Supporting Information

Induced fac-mer rearrangements in ${M(CO)_3}^+$ complexes (M = Re, ^{99(m)}Tc) by a PNP ligand

Manuel Luca Besmer,*a Flurina Schwitter,a Federica Battistin,a Henrik Braband,a Thomas Fox,^a Bernhard Spingler^a and Roger Alberto^a

aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

E-mail: manuel.besmer@chem.uzh.ch

Table of Contents

1 General Experimental Details

Materials: *Unless* otherwise stated, all chemicals were of reagent grade or higher, obtained from commercial sources and used without further purification. Solvents for reactions were of *p.a.* grade or distilled prior to their use. Deuterated NMR-solvents were purchased from *Armar Chemicals* (CH) or *Cambridge Isotope Laboratories, Inc.* (UK). (NH4)[⁹⁹TcO4] was purchased from *Oak Ridge* and treated with H_2O_2 prior to reactions for re-oxidation. $[{}^{99m}Tc(H_2O)_3(CO)_3]^+$ ($[6]^+$) was synthesized with the *isolink kit* chemicals sodium boranocarbonate, sodium tartrate dihydrate and sodium tetraborate decahydrate.^[1,2] (NEt₄)₂[Re(CO)₃Br₃], (NEt₄)₂[Tc(CO)₃Cl₃] and 2,6-bis((di-tertbutylphosphino)methyl) pyridine (^{Pyr}PNP^{*I*Bu}) were synthesized following literature procedures.^[3–5] Na[^{99m}TcO₄] in 0.9% saline was eluted from a ⁹⁹Mo/99mTc *Ultratechnekow FM* generator purchased from *b. e. imaging* AG (Switzerland). Caution: $99Tc$ is a weak β -emitter, $99mTc$ is a weak γ -emitter. All experiments must be carried out in licensed and appropriately shielded laboratories for low-level radioactive materials. **NMR:** NMR spectra were recorded in deuterated solvents at 298 K on *Bruker AV-400* (400 MHz) or *Bruker AV2-500* (500 MHz) spectrometers. ¹H and ¹³C chemical shifts (δ) are given in ppm relative to residual solvent resonances (CD₂Cl₂¹H: δ 5.32; ¹³C: δ 53.84; THF-*d*₈: ¹H: δ 1.72; ¹³C: δ 25.31). Signal assignments are based on coupling constants and/or supportive NMR experiments. The NMR measurements were highly influenced by the characteristics of technetium. Its paramagnetic nature and the large nuclear quadrupolar moment both strongly accelerate t_1 and t_2 relaxation up to complete signal extinction. **IR:** FT-IR spectra were recorded with *SpectrumTwo FT-IR Spectrometer* (*Perkin–Elmer*) and samples were applied as KBr pellets. **LSC: Technetium content measurements:** Products were dissolved in the appropriate solvents. The measurements were carried out with a scintillation cocktail (Packard Ultimate Gold XR) and a *Hidex 300 SL* liquid scintillation counter. Yields of compounds were calculated from activity yields by LSC measurement. **Microwave reactions:** Microwave assisted reactions (99mTc) were carried out in a *Biotage Initiator*. **X-ray diffraction:** Single-crystal X-ray diffraction data was collected at 160(1) K on a *Rigaku OD XtaLAB Synergy*, Dualflex, *Pilatus 200K* diffractometer using a single wavelength X-ray source (Cu K_o radiation: $\lambda = 1.54184 \text{ Å}$ for ([3](PF₆), [**3]**(BF4), [**5]**(PF6), **9**) or on a *Rigaku XtaLAB Synergy*, Dualflex, *HyPix* diffractometer using a single wavelength X-ray source (Cu K_{α} radiation: $\lambda = 1.54184$ Å for (2) or Mo K_{α} radiation: $\lambda = 0.71073$ Å for **11**) from a micro-focus sealed X-ray tube and an *Oxford* liquid-nitrogen *Cryostream* cooler. The selected suitable single crystal was mounted using polybutene oil on a flexible loop fixed on a goniometer head and immediately transferred to the diffractometer. Pre-experiments, data collection, data reduction and analytical absorption correction^[6] were performed with the program suite *CrysAlisPro* . [7] Using *Olex2*, [8] the structures were solved with the *SHELXT*[9] small molecule structure solution program and refined with the *SHELXL 2018/3*[10] program package by full-matrix least-squares minimization on F². *PLATON*^[11] was used to check the result of the X-ray analysis. Ill-defined electron density in [**9**] had to be treated with the *SQUEEZE* procedure in PLATON.[11] For more details about the data collection and refinement parameter, see the CIF files. **UHPLC-ESI-MS:** Samples (2 μl injection) were analyzed with a *Vanquish*™ *Horizon UHPLC* System (*Thermo Fisher Scientific*, Waltham, USA) connected to a *Vanquish*™ eλ detector and ISQ-EM ESI mass spectrometer (*Thermo Fisher Scientific*, Waltham, USA), operated in positive mode; scan range m/z 200–1500. Separation was performed with an *Acquity BEH C18* HPLC column (1.7 μm particle size, 2x100 mm, Waters) kept at 40 °C. The mobile phase consisted of A: $H₂O + 0.1%$ HCOOH and B: CH₃CN + 0.1% HCOOH. UV spectra were recorded between 190 and 670 nm at a 4 nm resolution and at 5 Hz. The mass spectrometer was operated in the positive (negative) electrospray ionization mode at 3000 V (-2'000 V) capillary voltage with a N_2 Sheath gas pressure of 41.9 psi, auxiliar gas pressure of 5.5 psi and sweep gas pressure of 0.1 psi. Spectra were acquired in the mass range from m/z 150 to 2'000. Method: 0-0.5 min 5% B; 0.5-4.5 min linear gradient from 5 to 100% B; 4.5-5 min 100% B, 5-5.1 min linear gradient from 100 to 5% B, 5.1-5.5 min isocratic gradient with 5% B; flow rate was 0.6 mL/min. **Radio-HPLC:** VWR Hitachi Chromaster with tuneable UV detector (250nm), radio detector (Berthold LB514, YG 150-S5D), Nucleosil C-18 column (100Å, 5µm, 250×4mm), flow rate of 0.5mL/min, 0.1% TFA in H₂O (solvent A) and methanol (solvent B) with the following gradient: 0-3min: 90% A (10% B); 3-3.1min: 90% A

(10% B) to 75% A (25% B); 3.1–9min: 75% A (25% B); 9-9.1min: 75% A (25% B) to 66% A (34% B); 9.1-20min: 66% A (34% B) to 0% A (100% B); 20-25min: 0% A (100% B); 25-30min: 0% A (100% B) to 90% A (10% B).

2. Remarks on NMR spectroscopy with ⁹⁹Tc complexes

We have already reported on analogous observations with ⁹⁹Tc NMR spectroscopy that are true for this work as well, as described below.^[12] The influence of quadrupolar nuclei like ⁹⁹Tc (spin I = 9/2, quadrupole relaxation time T_{10}) onto the relaxation time of scalarly coupled nuclei like ¹³C (T_{1-SC}) is described by formula (I) according to literature.^[13]

$$
\frac{1}{T_{1-SC}} = \frac{8\pi^2 J^2}{3} I(I+1) \frac{T_{1Q}}{1 + (\omega_C - \omega_I)^2 T_{1Q}^2}
$$
 (I)

In this regard, a significant increase of ¹³C T₁ relaxation due to strong scalar coupling with ⁹⁹Tc might be an explanation for the unobservability of carbon sites which are directly bound to the technetium center (CO):

Considering ¹³C-⁹⁹Tc coupling constants *J* of some 100 Hz and a typical ⁹⁹Tc relaxation time T_{10} in the *millisecond* range, in conjunction with the close resonance frequencies of carbon and technetium (125 vs. 113 MHz), relation (I) predicts significant scalar ¹³C relaxation $1/T_{1-SC}$ in the kHz range, causing broadening and weakening effects onto the ¹³C signal, up to its loss.

Rhenium bound ¹³C nuclei are, in contrast, *not* influenced by scalar T_1 relaxation as both rhenium isotopes (185,187Re) undergo extraordinarily fast quadrupolar relaxation *T1Q* in the *microsecond* range. Therefore, equation (I) yields values close to zero, cancelling any scalar relaxation effects *1/T1-SC* in the case of rhenium.

3 Experimental Procedures and Data

3.1 *mer–***[Re(PyrPNPtBu)(CO)3] + , [3](PF6)**

Synthesis: A round-bottom flask was charged with $(NEt_4)_2[1]$ (100.0 mg, 129.0 µmol), ^{Pyr}PNP^{*IBu*} (2) (56.3 mg, 142.0 µmol), TlPF₆ (145.0 mg, 414.0 µmol) and a magnetic stir bar under inert atmosphere. THF (dry, 25 mL) was added to the mixture and an immediate formation of a colorless precipitate was observed. While stirring, the reaction mixture was heated to reflux and allowed to cool down after 81 h of heating. The off-white precipitate was filtered off with a P4 glass filter frit and the filtrate was transferred into a flask. Layering of the filtrate with hexanes afforded colorless, crystalline material (suitable for XRD) that was separated after 4 h and washed with hexanes. Product $[3](PF_6)$ was obtained as a colorless crystalline solid in 34% yield (35.3 mg, 43.4 µmol).

Analysis: IR (KBr) [cm−1]: 3434*w*, 2999*m*, 2959*m*, 2880*m*, 2047*s* (CO), 1946*s* (CO), 1913*s* (CO), 1601*w*, 1482*m*, 1463*m*, 1395*m*, 1377*m*, 1290*m*, 1183*m*, 1024*w*, 838*s*, 628*m*, 558*m*. **¹H NMR** (500 MHz, CD_2Cl_2) δ [ppm]: 7.91 (*t*, ³ J_{HH} = 7.83 Hz, 1 H, $CH_{pyr(4)}$); 7.65 (*d*, ³ J_{HH} = 7.83 Hz, 2 H, $CH_{pyr(3,5)}$); 3.92 (*dd*-like *t*, ²*J*HH = 3.08 Hz, 4 H, PC*H*2); 1.38 (*t*-like *m*, 36 H, (PC(C*H*3)3). **¹³C{¹H} NMR** (125 MHz, CD_2Cl_2) δ [ppm]: 197.3 (*t*, $^2J_{CP}$ = 7.8 Hz, 2 C, 2 *trans-CO*); 196.5 (*t*, $^2J_{CP}$ = 3.6 Hz, 1 C, *CO*); 164.4 (*t*, $^2J_{\rm CP}$ = 2.6 Hz, 2 C, $C_{\rm pyr(2,6)}$); 141.2 (*s*, 1 C, $CH_{\rm pyr(4)}$); 123.3 (*t*, ³ $J_{\rm CP}$ = 4.0 Hz, 2 C, $CH_{\rm pyr(3,5)}$); 40.9 (*t*, ² $J_{\rm CP}$ $= 10.0$ Hz, 2 C, PCH₂); 38.9 (*t*, ¹J_{CP} = 9.8 Hz, 4 C, PC(CH₃)₃); 30.3 (*t*, ²J_{CP} = 1.6 Hz, 12 C, PC(CH₃)₃). **31P{¹H} NMR** (202 MHz, CD₂Cl₂) δ [ppm]: 67.53 (*s*, 2 P, *P*C(CH₃)₃); –144.44 (*sep*, ¹J_{PF} = 710.8 Hz, 1 P, PF_6). ¹⁹**F NMR** (470 MHz, CD₂Cl₂) δ [ppm]: –72.95 (*d*, ¹*J*_{FP} = 710.8 Hz, 6 F, P*F*₆). **UHPLC-ESI**-**MS:** $R_t = 3.44$ min, $[M]^+$ = calc. for $C_{26}H_{43}NO_3P_2$ Re: 666.2 m/z, found: 666.1 m/z and $[M-CO]^+$ = calc. for $C_{25}H_{43}NO_2P_2Re: 638.2 m/z$, found: 638.2 m/z.

3.2 *mer–***[Re(PyrPNP***^t***Bu)(CO)3] + , [3](BF4)**

Synthesis: The synthesis of $[3](BF_4)$ followed an analogous procedure as in the synthesis of $[3](PF_6)$ (3.1). (NEt₄)₂[1] (25.0 mg, 32.3 µmol), ^{Pyr}PNP^{*tBu*} (2) (14.0 mg, 36.0 µmol) and AgBF₄ (18.0 mg, 92.8 µmol) were mixed in a round-bottom flask and dry THF (25 mL) was added under inert atmosphere.

The stirred mixture was heated to reflux for 84 h and subsequently the grey suspension was filtered (P4). The solvent of the slightly pale yellowish filtrate was removed *in vacuo* and pale yellowish crystalline material was obtained and characterized to be $[3](BF_4)$ in a yield of 23% (6.9 mg, 9.16 μ mol).

Analysis: c.f. 3.2 for $[3](PF_6)$, IR bands of BF_4^- (KBr) \vee [cm⁻¹]: 1463*m*, 1374*m*, 1061*s*.

3.3 *mer–***[Tc(PyrPNP***^t***Bu)(CO)3] + , [5](PF6)**

Synthesis: A round-bottom flask was charged with $(NEt_4)_2[4]$ (23.3 mg, 42.5 µmol), ^{Pyr}PNP^{tBu} (2) $(25.0 \text{ mg}, 63.2 \text{ µmol}, 1.5 \text{ equiv.})$, TlPF₆ $(45.0 \text{ mg}, 128.6 \text{ µmol}, 3 \text{ equiv.})$ and a magnetic stir bar under inert atmosphere. THF (dry, 15 mL) was added to the mixture and an immediate formation of a colorless precipitate was observed. While stirring, the reaction mixture was heated to reflux for 5 h and subsequently allowed to cool down. The off-white precipitate was filtered off with a P4 glass filter frit and the filtrate was transferred into a vial. Layering of the filtrate with hexanes afforded slightly yellowish colored crystals of $[5]$ (PF₆) in 27% yield (8.27 mg, 11.5 µmol).

Analysis: IR (KBr) [cm−1]: 3434*w*, 2973*m*, 2878*w*, 2053*w* (CO), 1960*s* (CO), 1923*s* (CO), 1624*w*, 1480m, 1462m, 1396w, 1289w, 1182w, 1023m, 895m, 839s, 630w, 558m. ¹H NMR (400 MHz, CD₂Cl₂) δ [ppm]: 7.86 (*t*, ³*J*_{HH} = 7.96 Hz, 1 H, C*H*_{pyr(4)}); 7.57 (*d*, ³*J*_{HH} = 7.84 Hz, 2 H, C*H*_{pyr(3,5)); 3.71 (*t*-like *m*,} $^{2}J_{HH} = 2.50$ Hz, 4 H, PC*H*₂); 1.37 (*t*-like *m*, 36 H, (PC(C*H*₃)₃). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ [ppm]: 163.0 (*t*, ${}^{2}J_{CP}$ = 2.7 Hz, 2 C, $C_{pyr(2,6)}$); 140.9 (*s*, 1 C, $CH_{pyr(4)}$); 123.5 (*t*, ${}^{3}J_{CP}$ = 4.0 Hz, 2 C, *C*H_{pyr(3,5)}); 39.0 (*t*, ²J_{CP} = 7.9 Hz, 2 C, PCH₂); 38.4 (*t*, ¹J_{CP} = 7.7 Hz, 4 C, PC(CH₃)₃); 30.4 (*t*-like s, 12 C, PC(CH_3)₃); ¹³C signals of CO ligands not observed (c.f. section 3.8). ³¹**P**{¹**H**} **NMR** (202 MHz, CD₂Cl₂) δ [ppm]: 90.78 (br *s*, $\Delta_{1/2}$ = 4.4 kHz, 2 P, *P*C(CH₃)₃); –142.71 (*sep*, ¹*J*_{PF} = 711.68 Hz, 1 P, *P*F₆). ¹⁹**F NMR** (471 MHz, CD₂Cl₂) δ [ppm]: –73.08 (*d*, ¹J_{FP} = 710.6 Hz, 6 F, P*F*₆). **⁹⁹Tc NMR** (90.1 MHz, C₆D₆) δ [ppm]: -1574 ($\Delta_{1/2}$ = 2.2 kHz). ⁹⁹**Tc analysis** calc. for C₂₆H₄₃F₆NO₃P₃Tc (\cdot Et₄NPF₆) (%): 9.90; found: 8.89.

3.4 *mer–***[99mTc(PyrPNP***^t***Bu)(CO)3], [7]⁺**

Synthesis: Method a: A microwave vial was charged with 1.0 mL of an aqueous solution containing freshly prepared $[{}^{99m}Tc(H_2O)_3(CO)_3]^+$ ([6]⁺). The vial was sealed and flushed with N₂ for 15 min and in a separate vial ^{Pyr}PNP^{*I*Bu} (2) (10.1 mg, 25.5 µmol) was dissolved in 1 mL of degassed EtOH. The EtOH solution of 2 was added to the sealed vial with a syringe and subsequently the vial was placed in the microwave for 30 min at 100 °C. Complex [**7**] ⁺ was obtained with 92% RCP and purification with radio-HPLC delivered [**7**] + in 97% RCP. (RCY: 95%).

Method b: Alternatively, $[7]^+$ may also be synthesized in a 1-pot reaction with eluted $[^{99m}TcO_4]^-$ in presence of the *isolink kit* chemicals and ^{Pyr}PNP^{*IBu*} (2) in a H₂O/EtOH (1:1, degassed) solution, yielding equivalent results after 30 min at 100 °C in the microwave.

Analysis: Radio-HPLC: R*^t* = 25.53 min, RCP: 97.1%.

3.5 *fac–***[Re(terpy)(CO)3(PO2F2)], [9]**

Synthesis: A round-bottom flask was charged with $(NEt_4)_2[1]$ (50.4 mg, 65.4 µmol), terpy (8) (16.3 mg, 69.9 µmol, 1.1 equiv.), $TIPF_6$ (67.8 mg, 194.1 µmol, 3 equiv.) and a magnetic stir bar under inert atmosphere. THF (dry, 10 mL) was added to the mixture and an immediate formation of a colorless precipitate was observed. While stirring, the reaction mixture was heated to reflux for 39 h and subsequently allowed to cool down. The off-white precipitate was filtered off with a P4 glass filter frit and the filtrate was concentrated. Layering of the filtrate with hexanes afforded [**9**] as pale yellowish, crystalline material after washing with hexanes in a yield of 64% (25.4 mg, 42.0 µmol).

Analysis: IR (KBr) [cm−1]: 3434*w*, 2924*m*, 2853*m*, 2021*s* (CO), 1916*s* (CO), 1895*s* (CO), 1768*w*, 1719w, 1605w, 1453m, 1313m (PO₂F₂⁻), 1158m (PO₂F₂⁻), 1034w, 842*s* (PO₂F₂⁻), 775m, 647w, 558w, $498w$ (PO₂F₂⁻). **¹H** NMR (400 MHz, THF-*d*₈) δ [ppm]: 9.14 (*d*, ${}^{3}J_{HH}$ = 5.2 Hz, 1 H, CH_{terpy-1}); 8.77 (*d*, ${}^{3}J_{\text{HH}} = 4.5 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{tempy-11}}$); 8.62 (*t* (2 overlaid *d*), 2 H, C*H*_{terpy-5,4); 8.33 (*t*, ${}^{3}J_{\text{HH}} = 7.94 \text{ Hz}, 1 \text{ H}, \text{CH}_{\text{tempy-11}}$}

6); 8.27 (*t*, ³*J*_{HH} = 7.0 Hz, 1 H, C*H*_{terpy-3}); 7.95 (*t*, ³*J*_{HH} = 7.4 Hz, 1 H, C*H*_{terpy-9}); 7.88 (*t* (2 overlaid *d*), 2 H, $CH_{\text{terpy-8,7}}$; 7.71 (*t*, ${}^{3}J_{\text{HH}}$ = 6.4 Hz, 1 H, $CH_{\text{terpy-2}}$); 7.52 (*t*, ${}^{3}J_{\text{HH}}$ = 6.2 Hz, 1 H, $CH_{\text{terpy-10}}$). ${}^{31}P\{{}^{1}H\}$ NMR $(162 \text{ MHz}, \text{THF-}d_8)$ δ [ppm]: -16.19 (t, $^1J_{FP} = 961.7$ Hz, 1 P, PO_2F_2). ¹⁹**F**{¹**H**} **NMR** (376 MHz, THF- d_8) δ [ppm]: –73.66 (*d*, ¹J_{FP} = 710.30 Hz, 1 F, minimal traces of P*F*₆ (not visible in ³¹P{¹H})), –84.5 (*d*, ¹J_{FP} $= 961.3$ Hz, 2 F, PO₂F₂). **UHPLC-ESI-MS:** R_t = 2.26 min, [M-(PO₂F₂⁻)]⁺ = calc. for C₁₈H₁₁N₃O₃Re: 504.0 m/z, found: 504.0 m/z and $[M-(PO_2F_2^-)+MeCN]^+$ = calc. for $C_{25}H_{43}NO_2P_2Re:$ 545.1 m/z, found: 545.0 m/z.

3.6 *fac–***[Re(terpy)(CO)3Br], [10]**

Synthesis: A round-bottom flask was charged with $(NEt_4)_2[1]$ (47.7 mg, 61.9 µmol), terpy (**8**) (15.8 mg, 67.8 μ mol, 1.1 equiv.), AgBF₄ (36.0 mg, 184.9 μ mol, 3 equiv.) and a magnetic stir bar under inert atmosphere. THF (dry, 12 mL) was added to the mixture and an immediate formation of a yellowish suspension was observed. While stirring, the reaction mixture was heated to reflux for 24 h and subsequently allowed to cool down. The greyish precipitate was filtered off with a P4 glass filter frit and the solvent of the greenish-yellowish filtrate was evaporated *in vacuo*. The residue was washed with H2O (3x5 mL) and subsequently redissolved in minimal THF. Layering of the solution with hexanes afforded [**10**] as yellow, crystalline material after washing with hexanes in a yield of 71% (25.7 mg, 44.1 umol).

Analysis: Complex [**10**] has already been obtained via a different route published by Abel, *et al.*[14] and the obtained data is in agreement.

3.7 *fac–***[Tc(terpy)(CO)3Cl], [11]**

Synthesis: (NEt₄)₂[4] (39.9 mg, 72.6 µmol) was dissolved in 5 mL of MeOH and stirred in a roundbottom flask. Terpy (**8**) (17.3 mg, 74.0 µmol, 1 equiv.) was dissolved in 2 mL of MeOH and added to stirred solution. The yellow solution was heated to 50 °C for 4 h while the color changed to pale green. After cooling, the solvent was evaporated under a stream N_2 and the remaining solid was washed by stirring in water. The solution was decanted and the residue was dried. The product was extracted with CH2Cl² and subsequently overlaid with hexanes. Crystallization yielded olive-green crystals of [**11**] in quantitative yield.

Analysis: IR (KBr) [cm−1]: 3446*w*, 2989*w*, 2026*s* (CO), 1914*s* (CO), 1887*s* (CO), 1460*m*, 1402*w*, 1308*w*, 1184*w*, 1033*w*, 1005*w*, 798*w*, 667*w*, 636*w*, 502*w*. ¹H NMR (400 MHz, CD₂Cl₂, *T* = 298 K) δ [ppm]: 8.99 (br *s*, 1 H, CH_{terpy-1}); 8.81 (br *s*, 1 H, CH_{terpy-11}); 8.27 (br *s*, 2 H, CH_{terpy-4,5}); 8.16 (*t*, ³J_{HH} = 7.76 Hz, 1 H, C*H*terpy-6); 8.08 (br *s*, 1 H, C*H*terpy-3); 7.93 (br *s*, 2 H, C*H*terpy-8,9); 7.78 (br *s*, 1 H, C*H*terpy-7); 7.53 (br *s*, 2 H, C $H_{\text{tempy2,10}}$). **1H NMR** (400 MHz, CD₂Cl₂, *T* = 235 K) δ [ppm]: 8.96 (*d*, ³ J_{HH} = 4.65 Hz, 1 H, CH_{terpy-1}); 8.79 (*d*, ${}^{3}J_{\text{HH}}$ = 4.40 Hz, 1 H, CH_{terpy-11}); 8.30 (*d*, ${}^{3}J_{\text{HH}}$ = 7.90 Hz, 1 H, CH_{terpy-5}); 8.27 (*d*, $^{3}J_{\text{HH}}$ = 8.25 Hz, 1 H, CH_{terpy-4}); 8.16 (*t*, $^{3}J_{\text{HH}}$ = 7.75 Hz, 1 H, CH_{terpy-6}); 8.08 (*t*, $^{3}J_{\text{HH}}$ = 7.63 Hz, 1 H, CH_{terpy-} 3); 7.94 (*t*, ³*J*_{HH} = 6.98 Hz, 1 H, C*H*_{terpy-9}); 7.82 (*d*, ³*J*_{HH} = 7.45 Hz, 1 H, C*H*_{terpy-8}); 7.75 (*d*, ³*J*_{HH} = 7.45 Hz, 1 H, C*H*terpy-7); 7.53 (*p* (2 overlaid *t*), 2 H, C*H*terpy-2,10). **¹³C{¹H} NMR** (125 MHz, CD2Cl2) [ppm]: 152.8 (*s*, 1 C, *CH*_{terpy}); 149.7 (*s*, 1 C, *CH*_{terpy}); 139.3 (*s*, 1 C, *CH*_{terpy}); 138.9 (*s*, 1 C, *CH*_{terpy}); 136.9 (*s*, 1 C, *C*H_{terpy}); 127.3 (*s*, 1 C, *C*H_{terpy}); 126.0 (*s*, 1 C, *C*H_{terpy}); 125.4 (*s*, 1 C, *CH*_{terpy}); 124.8 (*s*, 1 C, *CH*_{terpy}); 123.6 (*s*, 1 C, *CH*_{terpy}); 122.2 (*s*, 1 C, *CH*_{terpy}). ⁹⁹**Tc NMR** (90.1 MHz, CD₂Cl₂) δ [ppm]: -1002 ($\Delta_{1/2}$ = 380 Hz). ⁹⁹**Tc analysis** calc. for $C_{18}H_{11}CN_3O_3Tc$ (%): 21.90; found: 20.61.

3.8 Fluxional behaviour of *fac–***[Tc(terpy)(CO)3Cl], [11]**

Scheme S1: Fluxional behaviour of the $(\kappa^2$ -terpy) ligand in complex [11]. The scheme shows both interconverting structures with NMR numbering (3.7).

Spectra

4.1 *mer–***[Re(PyrPNP***^t***Bu)(CO)3] + , [3](PF6)**

Figure S 1: IR spectrum (KBr) of *mer*-[Re($PyrPNP$ *tBu*)(CO)₃]⁺, [3](PF_6).

Figure S 2: ¹H NMR spectrum of *mer*–[Re(^{Pyrp}NP^{*I*Bu})(CO)₃]⁺, [3](PF₆) in CD₂Cl₂.

Figure S 3: ¹³C{¹H} NMR spectrum of *mer*–[Re(^{Pyrp}NP^{*IBu*})(CO)₃]⁺, [3](PF₆) in CD₂Cl₂.

Figure S 4: ³¹P{¹H} NMR spectrum of *mer*–[Re(^{Pyrp}NP^{*IBu*})(CO)₃]⁺, [3](PF₆) in CD₂Cl₂.

Figure S 5: ¹⁹F NMR spectrum of *mer*–[Re(^{Pyrp}NP^{*I*Bu})(CO)₃]⁺, [3](PF₆) in CD₂Cl₂.

Figure S 6: ¹H–¹H COSY NMR spectrum of *mer*–[Re(^{Pyrp}NP^{*I*Bu})(CO)₃]⁺, [3](PF₆) in CD₂Cl₂.

Figure S 7: ¹H–¹³C HSQC NMR spectrum of *mer*–[Re(^{Pyrp}NP^{*I*Bu})(CO)₃]⁺, [3](PF₆) in CD₂Cl₂.

4.2 *mer–***[Re(PyrPNP***^t***Bu)(CO)3] + , [3](BF4)**

Figure S 8: Excerpt of IR spectrum (KBr) of *mer*–[Re($PyrPNB^nBu)(CO)$ ₃]⁺, [3](BF₄) showing vibrations of BF₄⁻.

4.3 *mer–***[Tc(PyrPNP***^t***Bu)(CO)3] + , [5](PF6)**

Figure S 9: IR spectrum (KBr) of *mer*-[Tc(^{Pyrp}NP^{*t*Bu})(CO)₃]⁺, [5](PF₆).

Figure S 10: ¹H NMR spectrum of *mer*-[Tc(^{Pyr}PNP^{*tBu*})(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 11: ¹³C{¹H} NMR spectrum of *mer*–[Tc(^{Pyr}PNP^{*IBu*})(CO)₃]⁺, [**5**](PF₆) in CD₂Cl₂.

Figure S 12: ¹³C DEPT-135 NMR spectrum of *mer*–[Tc(^{Pyrp}NP^{*IBu*})(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 13: ³¹P{¹H} NMR spectrum of *mer*–[Tc(^{Pyr}PNP^{*I*Bu})(CO)₃]⁺, [**5**](PF₆) in CD₂Cl₂.

Figure S 14: ¹⁹F NMR spectrum of *mer*-[Tc(^{Pyr}PNP^{*tBu*})(CO)₃]⁺, [**5**](PF₆) in CD₂Cl₂.

Figure S 15: ⁹⁹Tc NMR spectrum of *mer*-[Tc(^{Pyrp}NP^{*I*Bu})(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 16: ¹H–¹H COSY NMR spectrum of *mer*–[Tc(^{Pyr}PNP^{*IBu*})(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 17: ${}^{1}H-{}^{13}C$ HSQC NMR spectrum of *mer*–[Tc(${}^{Pyr}PNP{}^{Bu}$)(CO)₃]⁺, [**5**](PF_6) in CD₂Cl₂.

Figure S 18: ${}^{1}H-{}^{13}C$ HMBC NMR spectrum of *mer*–[Tc(^{Pyrp}NP^{*tBu*})(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 19: γ -trace of *mer*-[^{99m}Tc(^{Pyrp}NP^{*tBu*})(CO)₃]⁺, [7]⁺.

833806.31

 100.00

 86.00

833806.31

 SUM

Figure S 20: UV-trace of *mer*-[Tc($^{Pyr}PNP^{Bu}$)(CO)₃]⁺, [5]⁺.

Figure S 21: HPLC traces for the coinjection of *mer*–[Tc($PyPNP/Bu$)(CO)₃]⁺, [5]⁺ (top, UV-trace) with *mer*– $[$ ^{99m}Tc(^{Pyr}PNP^{*t*Bu})(CO)₃]⁺, [7]⁺ (bottom, γ -trace).

4.5 *fac–***[Re(terpy)(CO)3(PO2F2)], [9]**

Figure S 22: IR spectrum (KBr) of $fac-[Re(\kappa^2-terpy)(CO)_3(PO_2F_2)],$ [9].

Figure S 23: ¹H NMR spectrum of fac - $[Re(\kappa^2 - \text{terpy})(CO)_3 (PO_2F_2)]$, [9] in THF- d_8 .

Figure S 24: ³¹P{¹H} NMR spectrum of fac [Re(κ ² – terpy)(CO)₃(PO₂F₂)], [9] in THF- d_8 .

Figure S 25: ¹⁹F{¹H} NMR spectrum of fac [Re(κ ² – terpy)(CO)₃(PO₂F₂)], [9] in THF- d_8 .

4.6 *fac–***[Re(terpy)(CO)3Br], [10]**

Data in agreement with literature.^[14]

4.7 *fac–***[Tc(terpy)(CO)3Cl], [11]**

Figure S 26: IR spectrum (KBr) of fac = $Tc(\kappa^2$ -terpy)(CO)₃Cl], [11].

Figure S 27: ¹H NMR spectrum of fac - $[Te(\kappa^2 - \text{tery})(CO)_3Cl]$, [11] at 298 K in CD_2Cl_2 .

Figure S 28: ¹H NMR spectrum of fac - $[Te(\kappa^2 - \text{tery})(CO)_3Cl]$, [11] at 235 K in CD_2Cl_2 .

Figure S 29: ¹³C{¹H} NMR spectrum of fac = [Tc(κ ² - terpy)(CO)₃Cl], [11] at 298 K in CD₂Cl₂.

Figure S 30: ¹H–¹H COSY NMR spectrum of fac – $[Tc(\kappa^2$ –terpy)(CO)₃Cl], [11] at 235 K in CD₂Cl₂.

Figure S 31: ¹H⁻¹³C HSQC NMR spectrum of fac - $[Tc(\kappa^2$ -terpy)(CO)₃Cl], [11] at 298 K in CD₂Cl₂.

5 Crystallographic Data

CCDC entries 2307669-2307674 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/structures.

5.1 2,6-bis((di-tertbutylphosphino)methyl)pyridine (PyrPNP*^t***Bu) (2)**

Figure S32: Ellipsoid displacement plot^[15] of ^{Pyr}PNP^{tBu} (2). Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity. Molecule has been prepared according to literature procedure (c.f. *General Experimental Details*).[5]

Table S2: Crystallographic data of PyrPNP*^t*Bu (**2**)*.*

Empirical formula

Formula weight $C_{23}H_{43}NP_2$ 395.52 Formula weight Radiation CuK α (λ = 1.54184 Å) Temperature [K] 160 Crystal system monoclinic Space group C2/c $a \left[\text{Å} \right]$ 15.9398(4) $\mathbf{b} [\mathbf{A}]$ 6.2656(2) c $[\text{Å}]$ 25.0585(8) α [°] 90 β [°] 96.419(3) $γ[°]$ 90 Volume [Å3] 2486.96(13) $Z \sim 4$ $ρ_{calc} [g/cm³]$ μ [mm⁻¹] 1.613 F(000) 872.0 Crystal size [mm³] Crystal description clear, yellowish colorless block 2Θ range for data collection [°] 2.9 to 78.8 Reflections collected 10581 Reflections observed Criterion for observation I>2 σ I Completeness to theta 97.2% to 81.330° Absorption correction gaussian Min./max. transmission 0.769/1.000 Data/restraints/parameters 2652/0/125 Goodness-of-fit on F Final R indexes $[I>=2\sigma(I)]$ $R_1 = 0.0563$, $wR_2 = 0.1482$ Final R indexes [all data] $R_1 = 0.0583$, $wR_2 = 0.1508$ Largest diff. peak/hole / [e Å⁻³] 0.58/−0.46

Diffractometer *Rigaku* XtaLAB *Synergy, Dualflex*, HyPix] 1.056 $0.125 \times 0.08 \times 0.071$ Index ranges $-20 \le h \le 17, -7 \le k \le 7, -30 \le l \le 32$ Independent reflections 2652 [$R_{int} = 0.0409$, $R_{sigma} = 0.0284$]
Reflections observed 2456 ² 1.079

5.2 *mer–***[Re(PyrPNPtBu)(CO)3] + , [3](PF6)**

Figure S33: Ellipsoid displacement plot^[15] of *mer*–[Re(^{Pyrp}NP^{tBu})(CO)₃](PF₆) ([3](PF₆)). Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity.

Table S3: Tabulated values of selected bond lengths and angles in the crystal structure of $[3](PF_6)$ *.*

	Selected bond lengths		Selected bond angles
$Re1-P1$	$2.4431(18)$ Å	$P1 - Re1 - P2$	$159.03(7)$ °
$Re1-P2$	$2.4565(17)$ Å	$P1 - Re1 - N1$	79.41(14)°
$Re1-N1$	$2.215(5)$ Å	P2–Re1–N1	79.63(14)°
$Re1-C24$	$2.017(8)$ Å	$P1 - Re1 - C24$	91.5(2)°
$Re1 - C25$	$1.921(11)$ Å	$P1 - Re1 - C25$	$100.3(3)$ °
$Re1-C26$	$1.998(7)$ Å	$P1 - Re1 - C26$	$90.2(2)$ °
$C24-01$	$1.095(10)$ Å	C24–Re1–C25	87.9(4)°
$C25-02$	$1.163(12)$ Å	C25–Re1–C26	$90.5(3)$ °
$C26-03$	$1.105(9)$ Å	C24–Re1–C26	177.9(3)°

Table S4: Crystallographic data of $mer-[Re(^{Pyr}PNP^{tBu})(CO)_3](PF_6)$ ([3](PF_6)).

Note: The PF_6^- counterion is disordered with Br⁻ at an occupancy of 0.28.

5.3 *mer–***[Re(PyrPNPtBu)(CO)3] + , [3](BF4)**

Figure S34: Ellipsoid displacement plot^[15] of *mer*–[Re(^{Pyrp}NP^{tBu})(CO)₃](BF₄) ([3](BF₄)). Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity.

Table S5: Tabulated values of selected bond lengths and angles in the crystal structure of [**3**](BF4)*.*

	Selected bond lengths		Selected bond angles
$Re1-P1$	$2.4454(12)$ Å	$P1 - Re1 - P2$	$158.30(4)$ °
$Re1-P2$	$2.4477(12)$ Å	$P1 - Re1 - N1$	$79.28(11)$ °
$Re1-N1$	$2.200(4)$ Å	P2–Re1–N1	$79.03(11)$ °
$Re1-C24$	$2.004(5)$ Å	$P1 - Re1 - C24$	90.82(16)°
$Re1 - C25$	$1.925(5)$ Å	$P1 - Re1 - C25$	$100.88(16)$ °
$Re1-C26$	$1.975(5)$ Å	$P1 - Re1 - C26$	88.12(16)°
$C24-01$	$1.117(7)$ Å	C24–Re1–C25	$90.3(2)$ °
$C25-02$	$1.140(6)$ Å	C25–Re1–C26	89.8(2)°
$C26-03$	$1.145(6)$ Å	C24–Re1–C26	$178.9(2)$ °

Table S6: Crystallographic data of *mer*–[Re(PyrPNPtBu)(CO)3](BF4) ([**3**](BF4)).

Note: One of the BF_4^- counterions is disordered with Br^- at an occupancy of 0.05.

5.4 *mer–***[Tc(PyrPNPtBu)(CO)3] + , [5](PF6)**

Figure S35: Ellipsoid displacement plot^[15] of *mer*–[Tc(^{Pyr}PNP^{tBu})(CO)₃](PF₆) ([5](PF₆)). Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity.

Table S7: Tabulated values of selected bond lengths and angles in the crystal structure of [5](PF₆).

	Selected bond lengths		Selected bond angles
$Tc1-P1$	$2.4578(10)$ Å	$P1-Tc1-P2$	159.76(4)°
$Tc1-P2$	$2.4495(10)$ Å	$P1-Tc1-N1$	$80.02(9)$ °
$Tc1-N1$	$2.206(3)$ Å	$P2-Tc1-N1$	79.75(9)°
$Tc1-C24$	$1.993(5)$ Å	$P1-Tc1-C24$	88.34(14)°
$Tc1-C25$	$1.917(5)$ Å	$P1-Tc1-C25$	$100.76(16)$ °
$Tc1-C26$	$1.988(5)$ Å	$P1-Tc1-C26$	$90.68(13)$ °
$C24-01$	$1.118(6)$ Å	$C24-Tc1-C25$	$88.2(2)$ °
$C25-02$	$1.144(6)$ Å	$C25-Tc1-C26$	$90.6(2)$ °
$C26-03$	$1.122(6)$ Å	$C24-Tc1-C26$	$178.35(18)$ °

Table S8: Crystallographic data of mer –[Tc(Pyr PNP^{tBu})(CO)₃](PF₆)([5](PF₆)).

Note: The PF₆⁻ counterion is disordered with Cl⁻ at an occupancy of 0.40, omitted in Figure S35.

5.5 *fac–***[Re(terpy)(CO)3(PO2F2)], [9]**

Figure S36: Ellipsoid displacement plot^[15] of *fac*–[Re(κ ²–terpy)(CO)₃(PO₂F₂)] [9]. Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity. The unit cell contains both the shown isomer, while the second isomer is omitted for clarity.

Table S10: Crystallographic data of *fac*-[Re(κ^2 -terpy)(CO)₃(PO₂F₂)] [9].

Note: The unit cell contains both isomers, but only one is shown in Figure S36. The $PO_2F_2^-$ counterion is disordered with Br– at an occupancy of 0.13.

5.6 *fac–***[Tc(terpy)(CO)3Cl], [11]**

Figure S37: Ellipsoid displacement plot^[15] of *fac*-[Tc(κ ²-terpy)(CO)₃Cl] [11]. Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity.

Table S11: Tabulated values of selected bond lengths and angles in the crystal structure of [**11**]*.*

	Selected bond lengths		Selected bond angles
$Tc1-N1$	$2.1779(12)$ Å	$N1-Tc1-N2$	$75.09(5)$ °
$Tc1-N2$	$2.2378(12)$ Å	$N1-Tc1-C20$	$175.97(5)$ °
$Tc1-C20$	$1.9248(16)$ Å	$N1-Tc1-C30$	$92.80(5)$ °
$Tc1-C30$	$1.8901(16)$ Å	$N1-Tc1-C40$	97.72(6)°
$Tc1-C40$	$1.9124(16)$ Å	$N1-Tc1-C11$	$85.99(3)$ °
$Tc1-C11$	$2.5040(4)$ Å	$N2-Tc1-C11$	82.53(3)°
$C20-020$	$1.1453(19)$ Å	$C20-Tc1-C30$	$89.10(6)$ °
$C30-O30$	$1.146(2)$ Å	$C30-Tc1-C40$	$88.32(7)$ °
$C40-040$	$1.143(2)$ Å	$C20-Tc1-C40$	$85.88(7)$ °

Table S12: Crystallographic data of fac = $[Tc(\kappa^2$ -terpy)(CO)₃Cl)] [11].

Empirical formula $C_{18}H_{11}CIN_3O_3Tc$ Formula weight 450.75 Radiation MoK α ($\lambda = 0.71073$ Å) Temperature [K] 160 Crystal system monoclinic Space group $12/a$ $a \left[\mathring{A} \right]$ 16.6643 (3) $\mathbf{b} \, [\text{Å}]$ 7.04490 (10) c $[\text{Å}]$ 29.6513 (6) α [°] 90 β [°] 102.168 (2) γ [°] 102.168 (2) $γ[°]$ 90 Volume [Å3] 3402.81 (11) $Z \qquad \qquad 8$ $ρ_{calc} [g/cm³]$ μ [mm⁻¹] 1.027 F(000) 1792.0 Crystal size $\lceil mm^3 \rceil$ Crystal description plate, green 2Θ range for data collection $\lceil \circ \rceil$ 5.002 to 59.144 Reflections collected 24908 Reflections observed 4032 Criterion for observation I>2 σ I Completeness to theta 99.9% to 29.6630° Absorption correction gaussian Min./max. transmission 0.224/1.000 Data/restraints/parameters 4254/0/235 Goodness-of-fit on F Final R indexes $[I>=2\sigma(I)]$ $R_1 = 0.0190$, $wR_2 = 0.0473$ Final R indexes [all data] $R_1 = 0.0204$, $wR_2 = 0.0479$ Largest diff. peak/hole / $[e \text{ Å}^{-3}]$ 0.51/-0.37

Diffractometer *Rigaku* XtaLAB *Synergy, Dualflex*, HyPix] 1.760 $0.57 \times 0.41 \times 0.1$ Index ranges $-21 \le h \le 21$, $-9 \le k \le 9$, $-40 \le l \le 36$ Independent reflections $4254 [R_{int} = 0.0221, R_{sigma} = 0.0157]$ ² 1.069

6. References

- [1] R. Alberto, R. Schibli, A. Egli, A. P. Schubiger, U. Abram, T. A. Kaden, *J. Am. Chem. Soc.* **1998**, *120*, 7987–7988.
- [2] R. Lengacher, Y. Wang, H. Braband, O. Blacque, G. Gasser, R. Alberto, *Chem. Commun.* **2021**, *57*, 13349–13352.
- [3] R. Alberto, A. Egli, U. Abram, K. Hegetschweiler, V. Gramlich, A. P. Schubiger, *J. Chem. Soc. Dalt. Trans.* **1994**, 2815–2820.
- [4] R. Alberto, R. Schibli, A. Egli, W. A. Herrmann, G. Artus, U. Abram, T. A. Kaden, *J. Organomet. Chem.* **1995**, *492*, 217–224.
- [5] Z. Li, T. M. Rayder, L. Luo, J. A. Byers, C. K. Tsung, *J. Am. Chem. Soc.* **2018**, *140*, 8082– 8085.
- [6] R. C. Clark, J. S. Reid, *Acta Crystallogr. Sect. A* **1995**, *51*, 887–897.
- [7] "CrysAlisPro (version 1.171.40.68a), Rigaku Oxford Diffraction," **2019**.
- [8] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* **2009**, *42*, 339–341.
- [9] G. M. Sheldrick, *Acta Crystallogr. Sect. A* **2015**, *71*, 3–8.
- [10] G. M. Sheldrick, *Acta Crystallogr. Sect. C* **2015**, *71*, 3–8.
- [11] A. L. Spek, *Acta Crystallogr. Sect. C* **2015**, *71*, 9–18.
- [12] M. L. Besmer, H. Braband, T. Fox, B. Spingler, A. P. Sattelberger, R. Alberto, *Inorg. Chem.* **2023**, *62*, 10727–10735.
- [13] H.-O. Kalinowski, S. Berger, S. Braun, *13C-NMR-Spektroskopie*, Thieme, New York, **1984**.
- [14] E. W. Abel, V. S. Dimitrov, N. J. Long, K. G. Orrell, A. G. Osborne, H. M. Pain, V. Sik, M. B. Hursthouse, M. A. Mazidc, *J. Chem. Soc. Dalt. Trans.* **1993**, 597–603.
- [15] L. J. Farrugia, *J. Appl. Crystallogr.* **1997**, *30*, 565–565.