Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

# **Supporting Information**

## An anionic beryllium hydride dimer with an exceedingly short Be···Be distance

Terrance J. Hadlington\*,a

<sup>a</sup> Lehrstuhl für anorganische Chemie mit Schwerpunkt neue Materialien, Technische Universität München, Lichtenbergstraße 4, 85747 Garching

| 1. | Experimental methods and data     | S2  |
|----|-----------------------------------|-----|
| 2. | X-ray crystallographic details    | S15 |
| 3. | Computational methods and details | S17 |
| 4. | References                        | S43 |

#### 1. Experimental methods and data

**General considerations.** All experiments and manipulations were carried out under dry oxygen free argon atmosphere using standard Schlenk techniques or in a MBraun inert atmosphere glovebox containing an atmosphere of high purity argon. THF was dried by distillation over a sodium/benzophenone mixture and stored over activated 4Å mol sieves.  $C_6D_6$  was dried, degassed and stored over a potassium mirror. All other solvents were dried over activated 4Å mol sieves.  $[(Pr_3Si)(Dipp)NK]$  (L\*; Dipp = 2,6- $Pr_2$ - $C_6H_3$ ),<sup>1</sup> and  $[Br_2Be \cdot (Et_2O)_2]^2$  were synthesized according to known literature procedures. All other reagents were used as received. NMR spectra were recorded on a Bruker AV 400 Spectrometer. The <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra were referenced to the residual solvent signals as internal standards. <sup>29</sup>Si{<sup>1</sup>H} NMR spectra were externally calibrated with SiMe4. <sup>9</sup>Be NMR spectra were externally calibrated with BeBr<sub>2</sub>·(Et<sub>2</sub>O)<sub>2</sub>. Liquid Injection Field Desorption lonization Mass Spectrometry (LIFDI-MS) was measured directly from an inert atmosphere glovebox with a Thermo Fisher Scientific Exactive Plus Orbitrap equipped with an ion source from Linden CMS.<sup>3</sup> Elemental analyses (C, H, N) were performed with a combustion analyzer (elementar vario EL, Bruker).

**CAUTION:** Beryllium, most notably as fine powders, and beryllium compounds are regarded as highly toxic, and are potential carcinogens. A severe allergic reaction can also occur if inhaled, with the risk of causing chronic beryllium disease.<sup>4</sup> One should take care and use adequate safety measures (i.e. breathing apparatus, protective clothing, well-ventilated fume-hoods) for any manipulations involving beryllium and compounds containing this element.<sup>5</sup>

**[L\*BeBr·Et<sub>2</sub>O], 1.** A solid mixture of [( $^{i}Pr_{3}Si$ )(Dipp)NK] (2.35 g, 6.33 mmol) and [Br<sub>2</sub>Be·(Et<sub>2</sub>O)<sub>2</sub>] (2.00 g, 6.33 mmol) was cooled to -80 °C with rapid stirring. Toluene (50 mL) was added to this rapidly stirred mixture, and the reaction allowed to slowly warm over the course of 16 h. All volatiles were subsequently removed *in-vacuo*, the oily residue extracted in heptane (~50 mL), and the suspension filtered. The filtrate was concentrated to ~15 mL, and stored at -40°C overnight, leading to the deposition of a large crops of colourless crystals, which were collected by filtration and dried under vacuum. Compound **1** was isolated as an off-white waxy crystalline powder (2.10 g, 67%). Crystals grown in this manner were suitable for X-ray diffraction analysis.

<sup>1</sup>**H NMR** (C<sub>6</sub>D<sub>6</sub>, 400 MHz, 298 K):  $\delta$  = 0.78 (t, 4H, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, Et<sub>2</sub>O-CH<sub>2</sub>), 1.16 (d, 6H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 1.32 (d, 18H, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>i</sup>Pr<sub>3</sub>Si-CH<sub>3</sub>), 1.37 (d, 6H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 1.67 (sept, 3H, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>i</sup>Pr<sub>3</sub>Si-CH), 3.02 (q, 6H, <sup>3</sup>J<sub>HH</sub> = 7.1 Hz, Et<sub>2</sub>O-CH<sub>3</sub>), 3.90 (sept, 2H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH), 7.02-7.09 (m, 3H, Ar-CH).

<sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 101 MHz, 298 K): δ = 12.9 (Et<sub>2</sub>O-CH<sub>3</sub>), 14.9 (<sup>i</sup>Pr<sub>3</sub>Si-CH), 20.2 (<sup>i</sup>Pr<sub>3</sub>Si-CH<sub>3</sub>), 24.9 (Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 26.3 (Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 27.3 (Dipp-<sup>i</sup>Pr-CH), 69.8 (Et<sub>2</sub>O-CH<sub>2</sub>), 123.6, 124.4, 146.3, 146.4 (Ar-C).

<sup>29</sup>Si{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 99 MHz, 298 K): δ = 2.7.

**<sup>9</sup>Be NMR** (C<sub>6</sub>D<sub>6</sub>, 58 MHz, 298 K): δ = 9.0.

MS/LIFDI-HRMS found (calcd.) m/z: 406.1996 (406.1980) for [M-Cl]<sup>+</sup>.

**Anal. calcd. for** C<sub>25</sub>H<sub>48</sub>BeBrNOSi: C, 60.58%; H, 9.76%; N, 2.83%; found: C, 60.87%; H, 10.32%; N, 2.95%.

### [L\*Be(µ-H)<sub>3</sub>BeL\*][C], 2.

 $A = [(THF)_3 \cdot Li(\mu-Br)Li \cdot (THF)_3]^+$ , 2a. Compound 1 (200 mg, 0.40 mmol) was dissolved in heptane (5 mL), and a 1M THF solution of Li[HB<sup>s</sup>Bu<sub>3</sub>] added (0.8 mL, 0.80 mmol). The mixture was briefly shaken, and allowed to stand overnight, leading to a to formation of colourless crystals of 2a, which were suitable for X-ray diffraction analysis. The solution was decanted, and the crystalline solid washed with a small amount of pentane (5 mL), and dried under vacuum, yielding a colourless crystalline solid (83 mg, 49 %).

<sup>1</sup>**H NMR** (C<sub>6</sub>D<sub>6</sub>, 400 MHz, 298 K):  $\delta$  = 1.23 (d, 12H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 1.28 (m, 24H, THF-CH<sub>2</sub>), 1.36 (overlapping d, 48H, Dipp-<sup>i</sup>Pr-CH<sub>3</sub> and <sup>i</sup>Pr<sub>3</sub>Si-CH<sub>3</sub>), 1.53 (sept, 6H, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>i</sup>Pr<sub>3</sub>Si-CH), 2.67 (br s, 3H, Be-H-Be), 3.29 (m, 24H, THF-CH<sub>2</sub>), 4.17 (sept, 4H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH), 6.84 (m, 2H, *p*-Ar-CH), 7.02 (m, 4pH, *m*-Ar-CH).

<sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 101 MHz, 298 K):  $\delta$  = 14.8 (<sup>i</sup>Pr<sub>3</sub>Si-CH), 19.8 (<sup>i</sup>Pr<sub>3</sub>Si-CH<sub>3</sub>), 23.4 (Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 25.4 (THF-CH<sub>2</sub>), 25.7 (Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 27.3 (Dipp-<sup>i</sup>Pr-CH), 68.3 (THF-CH<sub>2</sub>), 121.9, 123.7, 146.3, 152.9 (Ar-C).

<sup>29</sup>Si{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 99 MHz, 298 K): δ = -1.0.

**<sup>9</sup>Be NMR** (C<sub>6</sub>D<sub>6</sub>, 58 MHz, 298 K): δ = 4.5.

**Anal. calcd.** for C<sub>66</sub>H<sub>121</sub>Be<sub>2</sub>BrLi<sub>2</sub>N<sub>2</sub>O<sub>6</sub>Si<sub>2</sub>: C, 65.69%; H, 10.11%; N, 2.32%; found: C, 62.43%; H, 10.45%; N, 2.20%.

N.B. Carbon values were found to be low after running several samples, possibly due to silicon carbide formation.

**B** = [(TMEDA)<sub>2</sub>·Li]<sup>+</sup>, 2b. Compound 1 (200 mg, 0.40 mmmol) dissolved in toluene (5 mL), and a 1M THF solution of Li[HB<sup>s</sup>Bu<sub>3</sub>] (0.8 mL, 0.80 mmol) was added. The reaction was stirred for 2 h at ambient temperature, filtered, and concentrated to ~2 mL. The solution was layered with heptane (~10 mL), and stored for 3 days, leading to the formation of a crop of large colourless crystals suitable for X-ray diffraction analysis (68 mg, 40 %).

<sup>1</sup>**H NMR** (D<sub>8</sub>-THF, 400 MHz, 298 K):  $\delta$  = 1.01 (d, 36H, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>i</sup>Pr<sub>3</sub>Si-CH<sub>3</sub>), 1.07 (d, 12H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 1.107 (d, 12H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 1.20 (sept, 6H, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>i</sup>Pr<sub>3</sub>Si-CH), 2.00 (br s, 3H, Be-H-Be), 2.15 (s, 24H, TMEDA-CH<sub>3</sub>), 2.31 (s, 8H, TMEDA-CH<sub>2</sub>), 3.99 (sept, 4H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH), 6.60 (m, 2H, *p*-Ar-CH), 6.74 (m, 4H, *m*-Ar-CH).

<sup>13</sup>C{<sup>1</sup>H} NMR (D<sub>8</sub>-THF, 101 MHz, 298 K): δ = 15.4 (<sup>i</sup>Pr<sub>3</sub>Si-CH), 20.4 (<sup>i</sup>Pr<sub>3</sub>Si-CH<sub>3</sub>), 24.0 (Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 26.9 (Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 27.7 (Dipp-<sup>i</sup>Pr-CH), 46.4 (TMEDA-CH<sub>3</sub>), 59.1 (TMEDA-CH<sub>2</sub>), 120.5, 122.6, 147.1, 152.6 (Ar-C).

<sup>29</sup>Si{<sup>1</sup>H} NMR (D<sub>8</sub>-THF, 99 MHz, 298 K): δ = -5.1.

**<sup>9</sup>Be NMR** (C<sub>6</sub>D<sub>6</sub>, 58 MHz, 298 K): δ = -4.2.

MS/LIFDI-HRMS found (calcd.) m/z: 685.6027 (685.6026) for [M-{(TMEDA)<sub>2</sub>Li}]<sup>+</sup>.

**[L\*Be(μ-H)**<sub>3</sub>**BeL\*]·[K(TMEDA)], 3**. Compound **1** (200 mg, 0.40 mmol) was dissolved in heptane (10 mL), and neat TMEDA added (0.07 mL, 0.44 mmol), leading to the precipitation of what is presumably L\*BeBr·TMEDA. The suspension was cooled to -80 °C with rapid stirring, and a THF solution of K[HB<sup>s</sup>Bu<sub>3</sub>] added (1M, 0.40 mL, 0.40 mmol). The reaction mixture was slowly warmed over the course of 4 h, leading the dissolution of the copious precipitate, and formation of a fine colourless precipitate. The reaction mixture was then allowed to settle, filtered, and concentrated to ~3 mL, whereby small crystals began to form. These were redissolved by mild heating, and the flask left at ambient temperature overnight, leading to a crop of colourless crystals suitable for single-crystal X-ray diffraction analysis (95 mg, 56%).

<sup>1</sup>**H NMR** (C<sub>6</sub>D<sub>6</sub>, 400 MHz, 298 K):  $\delta$  = 1.17 (d, 12H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 1.36 (d, 12H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 1.41 (d, 36H, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>i</sup>Pr<sub>3</sub>Si-CH<sub>3</sub>), 1.52 (sept, 6H, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>i</sup>Pr<sub>3</sub>Si-CH), 1.71 (s, 12H, TMEDA-CH<sub>3</sub>), 1.76 (s, 4H, TMEDA-CH<sub>2</sub>), 2.19 (br s, 3H, Be-H-Be), 4.23 (sept, 4H, <sup>3</sup>J<sub>HH</sub> = 6.8 Hz, Dipp-<sup>i</sup>Pr-CH), 6.71 (m, 2H, *p*-Ar-CH), 6.91 (m, 4pH, *m*-Ar-CH).

<sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 101 MHz, 298 K): δ = 15.0 (<sup>i</sup>Pr<sub>3</sub>Si-CH), 20.0 (<sup>i</sup>Pr<sub>3</sub>Si-CH<sub>3</sub>), 23.8 (Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 26.2 (Dipp-<sup>i</sup>Pr-CH<sub>3</sub>), 27.1 (Dipp-<sup>i</sup>Pr-CH), 45.6 (TMEDA-CH<sub>3</sub>), 57.2 (TMEDA-CH<sub>2</sub>), 120.9, 123.3, 147.3, 153.1 (Ar-C).

<sup>29</sup>Si{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 99 MHz, 298 K): δ = -4.1.

**<sup>9</sup>Be NMR** (C<sub>6</sub>D<sub>6</sub>, 58 MHz, 298 K): δ = -3.4.

**Anal. calcd.** for C<sub>48</sub>H<sub>95</sub>Be<sub>2</sub>KN<sub>4</sub>Si<sub>2</sub>: C, 68.50%; H, 11.38%; N, 6.66%; found: C, 63.11%; H, 10.95%; N, 6.09%.

N.B. Carbon values were found to be low after running several samples, possibly due to silicon carbide formation.

### NMR and IR spectra:

L\*BeBr·Et<sub>2</sub>O, **1** <sup>1</sup>H NMR



Figure S2.  $^{13}C{^1H}$  NMR spectrum of 1 in C<sub>6</sub>D<sub>6</sub> at 298K.





Figure S3. <sup>29</sup>Si NMR spectrum of 1 in C<sub>6</sub>D<sub>6</sub> at 298K.

L\*BeBr·Et<sub>2</sub>O, **1** <sup>29</sup>Si NMR



Figure S4. <sup>9</sup>Be NMR spectrum of 1 in C<sub>6</sub>D<sub>6</sub> at 298K. \*artifact of the NMR spectrometer

[L\*Be(µ-H)₃BeL\*][(THF)<sub>6</sub>·Li₂Br], **2a** ¹H NMR



Figure S6.  $^{13}C{^1H}$  NMR spectrum of **2a** in C<sub>6</sub>D<sub>6</sub> at 298K.

[L\*Be(µ-H)₃BeL\*][(THF)<sub>6</sub>·Li₂Br], **2a** <sup>29</sup>Si NMR





Figure S7. <sup>29</sup>Si NMR spectrum of 2a in C<sub>6</sub>D<sub>6</sub> at 298K.



Figure S8. 9Be NMR spectrum of 2a in C6D6 at 298K. \*artifact of the NMR spectrometer





00 -100 f1 (ppm) -30 80 20 Ó -20 -280 60 40 -40 -120 -140 -180 -200 -220 -240 -260 -60 -80 -160

Figure S11. <sup>29</sup>Si NMR spectrum of **2b** in D<sub>8</sub>-THF at 298K.







[L\*Be(µ-H)<sub>3</sub>BeL\*][TMEDA·K], **3** <sup>29</sup>Si NMR



-100 f1 (ppm) 00 -30 80 20 Ó -280 60 40 -20 -40 -60 -80 -120 -140 -200 -220 -240 -260 -160 -180

Figure S15.  $^{29}$ Si NMR spectrum of 3 in C<sub>6</sub>D<sub>6</sub> at 298K.





Figure S17. ATR-IR spectrum of compound 2a.



Figure S18. ATR-IR spectrum of compound 2b.



Figure S19. ATR-IR spectrum of compound 3.

## 2. X-ray crystallographic details

Single crystals of **1**, **2b**, and **3** suitable for X-ray structural analysis were mounted in perfluoroalkyl ether oil on a nylon loop and positioned in a 150 K cold N<sub>2</sub> gas stream. Data collection was performed with a STOE StadiVari diffractometer (MoKα radiation) equipped with a DECTRIS PILATUS 300K detector. Structures were solved by Direct Methods (SHELXS-2018)<sup>6</sup> and refined by full-matrix least-squares calculations against F<sup>2</sup> (SHELXL-2018).<sup>7</sup> The positions of the hydrogen atoms, aside from those in the [Be<sub>2</sub>H<sub>3</sub>] moieties of **2b** and **3**, were calculated and refined using a riding model. All non-hydrogen atoms and the hydride ligands in **2b** and **3** were treated with anisotropic displacement parameters. Crystal data, details of data collections, and refinements for all structures can be found in their CIF files, which are available free of charge *via* www.ccdc.cam.ac.uk/data\_request/cif, and are summarized in Table S1.

|                               | 1                                                         | 2b                         | 3               |
|-------------------------------|-----------------------------------------------------------|----------------------------|-----------------|
| empirical form.               | C <sub>21</sub> H <sub>38</sub> BeBrNSi·Et <sub>2</sub> O | C42H79Be2N2Si2· C12H32LiN4 | C48H95Be2KN4Si2 |
| formula wt                    | 495.65                                                    | 925.62                     | 841.57          |
| crystal syst.                 | orthorhombic                                              | triclinic                  | orthorhombic    |
| space group                   | P212121                                                   | P-1                        | Pna2₁           |
| a (Å)                         | 10.508(2)                                                 | 13.849(3)                  | 26.540(5)       |
| b (Å)                         | 14.060(3)                                                 | 15.592(3)                  | 10.950(2)       |
| c (Å)                         | 18.959(4)                                                 | 16.930(3)                  | 90              |
| α (deg.)                      | 90                                                        | 85.77(3)                   | 90              |
| β (δεγ)                       | 90                                                        | 67.48(3)                   | 90              |
| γ (deg.)                      | 90                                                        | 67.01(3)                   | 79.94(3)        |
| vol (Å <sup>3</sup> )         | 2800.9(10)                                                | 3096.1(14)                 | 5588.5(19)      |
| Z                             | 4                                                         | 2                          | 4               |
| ρ(calc) (g.cm <sup>-3</sup> ) | 1.175                                                     | 0.993                      | 1.000           |
| μ (mm <sup>-1</sup> )         | 1.526                                                     | 0.093                      | 0.169           |
| F(000)                        | 1064                                                      | 1032                       | 1864            |
| Т (К)                         | 150(2)                                                    | 150(2)                     | 150(2)          |
| refins collect.               | 26524                                                     | 93689                      | 52410           |
| unique reflns                 | 5459                                                      | 12159                      | 10054           |
| Rint                          | 0.0524                                                    | 0.0278                     | 0.1004          |
| R1 [/>2σ(/)]                  | 0.0417                                                    | 0.0460                     | 0.0504          |
| wR2 (all data)                | 0.0928                                                    | 0.1293                     | 0.1158          |
| CCDC No.                      | 2303227                                                   | 2303228                    | 2303229         |

Table S1. Summary of X-ray crystallographic data for 1, 2b, and 3.



**Figure S20**. Molecular structure of **1**, with thermal ellipsoids at 30% probability, and hydrogen atoms omitted. Selected bond lengths (Å) and angles (°): Be1-N1 1.565(7); Be1-Br1 2.088(6); Be1-O1 1.565(7); Br1-Be1-O1 109.3(3); N1-Be1-O1 120.0(4); Br1-Be1-N1 130.6(4).



**Figure S21**. Molecular structure of **2b** including the [(TMEDA)<sub>2</sub>Li] counterion, with thermal ellipsoids at 30% probability, hydrogen atoms omitted. For metrical parameters, see the main text.

### 3. Computational methods and details

Computational experiments were performed using the Gaussian 16 program.<sup>8</sup> Geometry optimization was carried out at the B97 or B3LYP level, with the def2-TZVP basis set for Be, N, and Si, and the def2-SVP basis set for all other atoms.<sup>9</sup> Stationary points were confirmed as true minima by vibrational frequency analysis (no negative eigenvalues). Dispersion corrections were implemented with Grimme's D3 model.<sup>9(d)</sup> Solvent effects were considered using the SMD model, for THF and benzene. Hydride ion affinity was calculated for the model complex [{(Me<sub>3</sub>Si)(Xyl)NBe( $\mu$ -H)}<sub>2</sub>], through isodesmic anchoring to the Me<sub>3</sub>SiH/[Me<sub>3</sub>Si]<sup>+</sup> couple (HIA<sub>Me3Si+</sub> = 959 kJ·mol<sup>-1</sup>),<sup>10</sup> with geometry optimization at the B3LYP level, using the def2-TZVP basis set for Be, N, and Si, and the def2-SVP basis set for all other atoms. The QTAIM and Mayer Bond Order analysis were executed using the Multiwfn program.<sup>11</sup>



Figure S22. Selected frontier orbitals for calculated anion 2.

# **Table S2.** Selected Mayer BondOrder values for **2**

| Elemen | Mayer Bond<br>Order |       |
|--------|---------------------|-------|
| Be123  | Be124               | 0.532 |
| Be123  | H125                | 0.508 |
| Be123  | H126                | 0.282 |
| Be123  | H127                | 0.428 |
| Be124  | H125                | 0.414 |
| Be124  | H126                | 0.654 |
| Be124  | H127                | 0.521 |
| Mean   | 0.468               |       |

 Table 2. The B97D3(def2-TZVP//def2-SVP) Cartesian coordinates for anion 2 in the gas phase.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 3.32235      | 1.21878      | -0.60456     |
| Si   | -3.43073     | -0.93874     | -1.1186      |
| Ν    | -2.57326     | -0.05112     | 0.09713      |
| Ν    | 2.4811       | -0.13623     | 0.08763      |
| С    | 3.1702       | -1.21221     | 0.70215      |
| С    | -3.72939     | 0.45607      | 2.22972      |
| С    | -3.20469     | 0.87687      | 0.96651      |
| С    | 3.58647      | 2.58743      | 0.71633      |
| Н    | 4.02084      | 2.02278      | 1.5636       |
| С    | 3.43242      | -1.21612     | 2.10798      |
| С    | 3.6003       | -2.33735     | -0.07247     |
| С    | -3.3007      | 2.25994      | 0.61604      |
| С    | -2.54973     | -3.46059     | 0.05062      |
| Н    | -2.84885     | -4.40063     | 0.5579       |
| Н    | -2.02751     | -2.82668     | 0.78614      |
| Н    | -1.80316     | -3.72801     | -0.71654     |
| С    | -5.12707     | -0.07491     | -1.40585     |
| Н    | -4.88406     | 0.99993      | -1.30269     |
| С    | -3.54383     | -0.98553     | 2.68072      |
| Н    | -3.45408     | -1.58362     | 1.76405      |
| С    | -3.76947     | -2.74857     | -0.56204     |
| Н    | -4.51173     | -2.62782     | 0.25331      |
| С    | 4.17422      | -2.2658      | 2.67935      |
| Н    | 4.37495      | -2.25286     | 3.7584       |
| С    | -4.34809     | 1.39128      | 3.07721      |
| Н    | -4.74402     | 1.05973      | 4.04476      |
| С    | -3.92988     | 3.16186      | 1.49292      |
| Н    | -3.99417     | 4.22135      | 1.21362      |
| С    | 3.89264      | 0.5176       | 3.93068      |
| Н    | 3.45207      | 1.38075      | 4.46434      |
| Н    | 4.7657       | 0.87864      | 3.35762      |
| Н    | 4.26606      | -0.18843     | 4.6966       |

| С | 2.20489  | 1.89245  | -2.00293 |
|---|----------|----------|----------|
| Н | 1.22149  | 1.97613  | -1.50117 |
| С | -5.75041 | -0.26902 | -2.79853 |
| Н | -5.99574 | -1.3291  | -2.99726 |
| Н | -5.08373 | 0.06886  | -3.61052 |
| Н | -6.69788 | 0.30135  | -2.89163 |
| С | -2.65954 | 2.77474  | -0.66456 |
| Н | -2.43191 | 1.88421  | -1.26538 |
| С | 2.85039  | -0.13536 | 3.00859  |
| Н | 2.45035  | 0.64183  | 2.34175  |
| С | -2.17725 | 0.39339  | -3.36461 |
| Н | -1.36088 | 0.84904  | -2.77852 |
| Н | -3.03529 | 1.0881   | -3.34274 |
| Н | -1.82848 | 0.32567  | -4.41524 |
| С | -4.43208 | -3.6145  | -1.64717 |
| Н | -3.76308 | -3.75922 | -2.51573 |
| Н | -5.36745 | -3.16573 | -2.02607 |
| Н | -4.68367 | -4.62462 | -1.26242 |
| С | -4.71594 | -1.55386 | 3.49282  |
| Н | -4.57127 | -2.63714 | 3.66404  |
| Н | -5.67715 | -1.41585 | 2.96503  |
| Н | -4.80583 | -1.07834 | 4.48789  |
| C | -4.46257 | 2.73916  | 2.7152   |
| Н | -4.95271 | 3.45559  | 3.3871   |
| C | 5.03611  | 0.63858  | -1.24299 |
| Н | 4.81913  | -0.33457 | -1.71905 |
| С | 4.34309  | -3.36227 | 0.53847  |
| Н | 4.67602  | -4.21556 | -0.06538 |
| С | -2.52122 | -0.99913 | -2.80698 |
| H | -3.28641 | -1.44789 | -3.47529 |
| С | 5.66785  | 1.53215  | -2.32423 |
| Н | 5.8644   | 2,5555   | -1.95685 |
| Н | 5.02343  | 1.62278  | -3.2155  |
| н | 6.6408   | 1.11805  | -2.66176 |
| С | 3.16697  | -2.48177 | -1.52568 |
| Н | 2.88522  | -1.47474 | -1.86791 |
| С | 4.26209  | -3.01428 | -2.46224 |
| Н | 5,19295  | -2.42498 | -2.37481 |
| Н | 3.92352  | -2.96729 | -3.51439 |
| Н | 4.51389  | -4.07041 | -2.24925 |
| С | 1.65797  | -0.69259 | 3.80833  |
| Н | 0.90905  | -1.13018 | 3.12821  |
| Н | 1.16079  | 0.10703  | 4.38921  |
| Н | 1.98352  | -1.4811  | 4.51363  |
| С | -6.15186 | -0.4019  | -0.30513 |
| Н | -7.06815 | 0.21329  | -0.41657 |
| Н | -5.74715 | -0.20782 | 0.70191  |
| н | -6.46719 | -1.46178 | -0.34538 |
|   |          |          |          |

| С  | -1.27952 | -1.90574 | -2.86591 |
|----|----------|----------|----------|
| Н  | -0.82375 | -1.885   | -3.8771  |
| Н  | -1.51553 | -2.95755 | -2.63496 |
| Н  | -0.50866 | -1.57382 | -2.15283 |
| С  | 6.03477  | 0.36393  | -0.10243 |
| Н  | 6.96578  | -0.09613 | -0.49307 |
| Н  | 5.62095  | -0.32075 | 0.65583  |
| Н  | 6.32868  | 1.2961   | 0.41463  |
| С  | 4.6524   | -3.3271  | 1.90356  |
| Н  | 5.24076  | -4.13238 | 2.36207  |
| С  | 4.57944  | 3.71449  | 0.38285  |
| Н  | 4.25685  | 4.31012  | -0.48953 |
| Н  | 5.59009  | 3.33108  | 0.16059  |
| Н  | 4.67776  | 4.41994  | 1.2343   |
| С  | 1.89708  | -3.35239 | -1.60254 |
| Н  | 2.11065  | -4.38354 | -1.26152 |
| Н  | 1.51072  | -3.4032  | -2.63791 |
| Н  | 1.10319  | -2.93773 | -0.95925 |
| С  | 2.24042  | 3.16204  | 1.19152  |
| Н  | 2.36237  | 3.78331  | 2.10204  |
| Н  | 1.50711  | 2.36988  | 1.42176  |
| Н  | 1.78283  | 3.8059   | 0.41869  |
| С  | 2.01854  | 0.87496  | -3.14078 |
| Н  | 1.31191  | 1.25586  | -3.90546 |
| Н  | 1.60316  | -0.07247 | -2.76082 |
| Н  | 2.97038  | 0.64627  | -3.657   |
| С  | -2.20862 | -1.13435 | 3.43375  |
| Н  | -1.3721  | -0.76848 | 2.81635  |
| Н  | -2.00939 | -2.19231 | 3.69024  |
| Н  | -2.21887 | -0.5462  | 4.37102  |
| С  | -1.31419 | 3.45992  | -0.36053 |
| Н  | -1.4591  | 4.37124  | 0.25067  |
| Н  | -0.79821 | 3.7508   | -1.29542 |
| Н  | -0.65176 | 2.77713  | 0.1944   |
| С  | -3.57782 | 3.68263  | -1.49677 |
| Н  | -3.79241 | 4.63999  | -0.98484 |
| Н  | -4.54544 | 3.19221  | -1.70813 |
| Н  | -3.10107 | 3.92841  | -2.46446 |
| С  | 2.54988  | 3.28887  | -2.54607 |
| Н  | 3.54533  | 3.32542  | -3.0245  |
| Н  | 2.53702  | 4.05597  | -1.75351 |
| Н  | 1.81129  | 3.60219  | -3.31228 |
| Be | 0.86732  | -0.15576 | 0.16276  |
| Be | -0.95932 | -0.11093 | 0.19109  |
| Н  | -0.07526 | 0.59466  | 1.16133  |
| Н  | -0.03445 | 0.33431  | -0.91172 |
| Н  | -0.03855 | -1.33794 | 0.34532  |

**Table 3.** The B97D3(def2-TZVP//def2-SVP) Cartesian coordinates for anion 2 with the SMD-Benzene model.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 3.33472      | 1.21706      | -0.60671     |
| Si   | -3.45073     | -0.94087     | -1.11288     |
| Ν    | -2.57216     | -0.05131     | 0.09322      |
| Ν    | 2.49428      | -0.13998     | 0.09232      |
| С    | 3.18692      | -1.21724     | 0.70232      |
| С    | -3.72591     | 0.47274      | 2.22767      |
| С    | -3.19704     | 0.8845       | 0.962        |
| С    | 3.62322      | 2.57762      | 0.71759      |
| Н    | 4.06568      | 2.00698      | 1.55704      |
| С    | 3.45713      | -1.2212      | 2.10766      |
| С    | 3.61197      | -2.34317     | -0.07533     |
| С    | -3.28384     | 2.26854      | 0.60714      |
| С    | -2.61666     | -3.47353     | 0.0716       |
| Н    | -2.9362      | -4.37749     | 0.62954      |
| Н    | -2.0398      | -2.83685     | 0.76344      |
| Н    | -1.91038     | -3.80919     | -0.70717     |
| С    | -5.12831     | -0.04741     | -1.41338     |
| Н    | -4.86618     | 1.02348      | -1.31735     |
| С    | -3.55829     | -0.96894     | 2.6876       |
| Н    | -3.45093     | -1.56878     | 1.77447      |
| С    | -3.82471     | -2.73539     | -0.53266     |
| Н    | -4.55279     | -2.58563     | 0.29037      |
| С    | 4.20345      | -2.27073     | 2.67453      |
| Н    | 4.41189      | -2.25859     | 3.752        |
| С    | -4.33644     | 1.41682      | 3.07258      |
| Н    | -4.73578     | 1.09214      | 4.04096      |
| С    | -3.90422     | 3.17897      | 1.48243      |
| Н    | -3.96182     | 4.23782      | 1.20011      |
| С    | 3.90403      | 0.50018      | 3.95141      |
| Н    | 3.46111      | 1.36716      | 4.47725      |
| Н    | 4.79204      | 0.85679      | 3.3985       |
| Н    | 4.25777      | -0.20628     | 4.72623      |
| С    | 2.19181      | 1.89998      | -1.9801      |
| Н    | 1.21902      | 1.98856      | -1.4581      |
| С    | -5.75023     | -0.23649     | -2.80719     |
| Н    | -6.01591     | -1.29165     | -3.00617     |
| Н    | -5.07835     | 0.08928      | -3.6202      |
| Н    | -6.68667     | 0.35098      | -2.90576     |
| С    | -2.64346     | 2.77718      | -0.67712     |
| Н    | -2.44327     | 1.88572      | -1.28655     |
| С    | 2.87335      | -0.14274     | 3.01076      |
| Н    | 2.48448      | 0.64009      | 2.34394      |
| С    | -2.16461     | 0.34198      | -3.36994     |
| Н    | -1.3334      | 0.7847       | -2.7947      |
| Н    | -3.00472     | 1.0585       | -3.35186     |

| Н | -1.82415 | 0.25872  | -4.42245 |
|---|----------|----------|----------|
| С | -4.52384 | -3.59817 | -1.59664 |
| Н | -3.87106 | -3.78016 | -2.47096 |
| Н | -5.45129 | -3.13157 | -1.97337 |
| Н | -4.80155 | -4.59398 | -1.19295 |
| С | -4.75023 | -1.5304  | 3.47481  |
| Н | -4.61941 | -2.61629 | 3.64197  |
| Н | -5.7022  | -1.38418 | 2.93201  |
| Н | -4.85619 | -1.06275 | 4.47204  |
| С | -4.43886 | 2.76469  | 2.70706  |
| Н | -4.92268 | 3.48718  | 3.37689  |
| С | 5.03437  | 0.63543  | -1.27813 |
| Н | 4.8068   | -0.33415 | -1.75641 |
| С | 4.35848  | -3.36861 | 0.53175  |
| Н | 4.6893   | -4.22186 | -0.07308 |
| С | -2.53883 | -1.03666 | -2.79867 |
| Н | -3.31242 | -1.47466 | -3.464   |
| С | 5.65234  | 1.53127  | -2.36528 |
| Н | 5.86597  | 2.55123  | -1.99786 |
| Н | 4.99648  | 1.63109  | -3.24741 |
| Н | 6.61571  | 1.11186  | -2.723   |
| С | 3.17354  | -2.48698 | -1.52811 |
| Н | 2.90115  | -1.47801 | -1.87303 |
| С | 4.25879  | -3.03571 | -2.46598 |
| Н | 5.20344  | -2.46871 | -2.37554 |
| Н | 3.92458  | -2.97298 | -3.5189  |
| Н | 4.48819  | -4.09899 | -2.26388 |
| С | 1.66904  | -0.7006  | 3.79158  |
| Н | 0.93456  | -1.1475  | 3.1015   |
| Н | 1.15608  | 0.09905  | 4.35894  |
| Н | 1.98155  | -1.48395 | 4.50871  |
| С | -6.16414 | -0.34716 | -0.3157  |
| Н | -7.06051 | 0.2975   | -0.42342 |
| Н | -5.75754 | -0.1712  | 0.69422  |
| Н | -6.51534 | -1.39558 | -0.35927 |
| С | -1.31761 | -1.97127 | -2.84981 |
| Н | -0.84995 | -1.95462 | -3.85587 |
| Н | -1.57916 | -3.02037 | -2.63319 |
| Н | -0.54477 | -1.66495 | -2.12768 |
| С | 6.05283  | 0.35226  | -0.15804 |
| Н | 6.96941  | -0.12271 | -0.56489 |
| Н | 5.64967  | -0.32511 | 0.61298  |
| Н | 6.37237  | 1.28071  | 0.35045  |
| С | 4.6754   | -3.33308 | 1.89547  |
| Н | 5.26668  | -4.13819 | 2.35032  |
| С | 4.61796  | 3.701    | 0.37801  |
| Н | 4.28776  | 4.30977  | -0.48263 |
| Н | 5.62433  | 3.3165   | 0.13884  |

| Н  | 4.73475  | 4.39795  | 1.23423  |
|----|----------|----------|----------|
| С  | 1.89399  | -3.34285 | -1.60015 |
| Н  | 2.09451  | -4.37863 | -1.26477 |
| Н  | 1.49983  | -3.38683 | -2.63296 |
| Н  | 1.10773  | -2.92433 | -0.94937 |
| С  | 2.28875  | 3.15951  | 1.21548  |
| Н  | 2.42598  | 3.76482  | 2.13482  |
| Н  | 1.54944  | 2.37245  | 1.44487  |
| Н  | 1.82793  | 3.82141  | 0.45959  |
| С  | 1.98215  | 0.89108  | -3.12108 |
| Н  | 1.24983  | 1.27013  | -3.86232 |
| Н  | 1.59143  | -0.0685  | -2.74443 |
| Н  | 2.92023  | 0.6813   | -3.66987 |
| С  | -2.24037 | -1.12285 | 3.46937  |
| Н  | -1.39035 | -0.76131 | 2.86827  |
| Н  | -2.04882 | -2.1813  | 3.73024  |
| Н  | -2.26358 | -0.53565 | 4.40724  |
| С  | -1.27927 | 3.42632  | -0.37885 |
| Н  | -1.3957  | 4.34217  | 0.23209  |
| Н  | -0.75852 | 3.7046   | -1.31485 |
| Н  | -0.63394 | 2.72763  | 0.17736  |
| С  | -3.54297 | 3.71548  | -1.49503 |
| Н  | -3.71809 | 4.68075  | -0.98294 |
| Н  | -4.53075 | 3.26098  | -1.69484 |
| Н  | -3.0732  | 3.94685  | -2.46982 |
| С  | 2.52903  | 3.29737  | -2.52496 |
| Н  | 3.51374  | 3.335    | -3.02508 |
| Н  | 2.53267  | 4.0647   | -1.73249 |
| Н  | 1.77624  | 3.61539  | -3.27562 |
| Be | 0.88021  | -0.16733 | 0.1675   |
| Be | -0.95822 | -0.11996 | 0.18677  |
| Н  | -0.0683  | 0.63529  | 1.12134  |
| Н  | -0.02771 | 0.25852  | -0.93432 |
| Н  | -0.02791 | -1.34137 | 0.41688  |

 Table 4. The B97D3(def2-TZVP//def2-SVP) Cartesian coordinates for anion 2 with the SMD-THF model.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 3.35775      | 1.20229      | -0.60426     |
| Si   | -3.49229     | -0.98851     | -1.06896     |
| Ν    | -2.58092     | -0.05548     | 0.08177      |
| Ν    | 2.49376      | -0.15296     | 0.0768       |
| С    | 3.16748      | -1.22806     | 0.71013      |
| С    | -3.71561     | 0.60739      | 2.18748      |
| С    | -3.17051     | 0.9414       | 0.90458      |
| С    | 3.62563      | 2.55742      | 0.72747      |

| Н | 4.04616  | 1.98285  | 1.57557  |
|---|----------|----------|----------|
| С | 3.3885   | -1.23319 | 2.12452  |
| С | 3.62225  | -2.35284 | -0.05388 |
| С | -3.20137 | 2.31115  | 0.48899  |
| С | -2.63025 | -3.45908 | 0.21894  |
| Н | -2.93234 | -4.38808 | 0.74486  |
| Н | -2.11886 | -2.81198 | 0.95138  |
| Н | -1.87507 | -3.74481 | -0.53387 |
| С | -5.17615 | -0.10699 | -1.35806 |
| Н | -4.91631 | 0.9676   | -1.29776 |
| С | -3.60313 | -0.81839 | 2.7111   |
| Н | -3.5849  | -1.47004 | 1.82718  |
| С | -3.84425 | -2.76289 | -0.42046 |
| Н | -4.58214 | -2.59938 | 0.3911   |
| С | 4.11412  | -2.28408 | 2.71699  |
| Н | 4.28493  | -2.27198 | 3.80107  |
| С | -4.29282 | 1.61111  | 2.98652  |
| Н | -4.70694 | 1.34668  | 3.96673  |
| С | -3.79106 | 3.28326  | 1.31959  |
| Н | -3.80851 | 4.32958  | 0.98841  |
| С | 3.79928  | 0.50051  | 3.96231  |
| Н | 3.34511  | 1.36764  | 4.47803  |
| Н | 4.69275  | 0.85923  | 3.4196   |
| Н | 4.14434  | -0.20274 | 4.74365  |
| С | 2.24056  | 1.88377  | -1.99774 |
| Н | 1.25786  | 1.96823  | -1.49425 |
| С | -5.82471 | -0.34079 | -2.73305 |
| Н | -6.09061 | -1.40268 | -2.89105 |
| Н | -5.16972 | -0.03958 | -3.56881 |
| Н | -6.7645  | 0.24107  | -2.83071 |
| С | -2.5442  | 2.74334  | -0.8149  |
| Н | -2.2919  | 1.81646  | -1.34717 |
| С | 2.78452  | -0.15077 | 3.00974  |
| Н | 2.4056   | 0.6268   | 2.33122  |
| С | -2.27515 | 0.2116   | -3.40878 |
| Н | -1.4217  | 0.67994  | -2.88755 |
| Н | -3.11504 | 0.92746  | -3.38186 |
| Н | -1.97878 | 0.08858  | -4.47063 |
| С | -4.52083 | -3.67074 | -1.46185 |
| Н | -3.85291 | -3.88191 | -2.31751 |
| Н | -5.44446 | -3.22387 | -1.87073 |
| Н | -4.79942 | -4.65132 | -1.02342 |
| С | -4.77245 | -1.26991 | 3.59601  |
| Н | -4.6908  | -2.35218 | 3.80975  |
| Н | -5.74711 | -1.09495 | 3.10455  |
| Н | -4.78796 | -0.74944 | 4.57195  |
| С | -4.34441 | 2.94509  | 2.55959  |
| Н | -4.8032  | 3.71437  | 3.19395  |
|   |          |          |          |

| С | 5.06693  | 0.61543  | -1.24301 |
|---|----------|----------|----------|
| Н | 4.84869  | -0.35082 | -1.73195 |
| С | 4.34676  | -3.37946 | 0.57845  |
| Н | 4.70066  | -4.23125 | -0.01511 |
| С | -2.6212  | -1.14486 | -2.77053 |
| Н | -3.40779 | -1.61567 | -3.39655 |
| С | 5.70732  | 1.51637  | -2.31311 |
| Н | 5.91468  | 2.53384  | -1.93597 |
| Н | 5.06763  | 1.62066  | -3.20641 |
| Н | 6.67652  | 1.09664  | -2.65392 |
| С | 3.24398  | -2.48939 | -1.52404 |
| Н | 3.00775  | -1.47593 | -1.88123 |
| С | 4.35674  | -3.06155 | -2.41391 |
| Н | 5.30653  | -2.51073 | -2.285   |
| Н | 4.06754  | -2.99496 | -3.47964 |
| Н | 4.5568   | -4.12805 | -2.19934 |
| С | 1.57129  | -0.70606 | 3.77917  |
| Н | 0.84876  | -1.16971 | 3.08687  |
| Н | 1.04573  | 0.09856  | 4.32761  |
| Н | 1.87867  | -1.47532 | 4.51346  |
| С | -6.19089 | -0.38213 | -0.23436 |
| Н | -7.09206 | 0.25534  | -0.34393 |
| Н | -5.76923 | -0.18052 | 0.76448  |
| Н | -6.53736 | -1.43278 | -0.24558 |
| С | -1.39402 | -2.07125 | -2.81442 |
| Н | -0.96286 | -2.10836 | -3.8363  |
| Н | -1.63521 | -3.10786 | -2.52603 |
| Н | -0.59882 | -1.71507 | -2.14037 |
| С | 6.06228  | 0.32657  | -0.10349 |
| Н | 6.98172  | -0.15797 | -0.49189 |
| Н | 5.63862  | -0.34328 | 0.6636   |
| Н | 6.38026  | 1.25418  | 0.40712  |
| С | 4.61414  | -3.34581 | 1.95373  |
| Н | 5.18852  | -4.15161 | 2.42852  |
| С | 4.63481  | 3.67351  | 0.40638  |
| Н | 4.3248   | 4.28142  | -0.46235 |
| Н | 5.64284  | 3.28139  | 0.18861  |
| Н | 4.73776  | 4.37115  | 1.26365  |
| С | 1.95101  | -3.31754 | -1.65173 |
| Н | 2.1164   | -4.35912 | -1.31515 |
| Н | 1.59821  | -3.34845 | -2.69991 |
| Н | 1.14759  | -2.88612 | -1.03102 |
| С | 2.287    | 3.15283  | 1.19721  |
| Н | 2.40975  | 3.74849  | 2.1248   |
| Н | 1.53074  | 2.37513  | 1.40088  |
| Н | 1.85747  | 3.82807  | 0.4347   |
| С | 2.05685  | 0.87897  | -3.1469  |
| Н | 1.33127  | 1.25541  | -3.89654 |

| Н  | 1.67281  | -0.08868 | -2.78259 |
|----|----------|----------|----------|
| Н  | 3.00521  | 0.68345  | -3.68266 |
| С  | -2.2531  | -1.0099  | 3.4271   |
| Н  | -1.4168  | -0.73736 | 2.7629   |
| Н  | -2.11116 | -2.06137 | 3.74145  |
| Н  | -2.18986 | -0.37081 | 4.32851  |
| С  | -1.22012 | 3.48019  | -0.54034 |
| Н  | -1.39318 | 4.43904  | -0.01494 |
| Н  | -0.68796 | 3.7028   | -1.48453 |
| Н  | -0.556   | 2.86427  | 0.08728  |
| С  | -3.46515 | 3.57282  | -1.72276 |
| Н  | -3.71122 | 4.55598  | -1.27863 |
| Н  | -4.41752 | 3.04875  | -1.92237 |
| Н  | -2.97563 | 3.76708  | -2.69583 |
| С  | 2.58637  | 3.28385  | -2.52997 |
| Н  | 3.57905  | 3.32096  | -3.01385 |
| Н  | 2.57939  | 4.046    | -1.7326  |
| Н  | 1.84613  | 3.6064   | -3.291   |
| Be | 0.88134  | -0.16885 | 0.13317  |
| Be | -0.96754 | -0.12986 | 0.15041  |
| Н  | -0.07767 | 0.64451  | 1.07116  |
| Н  | -0.03229 | 0.22964  | -0.97913 |
| Н  | -0.02946 | -1.34314 | 0.4015   |

 Table 5. The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for anion 2 in the gas phase.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 3.30891      | 1.18868      | -0.62053     |
| Si   | -3.38781     | -0.98124     | -1.08386     |
| Ν    | -2.5571      | -0.04464     | 0.10418      |
| Ν    | 2.44395      | -0.13011     | 0.09578      |
| С    | 3.10464      | -1.20231     | 0.74844      |
| С    | -3.74254     | 0.60384      | 2.17813      |
| С    | -3.17497     | 0.94487      | 0.9133       |
| С    | 3.59007      | 2.58101      | 0.6641       |
| Н    | 4.01174      | 2.0343       | 1.52575      |
| С    | 3.34401      | -1.17442     | 2.15323      |
| С    | 3.51942      | -2.35379     | 0.01376      |
| С    | -3.20348     | 2.30954      | 0.50406      |
| С    | -2.47371     | -3.41524     | 0.21636      |
| Н    | -2.75368     | -4.36019     | 0.71804      |
| Н    | -2.0291      | -2.74822     | 0.96852      |
| Н    | -1.67256     | -3.65316     | -0.49944     |
| С    | -5.09443     | -0.16399     | -1.41636     |
| Н    | -4.87485     | 0.9159       | -1.34242     |
| С    | -3.63678     | -0.82418     | 2.69627      |
| Н    | -3.66527     | -1.48028     | 1.81993      |

| С | -3.69043 | -2.7745  | -0.47331 |
|---|----------|----------|----------|
| Н | -4.46733 | -2.65195 | 0.30391  |
| С | 4.05804  | -2.21739 | 2.76008  |
| Н | 4.24139  | -2.18141 | 3.83789  |
| С | -4.33923 | 1.5983   | 2.96387  |
| Н | -4.77397 | 1.3319   | 3.93004  |
| С | -3.8088  | 3.27218  | 1.32436  |
| Н | -3.81883 | 4.31708  | 1.00033  |
| С | 3.7922   | 0.58391  | 3.95512  |
| Н | 3.35061  | 1.454    | 4.46936  |
| н | 4.67652  | 0.93034  | 3.39676  |
| Н | 4.14391  | -0.11393 | 4.73381  |
| С | 2.20714  | 1.85226  | -2.02997 |
| Н | 1.23578  | 1.98298  | -1.52279 |
| С | -5.70053 | -0.41377 | -2.807   |
| н | -5.91851 | -1.48191 | -2.97505 |
| н | -5.0397  | -0.08471 | -3.62302 |
| н | -6.65765 | 0.12857  | -2.92294 |
| С | -2.52009 | 2.75066  | -0.78206 |
| H | -2.26098 | 1.83591  | -1.32226 |
| С | 2.76115  | -0.06925 | 3.02346  |
| H | 2.38185  | 0.70245  | 2.34486  |
| С | -2.16052 | 0.27676  | -3.39128 |
| H | -1.33133 | 0.76206  | -2.85455 |
| н | -3.01812 | 0.96758  | -3.37471 |
| Н | -1.84389 | 0.16479  | -4.44459 |
| С | -4.27793 | -3.70788 | -1.54438 |
| H | -3.57189 | -3.86966 | -2.3757  |
| н | -5.20885 | -3.31064 | -1.97969 |
| н | -4.51255 | -4.70402 | -1.12457 |
| С | -4.78399 | -1.25382 | 3.61875  |
| н | -4.71376 | -2.33352 | 3.83148  |
| н | -5.76694 | -1.05897 | 3,15986  |
| н | -4.75619 | -0.73228 | 4.59023  |
| С | -4.38451 | 2.92862  | 2.54486  |
| н | -4.85576 | 3.69107  | 3.17196  |
| С | 5.01217  | 0.57356  | -1.24386 |
| H | 4.78659  | -0.40842 | -1.6899  |
| С | 4.23439  | -3.37021 | 0.66074  |
| H | 4.55737  | -4.24435 | 0.089    |
| С | -2.47374 | -1.0917  | -2.76275 |
| H | -3.22625 | -1.58986 | -3.40436 |
| С | 5.65032  | 1.42847  | -2.35122 |
| Н | 5.85213  | 2,45976  | -2.01922 |
| н | 5.01126  | 1.49298  | -3.24484 |
| Н | 6.6182   | 0.99905  | -2.6718  |
| С | 3.09498  | -2.54269 | -1.43722 |
| н | 2.82637  | -1.55212 | -1.8228  |
|   |          |          | -        |

| С                  | 4.1887             | -3.12042 | -2.34593 |
|--------------------|--------------------|----------|----------|
| Н                  | 5.12133            | -2.53738 | -2.28018 |
| Н                  | 3.85448            | -3.11367 | -3.39695 |
| Н                  | 4.43058            | -4.1658  | -2.09054 |
| С                  | 1.5491             | -0.59585 | 3.81069  |
| Н                  | 0.79823            | -1.01506 | 3.12592  |
| Н                  | 1.06632            | 0.21501  | 4.38191  |
| Н                  | 1.84796            | -1.38694 | 4.51976  |
| С                  | -6.12974           | -0.48277 | -0.32373 |
| H                  | -7.0497            | 0.11502  | -0.46086 |
| н                  | -5.74908           | -0.26633 | 0.68507  |
| Н                  | -6.4294            | -1.54463 | -0.35002 |
| С                  | -1 20951           | -1 96657 | -2 78518 |
| H                  | -0 76928           | -1 99464 | -3 79929 |
| Н                  | -1 40816           | -3 00616 | -2 48812 |
| н                  | -0 44167           | -1 57217 | -2 10621 |
| C                  | 6.01463            | 0 32338  | -0 10178 |
| н                  | 6 94142            | -0 14215 | -0.48606 |
| н                  | 5 608/1            | -0.14213 | -0.40000 |
| н                  | 6 30996            | 1 26264  | 0.30//0  |
| C                  | 0.50990<br>1 52673 | -3 30309 | 2 02205  |
| н                  | 5 0023             | -0.00009 | 2.02233  |
| C C                | 1 50750            | 3 68607  | 0 3086   |
| С<br>Ц             | 4.59759            | 1 26570  | 0.5080   |
| Ц                  | 5 60206            | 4.20379  | -0.07001 |
| Ц                  | 1 70083            | 3.20923  | 1 1/191  |
| $\hat{\mathbf{C}}$ | 4.70003            | 4.40701  | 1.14101  |
| С<br>Ц             | 1.02000            | -3.40447 | -1.49204 |
|                    | 2.02303            | -4.42204 | -1.11023 |
|                    | 1.43927            | -3.40339 | -2.52440 |
|                    | 1.02024            | -2.90430 | -0.00991 |
|                    | 2.20081            | 3.18744  | 1.1158   |
|                    | 2.37797            | 3.83252  | 2.0045   |
|                    | 1.50705            | 2.41581  | 1.36728  |
|                    | 1.8054             | 3.81217  | 0.32454  |
|                    | 1.97693            | 0.8059   | -3.13159 |
| н                  | 1.27144            | 1.18069  | -3.89547 |
| н                  | 1.54184            | -0.1151  | -2.71864 |
| Н                  | 2.91138            | 0.53571  | -3.6534  |
| C                  | -2.27233           | -1.04819 | 3.37018  |
| H                  | -1.45091           | -0.78828 | 2.68868  |
| H                  | -2.14573           | -2.10173 | 3.67212  |
| Н                  | -2.17339           | -0.41701 | 4.26945  |
| С                  | -1.19598           | 3.4701   | -0.4769  |
| Н                  | -1.36747           | 4.408    | 0.07871  |
| Н                  | -0.65773           | 3.71681  | -1.40807 |
| Н                  | -0.54338           | 2.8271   | 0.12886  |
| С                  | -3.41901           | 3.5922   | -1.69836 |
| Н                  | -3.67481           | 4.56634  | -1.24802 |

| Н  | -4.36333 | 3.07112  | -1.92391 |
|----|----------|----------|----------|
| Н  | -2.90783 | 3.79665  | -2.65423 |
| С  | 2.58451  | 3.21867  | -2.62305 |
| Н  | 3.57258  | 3.21399  | -3.11056 |
| Н  | 2.59925  | 4.01126  | -1.86041 |
| Н  | 1.84881  | 3.52437  | -3.39001 |
| Be | 0.84355  | -0.13373 | 0.163    |
| Be | -0.95517 | -0.0895  | 0.19622  |
| Н  | -0.08444 | 0.60356  | 1.16345  |
| Н  | -0.04266 | 0.3674   | -0.8945  |
| Н  | -0.05434 | -1.30284 | 0.33353  |

**Table 6.** The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for anion 2 with the SMD-Benzene model.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 3.31998      | 1.18391      | -0.61257     |
| Si   | -3.40846     | -0.96221     | -1.09608     |
| Ν    | -2.56269     | -0.04267     | 0.10039      |
| Ν    | 2.44566      | -0.14974     | 0.07981      |
| С    | 3.07887      | -1.23171     | 0.74279      |
| С    | -3.7159      | 0.63371      | 2.18432      |
| С    | -3.14681     | 0.96008      | 0.91787      |
| С    | 3.5957       | 2.54414      | 0.70962      |
| Н    | 4.03488      | 1.9792       | 1.55168      |
| С    | 3.29417      | -1.22368     | 2.15456      |
| С    | 3.51651      | -2.36831     | 0.00089      |
| С    | -3.10955     | 2.33236      | 0.52443      |
| С    | -2.51764     | -3.43324     | 0.16772      |
| Н    | -2.816       | -4.37435     | 0.66682      |
| Н    | -2.04944     | -2.78468     | 0.92534      |
| Н    | -1.72956     | -3.68957     | -0.55695     |
| С    | -5.10786     | -0.12702     | -1.41085     |
| Н    | -4.88141     | 0.94849      | -1.3014      |
| С    | -3.68025     | -0.80874     | 2.67987      |
| Н    | -3.80441     | -1.44782     | 1.79804      |
| С    | -3.7244      | -2.7587      | -0.50408     |
| Н    | -4.49345     | -2.63817     | 0.28003      |
| С    | 4.02014      | -2.26465     | 2.75435      |
| Н    | 4.18808      | -2.24487     | 3.83496      |
| С    | -4.25584     | 1.64966      | 2.98554      |
| Н    | -4.6981      | 1.39646      | 3.95126      |
| С    | -3.6503      | 3.31692      | 1.36423      |
| Н    | -3.61088     | 4.36497      | 1.05191      |
| С    | 3.67896      | 0.48773      | 4.01992      |
| Н    | 3.21777      | 1.34378      | 4.54115      |
| Н    | 4.58129      | 0.85285      | 3.50307      |
| Н    | 4.00885      | -0.22584     | 4.79379      |

| С | 2.20946  | 1.88972  | -2.00183 |
|---|----------|----------|----------|
| Н | 1.24778  | 2.05338  | -1.4762  |
| С | -5.7103  | -0.33032 | -2.80994 |
| Н | -5.93121 | -1.39104 | -3.01756 |
| Н | -5.04829 | 0.02594  | -3.61396 |
| Н | -6.6656  | 0.21784  | -2.91237 |
| С | -2.43514 | 2.7489   | -0.7755  |
| Н | -2.235   | 1.82465  | -1.32083 |
| С | 2.6811   | -0.14614 | 3.04028  |
| Н | 2.31235  | 0.63888  | 2.37333  |
| С | -2.16287 | 0.3012   | -3.39692 |
| Н | -1.31532 | 0.76589  | -2.8694  |
| Н | -3.00471 | 1.0114   | -3.36748 |
| Н | -1.85848 | 0.19369  | -4.45485 |
| С | -4.33123 | -3.66199 | -1.58926 |
| Н | -3.63263 | -3.824   | -2.42786 |
| Н | -5.25711 | -3.24178 | -2.01402 |
| Н | -4.58424 | -4.66183 | -1.18925 |
| С | -4.80087 | -1.17724 | 3.6605   |
| Н | -4.79478 | -2.26331 | 3.85155  |
| Н | -5.79469 | -0.90984 | 3.26559  |
| Н | -4.68327 | -0.68006 | 4.63749  |
| С | -4.23338 | 2.98687  | 2.58539  |
| Н | -4.65921 | 3.76395  | 3.22677  |
| С | 5.01882  | 0.58138  | -1.26392 |
| Н | 4.79422  | -0.39475 | -1.72035 |
| С | 4.25183  | -3.37631 | 0.6378   |
| Н | 4.59637  | -4.23716 | 0.05929  |
| С | -2.49941 | -1.0668  | -2.78026 |
| Н | -3.26131 | -1.54388 | -3.42724 |
| С | 5.63984  | 1.45125  | -2.36885 |
| Н | 5.84885  | 2.47836  | -2.02973 |
| Н | 4.99151  | 1.52474  | -3.25473 |
| Н | 6.60302  | 1.02615  | -2.70926 |
| С | 3.08099  | -2.5476  | -1.44942 |
| Н | 2.79743  | -1.55854 | -1.82807 |
| С | 4.16492  | -3.11437 | -2.37569 |
| Н | 5.10344  | -2.54087 | -2.30717 |
| Н | 3.8246   | -3.08237 | -3.42444 |
| Н | 4.4011   | -4.1673  | -2.14739 |
| С | 1.45884  | -0.70651 | 3.78448  |
| Н | 0.73395  | -1.13282 | 3.07688  |
| Н | 0.94368  | 0.08674  | 4.35284  |
| Н | 1.7512   | -1.50013 | 4.49327  |
| С | -6.15005 | -0.4733  | -0.33351 |
| Н | -7.05899 | 0.14667  | -0.44371 |
| Н | -5.76939 | -0.30731 | 0.68501  |
| Н | -6.47162 | -1.52693 | -0.40211 |

| С  | -1.24957 | -1.96313 | -2.81103 |
|----|----------|----------|----------|
| Н  | -0.77658 | -1.94833 | -3.81035 |
| Н  | -1.47374 | -3.01323 | -2.57528 |
| Н  | -0.50064 | -1.62027 | -2.08729 |
| С  | 6.04192  | 0.33598  | -0.13961 |
| Н  | 6.95587  | -0.14493 | -0.5358  |
| Н  | 5.65055  | -0.31652 | 0.65458  |
| Н  | 6.35998  | 1.27848  | 0.33713  |
| С  | 4.52692  | -3.32432 | 2.00495  |
| Н  | 5.10372  | -4.11925 | 2.48638  |
| С  | 4.58784  | 3.66722  | 0.3692   |
| Н  | 4.25973  | 4.2719   | -0.49158 |
| Н  | 5.59208  | 3.28483  | 0.13339  |
| Н  | 4.70255  | 4.3637   | 1.22126  |
| С  | 1.80837  | -3.41402 | -1.48603 |
| Н  | 2.02645  | -4.44134 | -1.14752 |
| Н  | 1.38919  | -3.47239 | -2.50651 |
| Н  | 1.03799  | -2.9942  | -0.82075 |
| С  | 2.25114  | 3.13466  | 1.19348  |
| Н  | 2.38689  | 3.7752   | 2.08402  |
| Н  | 1.52124  | 2.35253  | 1.45326  |
| Н  | 1.78482  | 3.75992  | 0.41296  |
| С  | 1.93054  | 0.85671  | -3.10351 |
| Н  | 1.221    | 1.25306  | -3.85298 |
| Н  | 1.479    | -0.05602 | -2.68732 |
| Н  | 2.84612  | 0.56362  | -3.64614 |
| С  | -2.30319 | -1.13366 | 3.27805  |
| Н  | -1.49807 | -0.92977 | 2.55955  |
| Н  | -2.23447 | -2.19447 | 3.5737   |
| Н  | -2.11066 | -0.51771 | 4.17338  |
| С  | -1.06742 | 3.39422  | -0.50403 |
| Н  | -1.16521 | 4.34212  | 0.05276  |
| Н  | -0.53729 | 3.61122  | -1.44784 |
| Н  | -0.43794 | 2.71559  | 0.09054  |
| С  | -3.31668 | 3.63436  | -1.66529 |
| Н  | -3.50964 | 4.62022  | -1.20928 |
| Н  | -4.29467 | 3.16364  | -1.85944 |
| Н  | -2.82929 | 3.81341  | -2.63868 |
| С  | 2.61889  | 3.25072  | -2.58439 |
| Н  | 3.59993  | 3.22751  | -3.08323 |
| Н  | 2.66145  | 4.03624  | -1.81426 |
| Н  | 1.88491  | 3.58684  | -3.34039 |
| Be | 0.84738  | -0.14371 | 0.14075  |
| Be | -0.96009 | -0.09762 | 0.18369  |
| Н  | -0.08042 | 0.53609  | 1.1845   |
| Н  | -0.04777 | 0.42669  | -0.8803  |
| Н  | -0.05215 | -1.31658 | 0.23783  |

 Table 7. The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for anion 2 with the SMD-THF model.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 3.33218      | 1.19152      | -0.60799     |
| Si   | -3.41863     | -0.9828      | -1.08524     |
| Ν    | -2.56117     | -0.04868     | 0.09557      |
| Ν    | 2.45345      | -0.13708     | 0.08979      |
| С    | 3.10457      | -1.21631     | 0.74152      |
| С    | -3.72965     | 0.61905      | 2.17627      |
| С    | -3.16113     | 0.95061      | 0.90739      |
| С    | 3.60255      | 2.5646       | 0.69723      |
| Н    | 4.0137       | 2.00608      | 1.55685      |
| С    | 3.3135       | -1.20692     | 2.15294      |
| С    | 3.53888      | -2.3581      | -0.00023     |
| С    | -3.16884     | 2.31751      | 0.49835      |
| С    | -2.51802     | -3.4282      | 0.21155      |
| Н    | -2.80557     | -4.37397     | 0.70773      |
| Н    | -2.06802     | -2.77484     | 0.9732       |
| Н    | -1.72046     | -3.67227     | -0.50708     |
| С    | -5.1184      | -0.15112     | -1.39985     |
| Н    | -4.89465     | 0.92694      | -1.31218     |
| С    | -3.65954     | -0.8131      | 2.69185      |
| Н    | -3.7226      | -1.46672     | 1.81521      |
| С    | -3.72894     | -2.772       | -0.47201     |
| Н    | -4.50231     | -2.64572     | 0.30783      |
| С    | 4.01358      | -2.25916     | 2.76268      |
| Н    | 4.17462      | -2.23717     | 3.8444       |
| С    | -4.30193     | 1.62542      | 2.96726      |
| Н    | -4.73705     | 1.36771      | 3.93559      |
| С    | -3.75131     | 3.29171      | 1.32388      |
| Н    | -3.74771     | 4.33648      | 0.99928      |
| С    | 3.73867      | 0.53303      | 3.98014      |
| Н    | 3.29234      | 1.40255      | 4.49167      |
| Н    | 4.63548      | 0.88141      | 3.44274      |
| Н    | 4.07245      | -0.1703      | 4.76163      |
| С    | 2.23124      | 1.86672      | -2.01217     |
| Н    | 1.26064      | 1.99448      | -1.50239     |
| С    | -5.72993     | -0.37688     | -2.79216     |
| Н    | -5.95693     | -1.44036     | -2.97678     |
| Н    | -5.07218     | -0.03742     | -3.60677     |
| Н    | -6.68342     | 0.17393      | -2.89672     |
| С    | -2.49975     | 2.75138      | -0.79867     |
| Н    | -2.23127     | 1.83334      | -1.32857     |
| С    | 2.72117      | -0.10818     | 3.02624      |
| Н    | 2.35518      | 0.67117      | 2.3492       |
| С    | -2.19666     | 0.26572      | -3.40372     |
| Н    | -1.35318     | 0.74854      | -2.88608     |

| Н      | -3.04671 | 0.96515  | -3.37556 |
|--------|----------|----------|----------|
| Н      | -1.90052 | 0.14994  | -4.46278 |
| С      | -4.32732 | -3.69719 | -1.54402 |
| Н      | -3.62091 | -3.87721 | -2.37155 |
| Н      | -5.24936 | -3.28669 | -1.98585 |
| Н      | -4.58325 | -4.68728 | -1.12241 |
| С      | -4.80202 | -1.20942 | 3.63389  |
| Н      | -4.76283 | -2.29219 | 3.83943  |
| Н      | -5.78843 | -0.98449 | 3.19598  |
| Н      | -4.74075 | -0.69561 | 4.6077   |
| С      | -4.32348 | 2.95806  | 2.54983  |
| Н      | -4.77605 | 3.7286   | 3,18074  |
| С      | 5.03586  | 0.5835   | -1.22973 |
| Н      | 4.8169   | -0.39265 | -1.69113 |
| С      | 4.23871  | -3.38442 | 0.65042  |
| Н      | 4.57826  | -4.24999 | 0.07545  |
| С      | -2 51286 | -1 09816 | -2 76779 |
| H      | -3 27246 | -1 59202 | -3 40364 |
| C      | 5 67747  | 1 45402  | -2 32288 |
| Н      | 5 87985  | 2 4808   | -1 97776 |
| н      | 5 04442  | 1 52859  | -3 22019 |
| н      | 6 64631  | 1.02000  | -2 64535 |
| C      | 3 16299  | -2 52412 | -1 46839 |
| н      | 2 92219  | -1 52500 | -1.8525  |
| C      | 1 27882  | -3 109/1 | -2 3/386 |
| н      | 4.27002  | -2 55125 | -2.34300 |
| н      | 3 08875  | 3 07164  | 3 40738  |
| н      | 1 48502  | -3.07104 | -3.40730 |
| C      | 4.40392  | -4.10300 | -2.10392 |
| с<br>ц | 0.7624   | -0.03097 | 2 10212  |
| н<br>Ц | 0.7024   | -1.07427 | 3.10313  |
|        | 0.99032  | 0.17194  | 4.33071  |
| п<br>С | 1.70091  | -1.42001 | 4.51634  |
| с<br>u | -0.15559 | -0.40340 | -0.31122 |
|        | -7.06113 | 0.13815  | -0.42124 |
|        | -5.76571 | -0.313   | 0.70421  |
|        | -0.478   | -1.53654 | -0.3698  |
|        | -1.25625 | -1.98353 | -2.7979  |
|        | -0.81954 | -2.01238 | -3.81387 |
| н      | -1.46263 | -3.02312 | -2.50534 |
| H<br>C | -0.47974 | -1.59959 | -2.12226 |
|        | 6.03558  | 0.32389  | -0.0879  |
| H      | 6.95663  | -0.15419 | -0.47052 |
| Н      | 5.62519  | -0.33858 | 0.68882  |
| H      | 6.34407  | 1.25932  | 0.40729  |
| ι<br>  | 4.49758  | -3.3365  | 2.02135  |
| Н      | 5.0512   | -4.14359 | 2.50989  |
| C      | 4.61661  | 3.67154  | 0.36465  |
| Н      | 4.31384  | 4.26794  | -0.51061 |

| Н  | 5.62185  | 3.27539  | 0.15685  |
|----|----------|----------|----------|
| Н  | 4.71821  | 4.37785  | 1.21031  |
| С  | 1.87968  | -3.36596 | -1.58254 |
| Н  | 2.05249  | -4.39463 | -1.22166 |
| Н  | 1.53432  | -3.42498 | -2.62858 |
| Н  | 1.07021  | -2.92848 | -0.98018 |
| С  | 2.2634   | 3.17385  | 1.14461  |
| Н  | 2.38399  | 3.7956   | 2.05097  |
| Н  | 1.5081   | 2.40539  | 1.37027  |
| Н  | 1.83649  | 3.82404  | 0.3633   |
| С  | 2.00345  | 0.83681  | -3.12983 |
| Н  | 1.29286  | 1.2189   | -3.88589 |
| Н  | 1.58075  | -0.09989 | -2.73742 |
| Н  | 2.9378   | 0.58683  | -3.66173 |
| С  | -2.2924  | -1.07897 | 3.34437  |
| Н  | -1.47307 | -0.84849 | 2.64963  |
| Н  | -2.19421 | -2.13484 | 3.64849  |
| Н  | -2.15754 | -0.45136 | 4.24195  |
| С  | -1.18721 | 3.50097  | -0.51703 |
| Н  | -1.37051 | 4.45207  | 0.01203  |
| Н  | -0.657   | 3.73351  | -1.45641 |
| Н  | -0.51774 | 2.89005  | 0.10451  |
| С  | -3.41924 | 3.56742  | -1.71751 |
| Н  | -3.68616 | 4.54292  | -1.27673 |
| Н  | -4.3577  | 3.03077  | -1.93166 |
| Н  | -2.92005 | 3.76978  | -2.68029 |
| С  | 2.60844  | 3.24009  | -2.58827 |
| Н  | 3.59207  | 3.23864  | -3.0846  |
| Н  | 2.63173  | 4.02356  | -1.81637 |
| Н  | 1.86863  | 3.55966  | -3.34597 |
| Be | 0.85603  | -0.1382  | 0.15067  |
| Ве | -0.96143 | -0.09725 | 0.18023  |
| Н  | -0.09026 | 0.61031  | 1.1439   |
| Н  | -0.03941 | 0.34612  | -0.90937 |
| Н  | -0.04647 | -1.30829 | 0.34337  |

**Table 8.** The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for anion  $[{(XyI)(Me_3Si)NBe}_2H_3]^-$  in the gas phase.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 3.04628      | 1.74873      | -1.15272     |
| Si   | -3.04616     | -1.74843     | -1.15342     |
| Ν    | -2.46374     | -0.44239     | -0.20817     |
| Ν    | 2.46376      | 0.44245      | -0.20786     |
| С    | 3.30277      | -0.42361     | 0.5207       |
| С    | -3.61913     | 0.14665      | 1.87648      |
| С    | -3.30282     | 0.42347      | 0.52053      |
| С    | 2.36266      | 3.40117      | -0.55607     |

| С  | 3.61898  | -0.14711 | 1.87674  |
|----|----------|----------|----------|
| С  | 3.81454  | -1.60472 | -0.07804 |
| С  | -3.81457 | 1.60471  | -0.07798 |
| С  | -4.92913 | -1.80004 | -1.06877 |
| С  | -3.03848 | -1.08064 | 2.52976  |
| С  | -2.36259 | -3.40102 | -0.55713 |
| С  | 4.44982  | -1.02217 | 2.58956  |
| Н  | 4.6872   | -0.79693 | 3.63469  |
| С  | -4.45005 | 1.02154  | 2.58944  |
| Н  | -4.68752 | 0.79605  | 3.63449  |
| С  | -4.64266 | 2.45786  | 0.6643   |
| Н  | -5.032   | 3.36538  | 0.19078  |
| С  | 2.51034  | 1.58542  | -2.95263 |
| С  | -3.44398 | 1.92739  | -1.50273 |
| С  | 3.0383   | 1.08004  | 2.53025  |
| С  | -4.96928 | 2.17198  | 1.99162  |
| Н  | -5.61574 | 2.84722  | 2.56004  |
| С  | 4.92925  | 1.8003   | -1.06788 |
| С  | 4.64255  | -2.45805 | 0.66411  |
| Н  | 5.0319   | -3.36548 | 0.19041  |
| С  | -2.51004 | -1.58465 | -2.95324 |
| С  | 3.44405  | -1.92707 | -1.5029  |
| С  | 4.96907  | -2.17249 | 1.99152  |
| H  | 5.61547  | -2.84788 | 2.55984  |
| Be | 0.88789  | 0.16428  | -0.16168 |
| Be | -0.88788 | -0.16421 | -0.16179 |
| Н  | -0.13995 | 1.03684  | -0.77294 |
| Н  | 0.14003  | -1.03667 | -0.77311 |
| Н  | -0.00005 | -0.00007 | 1.04552  |
| Н  | 5.27086  | 1.92284  | -0.02729 |
| Н  | 5.33654  | 2.63403  | -1.66414 |
| Н  | 5.36716  | 0.86184  | -1.44436 |
| Н  | 1.41446  | 1.47543  | -2.99447 |
| Н  | 2.95166  | 0.69455  | -3.42717 |
| Н  | 2.78987  | 2.47042  | -3.54955 |
| Н  | 2.71386  | 3.64248  | 0.45992  |
| Н  | 1.26236  | 3.34843  | -0.52397 |
| Н  | 2.64773  | 4.23074  | -1.22578 |
| Н  | 2.35145  | -1.88692 | -1.63735 |
| Н  | 3.80775  | -2.92356 | -1.79869 |
| Н  | 3.86367  | -1.1878  | -2.20469 |
| н  | 3.27477  | 1.1153   | 3.60524  |
| Н  | 1.94454  | 1.10566  | 2.40067  |
| н  | 3.42047  | 2.00282  | 2.0643   |
| Н  | -3.80767 | 2.92394  | -1.79832 |
| н  | -3.86354 | 1.18828  | -2.20472 |
| н  | -2.35137 | 1.88729  | -1.63712 |
| н  | -3.27506 | -1.11615 | 3.60471  |
|    |          |          |          |

| Н | -1.94471 | -1.10619 | 2.40028  |
|---|----------|----------|----------|
| Н | -3.42058 | -2.00331 | 2.06355  |
| Н | -1.41416 | -1.47463 | -2.99494 |
| Н | -2.95133 | -0.69367 | -3.42758 |
| Н | -2.7895  | -2.4695  | -3.55041 |
| Н | -5.27084 | -1.92286 | -0.02825 |
| Н | -5.33636 | -2.63361 | -1.6653  |
| Н | -5.36701 | -0.86148 | -1.44504 |
| Н | -2.71389 | -3.6426  | 0.45876  |
| Н | -1.26229 | -3.34828 | -0.5249  |
| Н | -2.64757 | -4.23042 | -1.22708 |

**Table 9.** The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for anion  $[{(XyI)(Me_3Si)NBe}_2H_3]^-$  with the SMD-THF model.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 3.11416      | 1.70983      | -1.19551     |
| Si   | -3.11396     | -1.70951     | -1.19621     |
| Ν    | -2.46808     | -0.43261     | -0.23981     |
| Ν    | 2.4681       | 0.4327       | -0.23954     |
| С    | 3.26437      | -0.44074     | 0.53261      |
| С    | -3.5452      | 0.14345      | 1.8932       |
| С    | -3.26447     | 0.4406       | 0.53248      |
| С    | 2.46711      | 3.38829      | -0.63945     |
| С    | 3.54506      | -0.14389     | 1.89341      |
| С    | 3.76542      | -1.64627     | -0.02818     |
| С    | -3.7656      | 1.64621      | -0.02808     |
| С    | -4.99075     | -1.71532     | -1.08114     |
| С    | -2.99886     | -1.12081     | 2.50367      |
| С    | -2.46701     | -3.3881      | -0.64043     |
| С    | 4.32215      | -1.03141     | 2.65279      |
| Н    | 4.53316      | -0.79189     | 3.69998      |
| С    | -4.3224      | 1.03074      | 2.65273      |
| Н    | -4.53343     | 0.79098      | 3.69987      |
| С    | -4.53927     | 2.51079      | 0.76119      |
| Н    | -4.92112     | 3.43656      | 0.31887      |
| С    | 2.6033       | 1.52287      | -2.99797     |
| С    | -3.45893     | 1.98243      | -1.46479     |
| С    | 2.99881      | 1.12027      | 2.50412      |
| С    | -4.82379     | 2.20991      | 2.09553      |
| Н    | -5.42753     | 2.89341      | 2.69943      |
| С    | 4.99092      | 1.71559      | -1.08009     |
| С    | 4.53897      | -2.51109     | 0.76094      |
| Н    | 4.92075      | -3.4368      | 0.31844      |
| С    | -2.60275     | -1.52209     | -2.99852     |
| С    | 3.4588       | -1.98214     | -1.46498     |
| С    | 4.82346      | -2.21051     | 2.09536      |
| Н    | 5.42711      | -2.8942      | 2.69914      |

| Be | 0.89605  | 0.17535  | -0.21776 |
|----|----------|----------|----------|
| Be | -0.89605 | -0.17519 | -0.21783 |
| Н  | -0.13913 | 1.03723  | -0.82989 |
| Н  | 0.1392   | -1.03707 | -0.82985 |
| Н  | -0.00008 | 0.0001   | 0.98721  |
| Н  | 5.32994  | 1.85879  | -0.04068 |
| Н  | 5.41891  | 2.53162  | -1.68745 |
| Н  | 5.42268  | 0.76736  | -1.44037 |
| Н  | 1.50439  | 1.46279  | -3.07589 |
| Н  | 3.01676  | 0.60411  | -3.44527 |
| Н  | 2.9361   | 2.3796   | -3.60937 |
| Н  | 2.80573  | 3.64129  | 0.37867  |
| Н  | 1.3641   | 3.38814  | -0.63166 |
| Н  | 2.79721  | 4.19512  | -1.31694 |
| Н  | 2.37666  | -1.92189 | -1.66331 |
| Н  | 3.8104   | -2.99182 | -1.727   |
| Н  | 3.93571  | -1.2681  | -2.1563  |
| Н  | 3.21153  | 1.1726   | 3.58286  |
| Н  | 1.90926  | 1.19118  | 2.3547   |
| Н  | 3.42935  | 2.01645  | 2.0286   |
| Н  | -3.81057 | 2.99216  | -1.72658 |
| Н  | -3.93576 | 1.26853  | -2.1563  |
| Н  | -2.37677 | 1.92229  | -1.66307 |
| Н  | -3.21168 | -1.17342 | 3.58237  |
| Н  | -1.90929 | -1.19155 | 2.35434  |
| Н  | -3.42925 | -2.01691 | 2.02788  |
| Н  | -1.50382 | -1.46203 | -3.07622 |
| Н  | -3.0161  | -0.6032  | -3.44566 |
| Н  | -2.93546 | -2.37866 | -3.61021 |
| Н  | -5.32995 | -1.85883 | -0.04183 |
| Н  | -5.41861 | -2.5312  | -1.6888  |
| Н  | -5.42245 | -0.767   | -1.44123 |
| Н  | -2.80582 | -3.64135 | 0.37756  |
| Н  | -1.364   | -3.38795 | -0.63244 |
| Н  | -2.79698 | -4.19477 | -1.31819 |

Table 10. The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for neutral  $\{(XyI)(Me_3Si)NBeH\}_2$  in the gas phase.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | -2.98726     | -2.25056     | 0.00406      |
| Si   | 2.98708      | 2.2505       | 0.00434      |
| Ν    | 2.46424      | 0.54301      | -0.00753     |
| Ν    | -2.46426     | -0.54313     | -0.00752     |
| С    | -3.4299      | 0.51281      | -0.00504     |
| С    | 3.89033      | -1.04929     | 1.22692      |
| С    | 3.42996      | -0.51282     | -0.00508     |
| С    | -2.27059     | -3.11887     | 1.52764      |

| С  | -3.89049 | 1.04908  | 1.22696  |
|----|----------|----------|----------|
| С  | -3.9159  | 1.03225  | -1.23443 |
| С  | 3.91633  | -1.03193 | -1.23446 |
| С  | 4.87303  | 2.29906  | 0.02344  |
| С  | 3.36525  | -0.51129 | 2.53495  |
| С  | 2.26991  | 3.11854  | 1.52784  |
| С  | -4.84251 | 2.08516  | 1.20884  |
| Н  | -5.19946 | 2.49679  | 2.16143  |
| С  | 4.84248  | -2.08525 | 1.20881  |
| н  | 5.19925  | -2.49703 | 2.16141  |
| С  | 4.86799  | -2.06827 | -1.21074 |
| н  | 5.24468  | -2.46683 | -2.16129 |
| С  | -2.2985  | -3.13261 | -1.52437 |
| С  | 3.41928  | -0.4754  | -2.54564 |
| С  | -3.36579 | 0.51078  | 2.53501  |
| С  | 5.33509  | -2.593   | 0.00046  |
| Н  | 6.07755  | -3.39982 | 0.00263  |
| С  | -4.87322 | -2.29901 | 0.02254  |
| С  | -4.86744 | 2.0687   | -1.21073 |
| н  | -5.24385 | 2.46751  | -2.16129 |
| С  | 2.2986   | 3.13263  | -1.52416 |
| С  | -3.41852 | 0.47599  | -2.5456  |
| С  | -5.33477 | 2.59322  | 0.00047  |
| н  | -6.07714 | 3.40013  | 0.00263  |
| Ве | -0.96755 | -0.19912 | -0.0145  |
| Ве | 0.96754  | 0.19888  | -0.01447 |
| Н  | -0.22268 | 1.07174  | -0.01636 |
| н  | 0.22267  | -1.072   | -0.01643 |
| Н  | -5.27606 | -1.78569 | 0.91386  |
| н  | -5.23576 | -3.34347 | 0.0319   |
| Н  | -5.29411 | -1.79539 | -0.86592 |
| Н  | -1.19549 | -3.05277 | -1.55293 |
| Н  | -2.69225 | -2.69929 | -2.46087 |
| н  | -2.5544  | -4.20882 | -1.51034 |
| н  | -2.648   | -2.67742 | 2.4671   |
| н  | -1.16729 | -3.03834 | 1.536    |
| н  | -2.52608 | -4.19526 | 1.52775  |
| н  | -2.31416 | 0.49096  | -2.60169 |
| Н  | -3.81731 | 1.04945  | -3.39892 |
| н  | -3.7163  | -0.58043 | -2.67743 |
| н  | -3.756   | 1.08884  | 3.38918  |
| Н  | -2.26075 | 0.53808  | 2.57305  |
| н  | -3.65004 | -0.54731 | 2.68189  |
| Н  | 3.81806  | -1.04885 | -3.39897 |
| н  | 3.71735  | 0.58097  | -2.67731 |
| н  | 2.31492  | -0.49007 | -2.60189 |
| н  | 3.75537  | -1.08943 | 3.38911  |
| Н  | 2.26022  | -0.53876 | 2.57274  |

| Н | 3.6493   | 0.54682  | 2.68205  |
|---|----------|----------|----------|
| Н | 1.1956   | 3.05264  | -1.55283 |
| Н | 2.69247  | 2.69937  | -2.46064 |
| Н | 2.55436  | 4.20886  | -1.51006 |
| Н | 5.2756   | 1.78564  | 0.91482  |
| Н | 5.23549  | 3.34355  | 0.03309  |
| Н | 5.29427  | 1.79562  | -0.86495 |
| Н | 2.64734  | 2.67712  | 2.46732  |
| Н | 1.16664  | 3.03769  | 1.53605  |
| Н | 2.52509  | 4.195    | 1.52808  |
| Н | -2.79698 | -4.19477 | -1.31819 |

**Table 11.** The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for neutral  $\{(XyI)(Me_3Si)NBeH\}_2$ with the SMD-THF model.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | -2.98021     | 2.23522      | 0.01244      |
| Si   | 2.98024      | -2.23522     | 0.01188      |
| Ν    | 2.45543      | -0.56578     | 0.02202      |
| Ν    | -2.45543     | 0.56576      | 0.02239      |
| С    | -3.38929     | -0.51079     | 0.00243      |
| С    | 3.79545      | 1.07566      | -1.23292     |
| С    | 3.38928      | 0.51079      | 0.00215      |
| С    | -2.27718     | 3.11752      | -1.48806     |
| С    | -3.79557     | -1.07548     | -1.23269     |
| С    | -3.89319     | -1.03991     | 1.21702      |
| С    | 3.89326      | 1.03975      | 1.21678      |
| С    | 4.85032      | -2.30078     | -0.01725     |
| С    | 3.24621      | 0.53387      | -2.52734     |
| С    | 2.27715      | -3.11736     | -1.48868     |
| С    | -4.70963     | -2.13993     | -1.23411     |
| Н    | -5.02309     | -2.57013     | -2.1901      |
| С    | 4.7095       | 2.14012      | -1.23426     |
| Н    | 5.02287      | 2.57046      | -2.19022     |
| С    | 4.80545      | 2.10518      | 1.17593      |
| Н    | 5.19372      | 2.50863      | 2.116        |
| С    | -2.31794     | 3.12337      | 1.52766      |
| С    | 3.44891      | 0.46056      | 2.53495      |
| С    | -3.24641     | -0.53353     | -2.52707     |
| С    | 5.21886      | 2.65411      | -0.03978     |
| Н    | 5.93114      | 3.48358      | -0.05609     |
| С    | -4.8503      | 2.30081      | -0.01659     |
| С    | -4.8054      | -2.10533     | 1.17609      |
| Н    | -5.19361     | -2.50891     | 2.11613      |
| С    | 2.31806      | -3.12356     | 1.52703      |
| С    | -3.44872     | -0.46092     | 2.53525      |
| С    | -5.21892     | -2.65408     | -0.03966     |
| Н    | -5.93121     | -3.48353     | -0.05604     |

| 21453       0.03847         06175       0.0409         06172       0.04087         030363       -0.91158 |
|----------------------------------------------------------------------------------------------------------|
| 061750.0409061720.040870363-0.91158                                                                      |
| 061720.0408730363-0.91158                                                                                |
| -0.91158                                                                                                 |
|                                                                                                          |
| -0.02482                                                                                                 |
| 0.86633                                                                                                  |
| 1.57005                                                                                                  |
| 699982.46208                                                                                             |
| 1.50425                                                                                                  |
| <b>.</b> -2.43089                                                                                        |
| .0341 -1.50437                                                                                           |
| 9218 -1.47324                                                                                            |
| .4366 2.61379                                                                                            |
| 3.38182                                                                                                  |
| 58143 2.65318                                                                                            |
| -3.38803                                                                                                 |
| -2.52682                                                                                                 |
| -2.68936                                                                                                 |
| 3.38158                                                                                                  |
| .5818 2.65271                                                                                            |
| 2.61357                                                                                                  |
| -3.38824                                                                                                 |
| -2.52702                                                                                                 |
| .5121 -2.68979                                                                                           |
| 04455 1.56949                                                                                            |
| 2.46148                                                                                                  |
| 1.50348                                                                                                  |
| .8035 -0.9122                                                                                            |
| -0.02562                                                                                                 |
| 0.86571                                                                                                  |
| <b>-2.43148</b>                                                                                          |
|                                                                                                          |
| -1.50493                                                                                                 |
|                                                                                                          |

**Table 12.** The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for cation [Me<sub>3</sub>Si]<sup>+</sup> in the gas phase.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | -0.00009     | -0.00006     | -0.00038     |
| С    | 1.23567      | -1.34409     | -0.00186     |
| Н    | 1.03456      | -2.03727     | -0.83928     |
| Н    | 1.11802      | -1.94291     | 0.92173      |
| Н    | 2.27123      | -0.98        | -0.06442     |
| С    | -1.78202     | -0.398       | 0.0003       |
| Н    | -2.26134     | 0.06554      | -0.88257     |
| Н    | -2.2627      | 0.06447      | 0.88274      |
| Н    | -1.98434     | -1.47867     | -0.00128     |

| С | 0.54635  | 1.74201 | 0.00159  |
|---|----------|---------|----------|
| Н | 1.14057  | 1.93616 | -0.91175 |
| Н | 1.23238  | 1.91667 | 0.85107  |
| Н | -0.28716 | 2.45742 | 0.04888  |

**Table 13.** The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for neutral  $[Me_3Si]^+$  with the SMD-THF model.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 0.00039      | -0.00019     | 0.00247      |
| С    | -1.19824     | 1.37123      | -0.0031      |
| Н    | -0.97075     | 2.05434      | -0.84176     |
| Н    | -1.06282     | 1.96179      | 0.92347      |
| Н    | -2.2419      | 1.0302       | -0.06815     |
| С    | 1.78697      | 0.35093      | -0.00064     |
| Н    | 2.24734      | -0.1266      | -0.88531     |
| Н    | 2.25443      | -0.12159     | 0.88269      |
| Н    | 2.01052      | 1.42715      | -0.00535     |
| С    | -0.59001     | -1.72238     | 0.00069      |
| Н    | -1.18528     | -1.88817     | -0.9176      |
| Н    | -1.27817     | -1.87809     | 0.85177      |
| Н    | 0.22884      | -2.45503     | 0.04407      |

**Table 14.** The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for neutral Me<sub>3</sub>SiH in the gas phase.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 0.00004      | -0.00004     | 0.37905      |
| С    | -1.27143     | -1.24294     | -0.22223     |
| Н    | -1.30099     | -1.27136     | -1.32454     |
| Н    | -2.28267     | -0.98662     | 0.13295      |
| Н    | -1.03807     | -2.25993     | 0.13237      |
| С    | -0.44085     | 1.72248      | -0.22216     |
| Н    | -0.45147     | 1.76207      | -1.32447     |
| Н    | 0.28699      | 2.47016      | 0.13234      |
| Н    | -1.43802     | 2.02885      | 0.13315      |
| С    | 1.71223      | -0.47948     | -0.22232     |
| Н    | 1.75165      | -0.49048     | -1.32464     |
| Н    | 1.99608      | -1.48347     | 0.13248      |
| Н    | 2.4761       | 0.23118      | 0.13253      |
| Н    | 0.00009      | -0.00011     | 1.87133      |

**Table 15.** The B3LYP(def2-TZVP//def2-SVP) Cartesian coordinates for neutral Me<sub>3</sub>SiH with the SMD-THF model.

| Atom | x-Coordinate | y-Coordinate | z-Coordinate |
|------|--------------|--------------|--------------|
| Si   | 0.0001       | 0.00008      | -0.37532     |

| С | -1.17832 | 1.33067  | 0.22016  |
|---|----------|----------|----------|
| Н | -1.20532 | 1.3607   | 1.32313  |
| Н | -2.20638 | 1.14732  | -0.13497 |
| Н | -0.87213 | 2.32927  | -0.13431 |
| С | -0.56351 | -1.68566 | 0.22012  |
| Н | -0.57683 | -1.72382 | 1.32311  |
| Н | 0.10947  | -2.48453 | -0.13421 |
| Н | -1.58119 | -1.91958 | -0.1352  |
| С | 1.74171  | 0.3549   | 0.22018  |
| Н | 1.78112  | 0.36284  | 1.32314  |
| Н | 2.09735  | 1.33696  | -0.13443 |
| Н | 2.45309  | -0.40983 | -0.13459 |
| Н | 0.00012  | 0.00015  | -1.86998 |
|   |          |          |          |

#### 4. References

- (a) I. C. Cai, M. I. Lipschutz, and T. D. Tilley, *Chem. Commun.*, 2014, **50**, 13062–13065; (b) I. C. Cai, M. S. Ziegler, P. C. Bunting, A. Nicolay, D. S. Levine, V. Kalendra, P. W. Smith, K. V. Lakshmi, and T. D. Tilley, *Organometallics*, 2019, **38**, 1648–1663.
- 2. A. Paparo, and C. Jones, Chem. Asian J., 2019, 14, 486 490.
- M. Muhr, P. Heiß, M. Schütz, R. Bühler, C. Gemel, M. H. Linden, H. B. Linden, and R. A. Fischer, *Dalton Trans.*, 2021, 50, 9031–9036.
- 4. K. Dehnicke, and B. Neumüller, Z. Anorg. Allg. Chem. 2008, 634, 2703.
- 5. D. Naglav, M. R. Buchner, G. Bendt, F. Kraus, and S. Schulz, Angew. Chem. Int. Ed., 2016, 55, 10562.
- 6. G. M. Sheldrick, SHELXL-97, Program for Crystal Strucutre Refinement, Göttingen, 1997.
- 7. G. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, and H. Nakatsuji et al., Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
- a) A. D. Becke, J. Chem. Phys., 1997, 107, 8554-8560; (b) F. Weigend, and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305; (c) J.-D. Chai, and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620; (d) S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 10. P. Erdmann, J. Leitner, J. Schwarz, and L. Greb, ChemPhysChem, 2020, 21, 987 994.
- (a) T. Lu, and F. Chen, *J. Comput. Chem.*, 2012, **33**, 580-592; (b) R. F. W. Bader, Atoms in Molecules: A Quantum Theory; International Series of Monographs in Chemistry, Vol. 2; Oxford University Press: Oxford, U.K., 1990; (c) P. Popelier, Atoms in Molecules: An Introduction; Prentice Hall: Harlow, U.K., 2000; (d) R. F. W. Bader, *J. Phys. Chem. A*, 1998, **102**, 7314.