Supporting Information

Chemoselective Luche-Type Reduction of α , β -unsaturated Ketones

by Organoaluminum Catalysis

Ben Yan, ^a Xiaoli Ma, ^{*a} Ziyuan Pang ^a and Zhi Yang ^{*a}

^a School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China

Table of Contents

General considerations:			
Synthesis of Aluminum Hydrides C1			
a)	Method for preparation of C1	2	
b)	Single Crystal X-ray Structure and Refinement	4	
Genera	al procedure for the Al-catalyzed hydroboration of α,β -unsaturated ketones	5	
Mechanistic control experiment		9	
a)	The study of stoichiometric reaction and 1a	9	
b)	The verification of BH ₃ generation from the reaction of C1 and HBpin.	10	
c)	The study of the effect of BH ₃ on the hydroboration reaction of enone	11	
¹ H and ¹³ C NMR spectra of alcohols		13	
Refences			

General considerations:

All manipulations were carried out under a purified nitrogen atmosphere using Schlenk techniques or inside a Mbraun MB 150-GI glove box. All solvents were refluxed over the appropriate drying agent and distilled prior to use. Commercially available chemicals were purchased from J&K chemical or Aldrich and used as received. ¹H and ¹³C NMR spectra were recorded with a Varian Mercury Plus 400 MHz or Bruker Avance III 600 MHz spectrometer. The elemental analyses were performed by the Analytical Instrumentation Center of the Beijing Institute of Technology. Melting points were measured in sealed glass tubes. Compound **C2** and **C3** were prepared according to the literature procedures.^[1-2] CCDC- 2293553 (C1) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Synthesis of Aluminum Hydrides C1

Scheme S1. Synthesis of Aluminum Hydride Complex C1

a) Method for preparation of C1

A solution of LH (L = PhCOCHC(Me)NHAr, Ar = 2,6- $iPr_2C_6H_3$) (0.321g, 1 mmol) in toluene (10 mL) was added at ice bath to a solution of AlH₃·NMe₃ (0.045 g, 0.5 mmol) in toluene (2 mL) under nitrogen atmosphere, and the reaction mixture was stirred for additional 24 h, concentrated to 5 mL and stored overnight at -25 °C. The crude product was crystallized from toluene to afford colorless crystals of C1 and dried in vacuo. (0.53 g, yield 80% based on LH); m.p. 168~170 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (s, 2H, Ar-*H*), 7.15 (s, 1H, Ar-*H*), 7.04 (dd, J = 8.5, 7.1 Hz, 2H, Ar-*H*), 7.00 – 6.96 (m, 1H, Ar-*H*), 6.94 – 6.86 (m, 2H, Ar-*H*), 5.92 (s, 1H, γ -CH), 3.15 (p, J = 6.9 Hz, 1H, CHMe₂), 3.01 (p, J = 6.8 Hz, 1H, CHMe₂), 1.66 (s, 3H, CH₃), 1.14 – 0.93 (m, 12H, CHMe₂).

¹³C NMR (101 MHz, CDCl₃) δ 187.40, 175.72 (*C*(Ph)OAl), 173.08, 164.10 (MeCNAl), 145.17, 141.75, 139.04, 138.74, 136.05, 132.51, 130.06, 129.72, 128.00, 127.35, 127.20, 126.28, 126.16, 126.08, 124.27, 123.25, 122.58 (Ar-*C*), 96.60, 91.16 (*γ*-*C*H), 27.52, 27.17, 27.03, 26.95 (*C*HMe₂), 25.03, 23.75, 23.60, 23.36, 23.06, 21.68 (*C*H*Me*₂), 21.41, 18.72 (N=C(*C*H₃)).

Elemental analysis (%) for $C_{44}H_{52}AlN_2O_2$: Calcd C 79.13 H 7.85 N 4.19; Found C 79.18 H 7.78 N 4.13

Scheme S2. ¹H (top) and ¹³C NMR (bottom) (CDCl₃, 298 K) of Compound C1

b) Single Crystal X-ray Structure and Refinement

Figure S1. Molecular structure of **C1**. Thermal ellipsoids are drawn at the 50% level and the hydrogen atoms are omitted for clarity except those at the aluminum. Selected bond distances (Å) and angles (deg): Al(1)-O(11) 1.8224(10), Al(1)-O(6) 1.8088(10), Al(1)-N(7) 2.0649(11), Al(1)-N(2)-2.0639(11), Al(1)-H 1.494(16), O(11)-Al(1)-N(7) 87.56(4), O(11)-Al(1)-N(2) 86.52(4), O(11)-Al(1)-H 111.2(6), O(6)-Al(1)-O(11) 135.98(5), O(6)-Al(1)-N(7) 85.55(4), O(6)-Al(1)-N(2) 88.09(4), O(6)-Al(1)-H 112.8(6), N(7)-Al(1)-H 97.6(6), N(2)-Al(1)-N(7) 163.55(5) N(2)-Al(1)-H 98.8(6).

The single crystal of **C1** was mounted with glue on a glass fiber and crystal data were collected on the Rigaku AFC10 Saturn724 + (2 × 2 bin mode) diffractometer equipped with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Empirical absorption correction was applied using the SADABS program.^[3] The structure was solved by direct methods.^[4] and refined by full-matrix least squares on F_2 using the SHELXL-97 program.^[5] The summary of the crystal data was given in Table S1.

Table S1	C1
Empirical formula	C ₄₄ H ₅₂ AlN ₂ O ₂
Formula weight	667.85
Temperature (K)	180.00
Wavelength (Å)	0.71073
Crystal system	monoclinic
Space group	P 21/n
a (Å)	11.3973(4)
b (Å)	8.7653(3)
c (Å)	38.0302(14)
α (°)	90
β (°)	90.076(3)
γ (°)	90

V (Å3)	3799.2(2)
Ζ	4
ρc (g/cm3)	1.168
Absorption coefficient (mm ⁻¹)	0.092
F(000)	1.436
Crystal size(mm3)	0.15×0.1×0.1
θ range for data collection(°)	4.284 to 62.002
Index ranges	$-14 \le h \le 14$
	$-11 \le k \le 9$
	$-45 \le 1 \le 49$
Reflections collected	22199
R (int)	0.0296
Data / restraints / parameters	8834/0/452
Goodness-of-fit on F2	1.082
$R1a, wR2b(I \ge 2\sigma(I))$	0.0451, 0.1210
R1a, wR2b(all data)	0.0624, 0.1303
Largest diff. peak/hole [eÅ ⁻³]	0.70/-0.31

General procedure for the Al-catalyzed hydroboration of α,β -

unsaturated ketones

A nitrogen filled oven-dried 10 mL tube, equipped with a magnetic stir bar, was charged with the corresponding ketones (0.5mmol). The reaction tube was sealed with a septum and dry toluene (0.5 mL, 1M) followed by HBPin (1.2 equiv.) were added. Then catalysis **C1** (5 mol%) was added and the reaction was left stirring at 80 °C. After the 12 hours, the reaction mixture was quenched with MeOH (1 mL) and stirred for 30 min. The solvents were removed under reduced pressure and the crude mixture was purified by flash chromatography (SiO₂, DCM:hexane as eluent system, 50 to 100% DCM in hexane) to afford the pure product.

2a

¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (d, *J* = 7.2 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 2H), 7.18 – 7.11 (m, 1H), 6.47 (d, *J* = 15.9 Hz, 1H), 6.17 (dd, *J* = 15.9, 6.4 Hz, 1H), 4.47 – 4.22 (m, 1H), 1.87 (s, 1H), 1.28 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.68, 132.55, 128.31, 127.55, 126.58, 125.42, 67.85, 22.37.

Spectroscopic data are in agreement with the reported values in the literature.^[6]

¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (s, 4H), 6.41 (dd, *J* = 15.9, 1.3 Hz, 1H), 6.13 (dd, *J* = 15.9, 6.2 Hz, 1H), 4.38 (td, *J* = 6.4, 1.3 Hz, 1H), 1.99 (s, 1H), 1.27 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.25, 134.25, 133.21, 128.74, 128.08, 127.67, 68.72, 23.42.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.00 (t, *J* = 8.1 Hz, 1H), 6.48 (dd, *J* = 16.3, 1.4 Hz, 1H), 6.21 (dd, *J* = 16.3, 5.9 Hz, 1H), 4.47 (pd, *J* = 6.4, 1.4 Hz, 1H), 2.09 – 1.70 (m, 1H), 1.33 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.21, 133.37, 133.24, 127.36, 127.09, 121.61, 67.83, 22.16.

2d

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.34 (m, 2H), 7.33 – 7.27 (m, 4H), 7.23 (tt, *J* = 7.4, 2.2 Hz, 3H), 7.18 – 7.12 (m, 1H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.31 (dd, *J* = 15.9, 6.5 Hz, 1H), 5.31 (d, *J* = 6.5 Hz, 1H), 2.00 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.79, 136.55, 131.54, 130.59, 128.67, 128.60, 127.85, 127.82, 126.64, 126.38, 75.18.

2e

¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (dq, J = 3.6, 2.1 Hz, 2H), 7.26 (t, J = 4.4 Hz, 4H), 7.24 – 7.20 (m, 2H), 7.19 – 7.16 (m, 1H), 6.58 (dd, J = 15.9, 1.2 Hz, 1H), 6.24 (dd, J = 15.8, 6.6 Hz, 1H), 5.27 (d, J = 6.6 Hz, 1H), 2.07 (s, 1H).¹³C NMR (101 MHz, CDCl₃) δ 140.15, 135.23, 132.45, 130.03, 127.74, 127.70, 127.60, 126.96, 126.68, 125.60, 73.45.

2f

¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.28 (m, 4H), 7.23 (t, *J* = 7.4 Hz, 2H), 7.19 – 7.16 (m, 1H), 6.97 (t, *J* = 8.7 Hz, 2H), 6.59 (d, *J* = 15.8 Hz, 1H), 6.27 (dd, *J* = 15.8, 6.5 Hz, 1H), 5.29 (d, *J* = 6.5 Hz, 1H), 2.02 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.58, 161.14, 138.54, 136.37, 131.33, 130.81, 128.64, 128.12, 127.95, 126.64, 115.56, 115.35, 74.51. **2g**

¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.23 (ddd, *J* = 7.8, 6.2, 1.4 Hz, 3H), 7.17 (d, *J* = 9.4 Hz, 2H), 6.85 – 6.79 (m, 2H), 6.60 (dd, *J* = 15.9, 1.3 Hz, 1H), 6.31 (dd, *J* = 15.8, 6.3 Hz, 1H), 5.28 (dd, *J* = 6.8, 2.7 Hz, 1H), 3.73 (d, *J* = 4.0 Hz, 3H), 1.49 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.26, 135.59, 133.99, 130.67, 129.18, 127.54, 126.69, 125.57, 125.28, 113.00, 73.66, 54.30.

2h

¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.26 (m, 4H), 7.24 – 7.15 (m, 5H), 6.55 (dd, J = 15.8, 1.3 Hz, 1H), 6.26 (dd, J = 15.8, 6.3 Hz, 1H), 5.28 (dd, J = 6.3, 1.3 Hz, 1H), 2.16 – 2.00 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.60, 160.15, 141.70, 131.68, 130.24, 128.30, 127.64, 127.14, 127.06, 126.84, 125.29, 114.56, 114.34, 74.02.

2i

¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.31 (m, 2H), 7.31 – 7.27 (m, 2H), 7.27 – 7.21 (m, 3H), 6.90 (t, *J* = 8.7 Hz, 2H), 6.55 (dd, *J* = 15.9, 1.3 Hz, 1H), 6.20 (dd, *J* = 15.8, 6.5 Hz, 1H), 5.35 – 5.20 (m, 1H), 2.12 (s, 1H) ¹³C NMR (101 MHz, CDCl₃) δ 141.55, 134.02, 132.35, 131.12, 128.15, 127.69, 127.67, 126.90, 126.78, 125.31, 73.95.

2j

¹H NMR (400 MHz, Chloroform-*d*) δ 5.76 – 5.67 (m, 1H), 5.65 – 5.57 (m, 1H), 4.48 (d, *J* = 5.0 Hz, 1H), 1.92 (dd, *J* = 17.2, 11.9 Hz, 1H), 1.83 – 1.64 (m, 3H), 1.64 – 1.53 (m, 1H), 1.53 – 1.41 (m, 1H), 1.18 (s, 24H). ¹³C NMR (101 MHz, CDCl₃) δ 149.54, 129.23, 127.86, 81.52, 67.08, 29.78, 23.90, 23.58, 18.00.

2k

OBpin

 $\langle \rangle$

¹H NMR (400 MHz, Chloroform-*d*) δ 5.97 – 5.85 (m, 1H), 5.73 (dd, *J* = 5.5, 2.3 Hz, 1H), 5.10 (dd, *J* = 4.3, 2.4 Hz, 1H), 2.52 – 2.33 (m, 1H), 2.24 – 2.07 (m, 2H), 1.69 (dq, *J* = 13.0, 3.9 Hz,1H), 1.18 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 134.22, 130.92, 81.56, 78.76, 31.07, 29.99, 23.60, 23.58.

21

¹H NMR (400 MHz, Chloroform-*d*) δ 5.35 (s, 1H), 5.12 – 4.92 (m, 1H), 2.35 (dq, *J* = 11.0, 5.9 Hz, 1H), 2.17 (d, *J* = 7.7 Hz, 1H), 2.07 (s, 1H), 1.68 (s, 3H), 1.18 (d, *J* = 8.0 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 145.87, 130.66, 126.18, 82.84, 82.42, 80.29, 35.14, 33.04, 24.54, 24.49, 16.64.

2m

¹H NMR (400 MHz, Chloroform-*d*) δ 5.50 – 5.32 (m, 1H), 4.67 (s, 2H), 4.20 – 4.04 (m, 1H), 2.26 – 2.15 (m, 1H), 2.09 (ddt, J = 12.2, 5.9, 2.2 Hz, 1H), 1.99 (tt, J = 3.4, 1.7 Hz, 1H), 1.93 – 1.82 (m, 1H), 1.69 (dq, J = 2.8, 1.4 Hz, 3H), 1.67 (d, J = 1.2 Hz, 2H), 1.52 (d, J = 5.5 Hz, 1H), 1.47 – 1.37 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ 148.99, 136.16, 123.88, 109.15, 70.93, 40.46, 38.03, 31.04, 20.63, 18.95.

2n

¹H NMR (400 MHz, Chloroform-*d*) δ 5.30 (dq, *J* = 3.1, 1.6 Hz, 1H), 4.39 (td, *J* = 3.1, 1.6 Hz, 1H), 2.43 – 2.29 (m, 1H), 2.22 (dd, *J* = 3.5, 2.1 Hz, 1H), 1.90 (td, *J* = 5.5, 1.4 Hz, 1H), 1.66 (t,

J = 1.7 Hz, 3H), 1.64 – 1.58 (m, 1H), 1.28 (s, 3H), 1.24 (d, *J* = 9.1 Hz, 1H), 1.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.38, 119.33, 73.56, 48.21, 47.75, 38.95, 35.58, 26.88, 22.64, 22.60.

Spectroscopic data are in agreement with the reported values in the literature.^[7,8]

¹H NMR (400 MHz, Chloroform-*d*) δ 5.28 (s, 1H), 4.14 (d, *J* = 8.0 Hz, 1H), 3.60 (s, 1H), 2.18 (d, *J* = 13.8 Hz, 1H), 1.99 (d, *J* = 33.8 Hz, 6H), 1.89 – 1.68 (m, 3H), 1.65 – 1.33 (m, 4H), δ 1.64 – 1.34 (m, 10 H).1.06 (s, 3H), 0.97 – 0.83 (m, 2H), 0.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.47, 123.53, 81.86, 67.94, 54.60, 50.74, 42.89, 37.43, 36.64, 36.01, 35.43, 32.63, 32.10, 30.52, 29.52, 23.39, 20.64, 18.97, 11.06.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.40 (m, 2H), 7.30 (dd, J = 4.9, 2.1 Hz, 3H), 4.76 (d, J = 6.6 Hz, 1H), 1.56 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 131.67, 128.40, 128.30, 122.60, 90.94, 84.05, 58.90, 24.42.

Mechanistic control experiment

a) The study of stoichiometric reaction of C1 and 1a

The stoichiometric reaction of C1 with benzylideneacetone 1a (1:1) was performed at room temperature for 24 h under nitrogen atmosphere, solvent toluene was removed in vacuo resulting in a solid containing a mixture of products and then subjected to NMR analysis.

Scheme S3. ¹H NMR (400 MHz, CDCl₃, 298 K). Top spectrum, starting material of C1, bottom spectrum of the crude product from the reaction of C1 with 1a.

b) The verification of BH₃ generation from the reaction of C1 and HBpin.

In a 10 mL Schlenk flask equipped with a magnetic stir bar in the glovebox, pinacolborane (1.2 mmol, 1.2 eq.) and C1 (0.05 mmol) were combined and heated in an oil bath at 80 °C for 2 h. After completion of the reaction ¹¹B NMR was recorded in

CDCl₃, we can find that a new quadruple peak around $\delta = -20$ ppm reveals the presence of BH₃. (Scheme S4 and Figure S2)

Scheme S4. The formation of BH₃ from HBpin and C1.

Figure S2. ¹¹B NMR spectrum of the reaction of HBpin and C1.

c) The study of the effect of BH3 on the hydroboration reaction of enone

In a 10 mL Schlenk flask equipped with a magnetic stir bar in the glovebox, enone (1.0 mmol), pinacolborane (1.2 mmol, 1.2 eq.) and catalyst X (5 mol%) were combined and heated in an oil bath at 80 °C for 12 h. After completion of the reaction, its yield was calculated by the ¹H NMR in CDCl₃ (Scheme S5, Figure S3 and Table 1). For the mentioned reaction, the yield of product is up to 97% in the presence of TMEDA (99% without TMEDA). When only BH₃·SMe₂ acted as a catalyst which was consistent with the amount of reaction of HBpin and C1, we cannot find any product. Even if the amount of BH₃·SMe₂ was raised to 5%, no product was obtained. These results suggest that there is no hidden catalyst such as BH₃ in this catalytic system.

Scheme S5. Synthetic scheme for the hydroboration of enone in presence of catalyst X.

Table1. The hydroboration reaction of enone and HBpin in the presence of X

X (5 mol%)	Yield
	99%
C1	
C1 + TMEDA (1:2)	97%
$BH_3 \cdot SMe_2^a$	n.d.
$BH_3 \cdot SMe_2^b$	n.d.

^a 0.7 mol% BH₃·SMe₂ which quantity is consistent with BH₃ that reaction of HBpin with C1; ^b 5 mol% BH₃·SMe₂

Figure S3. ¹H NMR spectrum of the reaction of enone and HBpin using **X** as a catalyst

Figure S4.2 ¹³C NMR of compound **2a** in CDCl₃

Figure S4.6 13 C NMR of compound **2c** in CDCl₃

Figure S4.8 ¹³C NMR of compound **2d** in CDCl₃

Figure S4.10 ¹³C NMR of compound **2e** in CDCl₃

Figure S4.12 ¹³C NMR of compound **2f** in CDCl₃

Figure S4.14 ¹³C NMR of compound **2g** in CDCl₃

Figure S4.16 $^{13}\mathrm{C}$ NMR of compound 2h in CDCl3

Figure S4.18 ¹³C NMR of compound **2i** in CDCl₃

Figure S4.20 $^{13}\mathrm{C}$ NMR of compound 2j in CDCl_3

Figure S4.22 ^{13}C NMR of compound 2k in CDCl_3

Figure S4.24 ¹³C NMR of compound **21** in CDCl₃

Figure S4.26 ¹³C NMR of compound **2m** in CDCl₃

S26

Figure S4.30 ¹³C NMR of compound **20** in CDCl₃

Figure S4.32 ¹³C NMR of compound **2p** in CDCl₃

Refences

- [1] Yang Z., Zhong M. D., Roesky H. W. J. Am. Chem. Soc. 2016, 138, 2548-2551.
- [2] Yang Z., Zhong M., Ma X., Roesky H. W. Angew. Chem.Int. Ed., 2015, 54(35): 10225-10229.
- [3] Sheldrick, G. M. SADABS, Empirical Absorption Correction Program, University of Göttingen, Göttingen, Germany, **1997**, *28*, 53-56.
- [4] Sheldrick, G. M. SHELXS-90, Program for Structure Solution. ActaCrystallogr. Sect. A.1990, 46, 467-473.
- [5] Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen, Germany, **1997**.
- [6] Jiang Y. K., Magre M., Rueping M. Org. Lett., 2019, 21, 8349-8352.
- [7] Forkel N. V., Henderson D.A., Fuchter M. J. Green Chem., 2012, 14, 2129-2132.
- [8] Elamparuthi E., Fellay C., Neuburger M., Gademann K. Angew. Chem. Int. Ed. 2012, 51, 4071-4073.