09			

Figure S2. (a) Phonon spectra and (b) AIMD simulation for 1T phase of $TiSi_2N_4$ monolayer at 500K for 5000 time steps with inset display the initial and final structures, respectively.

Figure S3. Young's Modulus (Y), Shear Modulus (G), and elastic constants C_{11} , C_{12} and C_{66} for monolayer $TiSi_2N_4$.

Figure S4. Spin polarized band structure of monolayer TiSi₂N₄ (a) spin up (b) spin down and (c) density of states DOS.

Figure S5. Band structure for single (a) Li, (b) Na, (c) K and (d) Mg atom adsorbed on monolayer TiSi₂N₄

Figure S6. Partial Density of states (DOS) for single (a) Li, (b) Na, (c) K and (d) Mg atom adsorbed on TiSi₂N₄ monolayer

Table S2. Change in lattice parameter (a=b) due to adsorption of different layers of metals (Li, Na, K, Mg) atoms of single layer $Ti_4Si_8N_{16}$.

Metals	Pristine	1 st layer	2 nd layer	3 rd layer	4 th layer	5 th layer	6 th layer
Li	5.8325	5.8580	5.8754	5.8755	5.8623	5.8675	5.8598
Na	5.8325	5.8510	5.8469	5.9127	5.9335	5.9503	5.9612
K	5.8325	5.8993	5.9780	6.0512	6.1076		
Mg	5.8325	5.7435	5.8708	5.9045	5.9047	5.9224	5.9218

Table S3. Adsorption energy for single alkali atom at different positions, Diffusion barrier energy, Theoretical Specific Capacity and Open Circuit Voltage (OCV) of $Ti_4Si_8N_{16}$ monolayer.

	Adsorption Energy (eV)				Diffusion Barrier				
Metals		Single atom				(eV)			OCV _{Avg}
	В	Ν	Si	Ti	Path-1	Path-2	Path-3	mAh/g	
Li	-2.471	-2.4720	-2.11	-2.4722	0.339	0.25	0.369	1004.4	0.55
Na	-1.591	-1.288	-1.443	-1.600	0.146	0.161	0.173	854.7	0.26
Mg	-0.592	-0.593	-0.5153	-0.555	0.189	0.103	0.21	492.3	0.55
K	-1.321	-1.182	-1.325	-1.389	0.074	0.135	0.086	531.5	-1.30

	Adsorption Energy (eV)							
Metals	1 st layer			2 nd	3 rd	4 th	5 th	6 th
	N-site	Si-site	Ti-site	layer	Layer	Layer	Layer	layer
Li	-2.21	-1.40	-1.981	-4.42	-5.28	-6.08	-5.08	-6.28
Na	-2.07	-1.96	-2.10	-4.19	-4.53	-3.93	-4.60	1.511
Mg	-2.75	-1.43	-1.64	-5.43	-5.08	-4.79	-4.63	-0.83
K	-3.25	-3.88	-4.25	-8.46	-6.08	-8.72		

Table S4. Adsorption energy for single and multilayer alkali ion metals on $Ti_4Si_8N_{16}$ monolayer.

Figure S7. Open Circuit Voltage (OCV) and Theoretical Specific Capacity (TSC) of K adsorption on TiSi₂N₄.