Supporting Information

Highly stable CsPbBr₃ perovskite phases from new lead β -diketonate glyme adducts

Lorenzo Sirna,^a Anna L. Pellegrino,^{a,*} Salvatore P. Sciacca,^a Martina Lippi,^b Patrizia Rossi,^b Carmela Bonaccorso,^c Giuseppe Bengasi,^d Marina Foti,^d Graziella Malandrino^{a,*}

^a Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy

^b Dipartimento di Ingegneria Industriale, Università di Firenze, Via Santa Marta 3, 50136 Firenze, Italy

^c Dipartimento Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy

^d 3SUN s.r.l., Contrada Blocco Torrazze, 95121, Catania, Italy

Corresponding: annalucia.pellegrino@unict.it, graziella.malandrino@unict.it

Table of contents

Fig. S1. Ball and stick view of the two independent molecules of Pb(hfa)₂•monoglyme.

Fig. S2. Superimposition of the two independent Pb (II) complexes in Pb(hfa)₂•monoglyme.

Table S1. Selected bond lengths and angles in Pb(hfa)₂monoglyme.

Fig. S3. ¹H NMR spectra of the Pb(hfa)₂•glyme complexes 1-4.

Fig. S4. ¹³C NMR spectra of the Pb(hfa)₂•glyme complexes 1-4.

Fig. S5. ¹³C-NMR signals for the CF₃ and CO groups of the Pb(hfa)₂•glyme complexes 1-4.

Fig S6. EDX Spectrum and quantitative analysis of the TGA residue of [Pb(hfa)₂•triglyme•H₂O].

Fig S7. ATR-IR spectra of CsPbBr3_1, CsPbBr3_2, CsPbBr3_3 and CsPbBr3_4 microcrystals.

Fig S8. TGA curves of CsPbBr3_1, CsPbBr3_2, CsPbBr3_3 and CsPbBr3_4 microcrystals.

Fig S9. EDX Spectrum and quantitative analysis of CsPbBr₃_1.

Fig S10. EDX Spectrum and quantitative analysis of CsPbBr₃_2.

Fig S11. EDX Spectrum and quantitative analysis of CsPbBr₃_3.

Fig S12. EDX Spectrum and quantitative analysis of CsPbBr₃_4.

Fig. S1. Ball and stick view of the two independent molecules of Pb(hfa)₂•monoglyme showing the atom labelling for the Pb, O and C atoms. For the sake of clarity only one model was reported for the disordered moieties.

Fig. S2. Superimposition of the two independent Pb (II) complexes in **Pb(hfa)**²**•monoglyme**. (stick, color by elements: Pb1A complex; stick, pale green: Pb1B complex)

Pb-X						
Pb1A-O1A	2.369(6)	Pb1B-O1B	2.347(5)			
Pb1A-O2A	2.509(4)	Pb1B-O2B	2.523(5)			
Pb1A-O3A	2.546(5)	Pb1B-O3B	2.476(5)			
Pb1A-O4A	2.509(5)	Pb1B-O4B	2.466(4)			
Pb1A-O1MA	2.620(5)	Pb1B-O1MB	2.729(6)			
Pb1A-O2MA	2.665(6)	Pb1B-O2MB	2.738(5)			
Pb1A Pb1A ¹	3.8012(5)	Pb1BPb1B ²	3.9518(6)			
	X-I	Pb-Y				
O1A-Pb1A-O2A	73.5(2)	O1B-Pb1B-O2B	73.6(2)			
O1A-Pb1A-O3A	81.0(2)	O1B-Pb1B-O3B	82.7(2)			
O1A-Pb1A-O4A	72.6(2)	O1B-Pb1B-O4B	74.9(2)			
O1A-Pb1A-O1MA	79.5(2)	O1B-Pb1B-O1MB	76.4(2)			
O1A-Pb1A-O2MA	78.8(2)	O1B-Pb1B-O2MB	76.3(2)			
O2A-Pb1A-O3A	65.8(2)	O2B-Pb1B-O3B	66.3(2)			
O2A-Pb1A-O4A	127.5(2)	O2B-Pb1B-O4B	129.6(2)			
O2A-Pb1A-O1MA	132.7(2)	O2B-Pb1B-O1MB	134.7(1)			
O2A-Pb1A-O2MA	73.6(2)	O2B-Pb1B-O2MB	77.3(2)			
O3A-Pb1A-O4A	70.3(2)	O3B-Pb1B-O4B	71.5(2)			
O3A-Pb1A-O1MA	146.1(2)	O3B-Pb1B-O1MB	141.1(1)			
O3A-Pb1A-O2MA	138.3(2)	O3B-Pb1B-O2MB	141.9(2)			
O4A-Pb1A-O1MA	77.5(2)	O4B-Pb1B-O1MB	71.5(1)			
O4A-Pb1A-O2MA	134.9(2)	O4B-Pb1AB-O2MB	130.5(2)			
O1MA-Pb1A-O2MA	63.3(2)	O1MB-Pb1B-O2MB	63.1(2)			

Table	S1 .	Selected	bond	lengths	(Å)	and	angles	(°)	in	Pb	(hfa))2monog	lvme.
Labic	DT.	Deletted	oonu	longuis	(4)	unu	ungies	\ /	111	10	(III a	/200002	, y 11100

 $1^{-1} = -x, -y, 1-z; 2^{-1} = 1-x, 1-y, -z$

Fig. S3. ¹H NMR spectra of the Pb(hfa)₂•glyme complexes 1-4 (CD₃CN, 500 MHz, 27 °C).

Fig. S4. ¹³C NMR spectra of the Pb(hfa)₂•glyme complexes 1-4 (CD₃CN, 125 MHz, 27 °C).

Fig. S5. ¹³C-NMR signals for the CF₃ and CO groups of the Pb(hfa)₂•glyme complexes 1-4 (CD₃CN, 125 MHz, 27 °C).

Fig S6. EDX Spectrum of TGA residue of [Pb(hfa)₂•triglyme•H₂O] and quantitative analysis of the residue.

Fig S7. ATR-IR spectra of CsPbBr₃_1, CsPbBr₃_2, CsPbBr₃_3 and CsPbBr₃_4 microcrystals.

Fig S8. TGA curves of CsPbBr₃_1, CsPbBr₃_2, CsPbBr₃_3 and CsPbBr₃_4 microcrystals.

									Spe	ctrum 1			
			1								Element	Weight%	Atomic%
											Br L	41.40	59.55
					•						Cs L	25.61	22.15
									<u>ه</u>		Pb M	32.98	18.30
			97	ø	<u>/ </u>				<mark>\</mark>		Totals	100.00	
0 Full Scal	0.5	1 Tursor '	1.5	2 28 cts)	2.5	3	3.5	4	4.5	5 keV		· · · · · · · · · · · · · · · · · · ·	
	010 .		(i										

Fig S9. EDX Spectrum of CsPbBr₃_1 and quantitative analysis of the powder.

Element	Weight%	Atomic%
Br L	44.23	62.79
Cs L	21.85	18.65
Pb M	33.91	18.57
Totals	100.00	

Fig S10. EDX Spectrum of CsPbBr₃_2 and quantitative analysis of the powder.

Element	Weight%	Atomic%
Br L	42.12	60.51
Cs L	24.00	20.73
Pb M	33.87	18.76
Totals	100.00	

Fig S11. EDX Spectrum of CsPbBr₃_3 and quantitative analysis of the powder.

Fig S12. EDX Spectrum of CsPbBr₃_4 and quantitative analysis of the powder.