Supporting Information

Induced *fac-mer* rearrangements in {M(CO)₃}⁺ complexes (M = Re, ^{99(m)}Tc) by a PNP ligand

Manuel Luca Besmer,*^a Flurina Schwitter,^a Federica Battistin,^a Henrik Braband,^a Thomas Fox,^a Bernhard Spingler^a and Roger Alberto^a

^aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

E-mail: manuel.besmer@chem.uzh.ch

Table of Contents

1 General Experimental Details
2. Remarks on NMR spectroscopy with ⁹⁹ Tc complexes4
3 Experimental Procedures and Data
$3.1 mer - [Re(^{Pyr}PNP^{tBu})(CO)_3]^+, [3](PF_6)$
$3.2 mer - [Re(^{Pyr}PNP'^{Bu})(CO)_3]^+, [3](BF_4)$
$3.3 mer - [Tc(^{Pyr}PNP'^{Bu})(CO)_3]^+, [5](PF_6)6$
$3.4 mer - [^{99m}Tc(^{Pyr}PNP^{tBu})(CO)_3], [7]^+6$
$3.5 fac - [Re(\kappa^2 - terpy)(CO)_3(PO_2F_2)], [9]$
$3.6 fac - [Re(\kappa^2 - terpy)(CO)_3Br], [10]$
$3.7 fac - [Tc(\kappa^2 - terpy)(CO)_3Cl], [11]$
3.8 Fluxional behaviour of fac -[Tc(κ^2 -terpy)(CO) ₃ Cl], [11]
4 Spectra10
$4.1 mer - [Re(^{Pyr}PNP'^{Bu})(CO)_3]^+, [3](PF_6)100000000000000000000000000000000$
$4.2 mer - [Re(^{Pyr}PNP'^{Bu})(CO)_3]^+, [3](BF_4) \dots 14$
4.3 $mer-[Tc(^{Pyr}PNP'^{Bu})(CO)_3]^+, [5](PF_6)$
$4.4 mer - [^{99m}Tc(^{Pyr}PNP^{tBu})(CO)_{3}], [7]^{+}$
$4.5 fac - [Re(\kappa^2 - terpy)(CO)_3(PO_2F_2)], [9]22$
$4.6 fac - [Re(\kappa^2 - terpy)(CO)_3Br], [10]$
4.7 fac -[Tc(κ^2 -terpy)(CO) ₃ Cl], [11]25
5 Crystallographic Data
5.1 2,6-bis((di-tertbutylphosphino)methyl)pyridine (^{Pyr} PNP ^{<i>t</i>Bu}) (2)
$5.2 mer - [Re(^{Pyr}PNP^{tBu})(CO)_3]^+, [3](PF_6)$
5.3 $mer - [Re(^{Pyr}PNP^{tBu})(CO)_3]^+, [3](BF_4) \dots 32$
5.4 $mer - [Tc(^{Pyr}PNP^{tBu})(CO)_3]^+, [5](PF_6)$
$5.5 fac - [Re(\kappa^2 - terpy)(CO)_3(PO_2F_2)], [9]$
$5.6 fac - [Tc(\kappa^2 - terpy)(CO)_3Cl], [11]$

6. F	erences)
------	---------	---

1 General Experimental Details

Materials: Unless otherwise stated, all chemicals were of reagent grade or higher, obtained from commercial sources and used without further purification. Solvents for reactions were of p.a. grade or distilled prior to their use. Deuterated NMR-solvents were purchased from Armar Chemicals (CH) or Cambridge Isotope Laboratories, Inc. (UK). (NH₄)[⁹⁹TcO₄] was purchased from Oak Ridge and treated with H_2O_2 prior to reactions for re-oxidation. $[^{99m}Tc(H_2O)_3(CO)_3]^+$ ([6]⁺) was synthesized with the isolink kit chemicals sodium boranocarbonate, sodium tartrate dihydrate and sodium tetraborate decahydrate.^[1,2] (NEt₄)₂[Re(CO)₃Br₃], (NEt₄)₂[Tc(CO)₃Cl₃] and 2,6-bis((di-tertbutylphosphino)methyl) pyridine (^{Pyr}PNP^{*t*Bu}) were synthesized following literature procedures.^[3–5] Na^{[99m}TcO₄] in 0.9% saline was eluted from a ⁹⁹Mo/^{99m}Tc Ultratechnekow FM generator purchased from b. e. imaging AG (Switzerland). Caution: ⁹⁹Tc is a weak β -emitter, ^{99m}Tc is a weak γ -emitter. All experiments must be carried out in licensed and appropriately shielded laboratories for low-level radioactive materials. NMR: NMR spectra were recorded in deuterated solvents at 298 K on Bruker AV-400 (400 MHz) or Bruker AV2-500 (500 MHz) spectrometers. ¹H and ¹³C chemical shifts (δ) are given in ppm relative to residual solvent resonances (CD₂Cl₂ ¹H: δ 5.32; ¹³C: δ 53.84; THF-d₈: ¹H: δ 1.72; ¹³C: δ 25.31). Signal assignments are based on coupling constants and/or supportive NMR experiments. The NMR measurements were highly influenced by the characteristics of technetium. Its paramagnetic nature and the large nuclear quadrupolar moment both strongly accelerate t_1 and t_2 relaxation up to complete signal extinction. IR: FT-IR spectra were recorded with SpectrumTwo FT-IR Spectrometer (Perkin-Elmer) and samples were applied as KBr pellets. LSC: Technetium content measurements: Products were dissolved in the appropriate solvents. The measurements were carried out with a scintillation cocktail (Packard Ultimate Gold XR) and a Hidex 300 SL liquid scintillation counter. Yields of compounds were calculated from activity yields by LSC measurement. Microwave reactions: Microwave assisted reactions (99mTc) were carried out in a Biotage Initiator. X-ray diffraction: Single-crystal X-ray diffraction data was collected at 160(1) K on a Rigaku OD XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer using a single wavelength X-ray source (Cu K_a radiation: $\lambda = 1.54184$ Å for ([3](PF₆), [3](BF₄), [5](PF₆), 9) or on a Rigaku XtaLAB Synergy, Dualflex, HyPix diffractometer using a single wavelength X-ray source (Cu K_{α} radiation: $\lambda = 1.54184$ Å for (2) or Mo K_{α} radiation: $\lambda = 0.71073$ Å for 11) from a micro-focus sealed X-ray tube and an Oxford liquid-nitrogen Cryostream cooler. The selected suitable single crystal was mounted using polybutene oil on a flexible loop fixed on a goniometer head and immediately transferred to the diffractometer. Pre-experiments, data collection, data reduction and analytical absorption correction^[6] were performed with the program suite CrysAlis^{Pro.[7]} Using Olex2,^[8] the structures were solved with the SHELXT^[9] small molecule structure solution program and refined with the SHELXL 2018/3^[10] program package by full-matrix least-squares minimization on F². PLATON^[11] was used to check the result of the X-ray analysis. Ill-defined electron density in [9] had to be treated with the SQUEEZE procedure in PLATON.^[11] For more details about the data collection and refinement parameter, see the CIF files. UHPLC-ESI-MS: Samples (2 µl injection) were analyzed with a Vanquish[™] Horizon UHPLC System (Thermo Fisher Scientific, Waltham, USA) connected to a Vanquish[™] eλ detector and ISQ-EM ESI mass spectrometer (Thermo Fisher Scientific, Waltham, USA), operated in positive mode; scan range m/z 200–1500. Separation was performed with an Acquity BEH C18 HPLC column (1.7 µm particle size, 2x100 mm, Waters) kept at 40 °C. The mobile phase consisted of A: $H_2O + 0.1\%$ HCOOH and B: $CH_3CN + 0.1\%$ HCOOH. UV spectra were recorded between 190 and 670 nm at a 4 nm resolution and at 5 Hz. The mass spectrometer was operated in the positive (negative) electrospray ionization mode at 3000 V (-2'000 V) capillary voltage with a N₂ Sheath gas pressure of 41.9 psi, auxiliar gas pressure of 5.5 psi and sweep gas pressure of 0.1 psi. Spectra were acquired in the mass range from m/z 150 to 2'000. Method: 0-0.5 min 5% B; 0.5-4.5 min linear gradient from 5 to 100% B; 4.5-5 min 100% B, 5-5.1 min linear gradient from 100 to 5% B, 5.1-5.5 min isocratic gradient with 5% B; flow rate was 0.6 mL/min. Radio-HPLC: VWR Hitachi Chromaster with tuneable UV detector (250nm), radio detector (Berthold LB514, YG 150-S5D), Nucleosil C-18 column (100Å, 5µm, 250×4mm), flow rate of 0.5mL/min, 0.1% TFA in H₂O (solvent A) and methanol (solvent B) with the following gradient: 0-3min: 90% A (10% B); 3-3.1min: 90% A

(10% B) to 75% A (25% B); 3.1–9min: 75% A (25% B); 9-9.1min: 75% A (25% B) to 66% A (34% B); 9.1-20min: 66% A (34% B) to 0% A (100% B); 20-25min: 0% A (100% B); 25-30min: 0% A (100% B) to 90% A (10% B).

2. Remarks on NMR spectroscopy with ⁹⁹Tc complexes

We have already reported on analogous observations with ⁹⁹Tc NMR spectroscopy that are true for this work as well, as described below.^[12] The influence of quadrupolar nuclei like ⁹⁹Tc (spin I = 9/2, quadrupole relaxation time T_{IQ}) onto the relaxation time of scalarly coupled nuclei like ¹³C (T_{I-SC}) is described by formula (I) according to literature.^[13]

$$\frac{1}{T_{1-SC}} = \frac{8\pi^2 J^2}{3} I(I+1) \frac{T_{1Q}}{1+(\omega_C - \omega_I)^2 T_{1Q}^2}$$
(I)

In this regard, a significant increase of ${}^{13}C$ T₁ relaxation due to strong scalar coupling with ${}^{99}Tc$ might be an explanation for the unobservability of carbon sites which are directly bound to the technetium center (CO):

Considering ¹³C-⁹⁹Tc coupling constants J of some 100 Hz and a typical ⁹⁹Tc relaxation time T_{IQ} in the *millisecond* range, in conjunction with the close resonance frequencies of carbon and technetium (125 vs. 113 MHz), relation (I) predicts significant scalar ¹³C relaxation I/T_{I-SC} in the kHz range, causing broadening and weakening effects onto the ¹³C signal, up to its loss.

Rhenium bound ¹³C nuclei are, in contrast, *not* influenced by scalar T_1 relaxation as both rhenium isotopes (^{185,187}Re) undergo extraordinarily fast quadrupolar relaxation T_{IQ} in the *microsecond* range. Therefore, equation (I) yields values close to zero, cancelling any scalar relaxation effects $1/T_{I-SC}$ in the case of rhenium.

3 Experimental Procedures and Data

3.1 *mer*–[Re($^{Pyr}PNP^{tBu}$)(CO)₃]⁺, [3](PF₆)

Synthesis: A round-bottom flask was charged with $(NEt_4)_2[1]$ (100.0 mg, 129.0 µmol), ^{Pyr}PNP^{*t*Bu} (2) (56.3 mg, 142.0 µmol), TlPF₆ (145.0 mg, 414.0 µmol) and a magnetic stir bar under inert atmosphere. THF (dry, 25 mL) was added to the mixture and an immediate formation of a colorless precipitate was observed. While stirring, the reaction mixture was heated to reflux and allowed to cool down after 81 h of heating. The off-white precipitate was filtered off with a P4 glass filter frit and the filtrate was transferred into a flask. Layering of the filtrate with hexanes afforded colorless, crystalline material (suitable for XRD) that was separated after 4 h and washed with hexanes. Product [**3**](PF₆) was obtained as a colorless crystalline solid in 34% yield (35.3 mg, 43.4 µmol).

Analysis: IR (KBr) ν [cm⁻¹]: 3434w, 2999m, 2959m, 2880m, 2047s (CO), 1946s (CO), 1913s (CO), 1601w, 1482m, 1463m, 1395m, 1377m, 1290m, 1183m, 1024w, 838s, 628m, 558m. ¹H NMR (500 MHz, CD₂Cl₂) δ [ppm]: 7.91 (t, ³*J*_{HH} = 7.83 Hz, 1 H, C*H*_{pyr(4})); 7.65 (d, ³*J*_{HH} = 7.83 Hz, 2 H, C*H*_{pyr(3,5})); 3.92 (dd-like t, ²*J*_{HH} = 3.08 Hz, 4 H, PC*H*₂); 1.38 (t-like m, 36 H, (PC(C*H*₃)₃). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂) δ [ppm]: 197.3 (t, ²*J*_{CP} = 7.8 Hz, 2 C, 2 *trans*-CO); 196.5 (t, ²*J*_{CP} = 3.6 Hz, 1 C, CO); 164.4 (t, ²*J*_{CP} = 2.6 Hz, 2 C, C_{pyr(2,6)}); 141.2 (s, 1 C, CH_{pyr(4})); 123.3 (t, ³*J*_{CP} = 4.0 Hz, 2 C, CH_{pyr(3,5)}); 40.9 (t, ²*J*_{CP} = 10.0 Hz, 2 C, PCH₂); 38.9 (t, ¹*J*_{CP} = 9.8 Hz, 4 C, PC(CH₃)₃); 30.3 (t, ²*J*_{CP} = 1.6 Hz, 12 C, PC(CH₃)₃). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) δ [ppm]: 67.53 (s, 2 P, PC(CH₃)₃); -144.44 (sep, ¹*J*_{PF} = 710.8 Hz, 1 P, *P*F₆). ¹⁹F NMR (470 MHz, CD₂Cl₂) δ [ppm]: -72.95 (d, ¹*J*_{FP} = 710.8 Hz, 6 F, PF₆). UHPLC-ESI-MS: R_t = 3.44 min, [M]⁺ = calc. for C₂₆H₄₃NO₃P₂Re: 666.2 m/z, found: 666.1 m/z and [M–CO]⁺ = calc. for C₂₅H₄₃NO₂P₂Re: 638.2 m/z, found: 638.2 m/z.

3.2 mer- $[Re(^{Pyr}PNP^{tBu})(CO)_3]^+$, [3](BF₄)

Synthesis: The synthesis of [**3**](BF₄) followed an analogous procedure as in the synthesis of [3](PF₆) (3.1). (NEt₄)₂[**1**] (25.0 mg, 32.3 μ mol), ^{Pyr}PNP^{*t*Bu} (**2**) (14.0 mg, 36.0 μ mol) and AgBF₄ (18.0 mg, 92.8 μ mol) were mixed in a round-bottom flask and dry THF (25 mL) was added under inert atmosphere.

The stirred mixture was heated to reflux for 84 h and subsequently the grey suspension was filtered (P4). The solvent of the slightly pale yellowish filtrate was removed *in vacuo* and pale yellowish crystalline material was obtained and characterized to be $[3](BF_4)$ in a yield of 23% (6.9 mg, 9.16 µmol).

Analysis: c.f. 3.2 for [3](PF₆), IR bands of BF₄⁻ (KBr) v [cm⁻¹]: 1463m, 1374m, 1061s.

3.3 mer-[Tc(^{Pyr}PNP^{tBu})(CO)₃]⁺, [5](PF₆)

Synthesis: A round-bottom flask was charged with (NEt₄)₂[4] (23.3 mg, 42.5 μ mol), ^{Pyr}PNP^{*i*Bu} (2) (25.0 mg, 63.2 μ mol, 1.5 equiv.), TIPF₆ (45.0 mg, 128.6 μ mol, 3 equiv.) and a magnetic stir bar under inert atmosphere. THF (dry, 15 mL) was added to the mixture and an immediate formation of a colorless precipitate was observed. While stirring, the reaction mixture was heated to reflux for 5 h and subsequently allowed to cool down. The off-white precipitate was filtered off with a P4 glass filter frit and the filtrate was transferred into a vial. Layering of the filtrate with hexanes afforded slightly yellowish colored crystals of [**5**](PF₆) in 27% yield (8.27 mg, 11.5 μ mol).

Analysis: IR (KBr) ν [cm⁻¹]: 3434w, 2973*m*, 2878*w*, 2053*w* (CO), 1960*s* (CO), 1923*s* (CO), 1624*w*, 1480*m*, 1462*m*, 1396*w*, 1289*w*, 1182*w*, 1023*m*, 895*m*, 839*s*, 630*w*, 558*m*. ¹H NMR (400 MHz, CD₂Cl₂) δ [ppm]: 7.86 (*t*, ³*J*_{HH} = 7.96 Hz, 1 H, C*H*_{pyr(4})); 7.57 (*d*, ³*J*_{HH} = 7.84 Hz, 2 H, C*H*_{pyr(3,5})); 3.71 (*t*-like *m*, ²*J*_{HH} = 2.50 Hz, 4 H, PC*H*₂); 1.37 (*t*-like *m*, 36 H, (PC(C*H*₃)₃). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ [ppm]: 163.0 (*t*, ²*J*_{CP} = 2.7 Hz, 2 C, C_{pyr(2,6})); 140.9 (*s*, 1 C, CH_{pyr(4})); 123.5 (*t*, ³*J*_{CP} = 4.0 Hz, 2 C, CH_{pyr(3,5})); 39.0 (*t*, ²*J*_{CP} = 7.9 Hz, 2 C, PCH₂); 38.4 (*t*, ¹*J*_{CP} = 7.7 Hz, 4 C, PC(CH₃)₃); 30.4 (*t*-like *s*, 12 C, PC(CH₃)₃); ¹³C signals of CO ligands not observed (c.f. section 3.8). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂) δ [ppm]: 90.78 (br *s*, $\Delta_{1/2}$ = 4.4 kHz, 2 P, PC(CH₃)₃); -142.71 (*sep*, ¹*J*_{PF} = 711.68 Hz, 1 P, PF₆). ¹⁹F NMR (471 MHz, CD₂Cl₂) δ [ppm]: -73.08 (*d*, ¹*J*_{FP} = 710.6 Hz, 6 F, PF₆). ⁹⁹Tc NMR (90.1 MHz, C₆D₆) δ [ppm]: -1574 ($\Delta_{1/2}$ = 2.2 kHz). ⁹⁹Tc analysis calc. for C₂₆H₄₃F₆NO₃P₃Tc (·Et₄NPF₆) (%): 9.90; found: 8.89.

3.4 mer-[^{99m}Tc(^{Pyr}PNP^{tBu})(CO)₃], [7]⁺

Synthesis: Method a: A microwave vial was charged with 1.0 mL of an aqueous solution containing freshly prepared $[^{99m}Tc(H_2O)_3(CO)_3]^+([6]^+)$. The vial was sealed and flushed with N₂ for 15 min and in a separate vial ^{Pyr}PNP^{/Bu} (2) (10.1 mg, 25.5 µmol) was dissolved in 1 mL of degassed EtOH. The EtOH solution of 2 was added to the sealed vial with a syringe and subsequently the vial was placed in the microwave for 30 min at 100 °C. Complex [7]⁺ was obtained with 92% RCP and purification with radio-HPLC delivered [7]⁺ in 97% RCP. (RCY: 95%).

Method b: Alternatively, $[7]^+$ may also be synthesized in a 1-pot reaction with eluted $[^{99m}TcO_4]^-$ in presence of the *isolink kit* chemicals and ^{Pyr}PNP^{/Bu} (2) in a H₂O/EtOH (1:1, degassed) solution, yielding equivalent results after 30 min at 100 °C in the microwave.

Analysis: Radio-HPLC: R_t = 25.53 min, RCP: 97.1%.

$3.5 fac - [Re(\kappa^2 - terpy)(CO)_3(PO_2F_2)], [9]$

Synthesis: A round-bottom flask was charged with (NEt₄)₂[1] (50.4 mg, 65.4 µmol), terpy (8) (16.3 mg, 69.9 µmol, 1.1 equiv.), TlPF₆ (67.8 mg, 194.1 µmol, 3 equiv.) and a magnetic stir bar under inert atmosphere. THF (dry, 10 mL) was added to the mixture and an immediate formation of a colorless precipitate was observed. While stirring, the reaction mixture was heated to reflux for 39 h and subsequently allowed to cool down. The off-white precipitate was filtered off with a P4 glass filter frit and the filtrate was concentrated. Layering of the filtrate with hexanes afforded [9] as pale yellowish, crystalline material after washing with hexanes in a yield of 64% (25.4 mg, 42.0 µmol).

Analysis: IR (KBr) v [cm⁻¹]: 3434w, 2924m, 2853m, 2021s (CO), 1916s (CO), 1895s (CO), 1768w, 1719w, 1605w, 1453m, 1313m (PO₂F₂⁻), 1158m (PO₂F₂⁻), 1034w, 842s (PO₂F₂⁻), 775m, 647w, 558w, 498w (PO₂F₂⁻). ¹H NMR (400 MHz, THF- d_8) δ [ppm]: 9.14 (d, ³ J_{HH} = 5.2 Hz, 1 H, C $H_{terpy-1}$); 8.77 (d, ³ J_{HH} = 4.5 Hz, 1 H, C $H_{terpy-11}$); 8.62 (t (2 overlaid d), 2 H, C $H_{terpy-5,4}$); 8.33 (t, ³ J_{HH} = 7.94 Hz, 1 H, C $H_{terpy-1}$)

6); 8.27 (*t*, ${}^{3}J_{\text{HH}}$ = 7.0 Hz, 1 H, *CH*_{terpy-3}); 7.95 (*t*, ${}^{3}J_{\text{HH}}$ = 7.4 Hz, 1 H, *CH*_{terpy-9}); 7.88 (*t* (2 overlaid *d*), 2 H, *CH*_{terpy-8,7}); 7.71 (*t*, ${}^{3}J_{\text{HH}}$ = 6.4 Hz, 1 H, *CH*_{terpy-2}); 7.52 (*t*, ${}^{3}J_{\text{HH}}$ = 6.2 Hz, 1 H, *CH*_{terpy-10}). ${}^{31}P{^{1}H}$ **NMR** (162 MHz, THF-*d*₈) δ [ppm]: -16.19 (*t*, ${}^{1}J_{\text{FP}}$ = 961.7 Hz, 1 P, *PO*₂F₂). ${}^{19}F{^{1}H}$ **NMR** (376 MHz, THF-*d*₈) δ [ppm]: -73.66 (*d*, ${}^{1}J_{\text{FP}}$ = 710.30 Hz, 1 F, minimal traces of PF₆ (not visible in ${}^{31}P{^{1}H}$)), -84.5 (*d*, ${}^{1}J_{\text{FP}}$ = 961.3 Hz, 2 F, PO₂F₂). **UHPLC-ESI-MS:** R_{*t*} = 2.26 min, [M-(PO₂F₂⁻)]⁺ = calc. for C₁₈H₁₁N₃O₃Re: 504.0 m/z, found: 504.0 m/z and [M-(PO₂F₂⁻)+MeCN]⁺ = calc. for C₂₅H₄₃NO₂P₂Re: 545.1 m/z, found: 545.0 m/z.

3.6 *fac*–[Re(κ^2 –terpy)(CO)₃Br], [10]

Synthesis: A round-bottom flask was charged with $(NEt_4)_2[1]$ (47.7 mg, 61.9 µmol), terpy (8) (15.8 mg, 67.8 µmol, 1.1 equiv.), AgBF₄ (36.0 mg, 184.9 µmol, 3 equiv.) and a magnetic stir bar under inert atmosphere. THF (dry, 12 mL) was added to the mixture and an immediate formation of a yellowish suspension was observed. While stirring, the reaction mixture was heated to reflux for 24 h and subsequently allowed to cool down. The greyish precipitate was filtered off with a P4 glass filter frit and the solvent of the greenish-yellowish filtrate was evaporated *in vacuo*. The residue was washed with H₂O (3x5 mL) and subsequently redissolved in minimal THF. Layering of the solution with hexanes afforded [10] as yellow, crystalline material after washing with hexanes in a yield of 71% (25.7 mg, 44.1 µmol).

Analysis: Complex [10] has already been obtained via a different route published by Abel, *et al.*^[14] and the obtained data is in agreement.

3.7 *fac*–[Tc(κ^2 –terpy)(CO)₃Cl], [11]

Synthesis: $(NEt_4)_2[4]$ (39.9 mg, 72.6 µmol) was dissolved in 5 mL of MeOH and stirred in a roundbottom flask. Terpy (8) (17.3 mg, 74.0 µmol, 1 equiv.) was dissolved in 2 mL of MeOH and added to stirred solution. The yellow solution was heated to 50 °C for 4 h while the color changed to pale green. After cooling, the solvent was evaporated under a stream N_2 and the remaining solid was washed by stirring in water. The solution was decanted and the residue was dried. The product was extracted with CH_2Cl_2 and subsequently overlaid with hexanes. Crystallization yielded olive-green crystals of [11] in quantitative yield.

Analysis: IR (KBr) ν [cm⁻¹]: 3446w, 2989w, 2026s (CO), 1914s (CO), 1887s (CO), 1460m, 1402w, 1308w, 1184w, 1033w, 1005w, 798w, 667w, 636w, 502w. ¹H NMR (400 MHz, CD₂Cl₂, *T* = 298 K) δ [ppm]: 8.99 (br *s*, 1 H, CH_{terpy-1}); 8.81 (br *s*, 1 H, CH_{terpy-1}); 8.27 (br *s*, 2 H, CH_{terpy-4},5); 8.16 (*t*, ³*J*_{HH} = 7.76 Hz, 1 H, CH_{terpy-6}); 8.08 (br *s*, 1 H, CH_{terpy-3}); 7.93 (br *s*, 2 H, CH_{terpy-8}); 7.78 (br *s*, 1 H, CH_{terpy-7}); 7.53 (br *s*, 2 H, CH_{terpy-1}); 8.79 (*d*, ³*J*_{HH} = 4.40 Hz, 1 H, CH_{terpy-1}); 8.30 (*d*, ³*J*_{HH} = 7.90 Hz, 1 H, CH_{terpy-6}); 8.27 (*d*, ³*J*_{HH} = 8.25 Hz, 1 H, CH_{terpy-4}); 8.16 (*t*, ³*J*_{HH} = 7.75 Hz, 1 H, CH_{terpy-6}); 8.08 (*t*, ³*J*_{HH} = 7.75 Hz, 1 H, CH_{terpy-6}); 8.08 (*t*, ³*J*_{HH} = 7.75 Hz, 1 H, CH_{terpy-6}); 8.08 (*t*, ³*J*_{HH} = 7.45 Hz, 1 H, CH_{terpy-7}); 7.94 (*t*, ³*J*_{HH} = 6.98 Hz, 1 H, CH_{terpy-9}); 7.82 (*d*, ³*J*_{HH} = 7.45 Hz, 1 H, CH_{terpy-8}); 7.75 (*d*, ³*J*_{HH} = 7.45 Hz, 1 H, CH_{terpy-7}); 7.53 (*p* (2 overlaid *t*), 2 H, CH_{terpy-2,10}). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂) δ [ppm]: 152.8 (*s*, 1 C, CH_{terpy}); 127.3 (*s*, 1 C, CH_{terpy}); 126.0 (*s*, 1 C, CH_{terpy}); 125.4 (*s*, 1 C, CH_{terpy}); 124.8 (*s*, 1 C, CH_{terpy}); 123.6 (*s*, 1 C, CH_{terpy}); 122.2 (*s*, 1 C, CH_{terpy}). ⁹⁹Tc NMR (90.1 MHz, CD₂Cl₂) δ [ppm]: -1002 (Δ_{1/2} = 380 Hz). ⁹⁹Tc analysis calc. for C₁₈H₁₁ClN₃O₃Tc (%): 21.90; found: 20.61.

3.8 Fluxional behaviour of fac-[Tc(κ^2 -terpy)(CO)₃Cl], [11]

Scheme S1: Fluxional behaviour of the (κ^2 -terpy) ligand in complex [11]. The scheme shows both interconverting structures with NMR numbering (3.7).

4 Spectra

4.1 mer-[Re(^{Pyr}PNP^{tBu})(CO)₃]⁺, [3](PF₆)

Figure S 1: IR spectrum (KBr) of *mer*–[Re(^{Pyr}PNP^{*t*Bu})(CO)₃]⁺, [**3**](PF₆).

Figure S 2: ¹H NMR spectrum of *mer*-[Re(^{Pyr}PNP^{*t*Bu})(CO)₃]⁺, [**3**](PF₆) in CD₂Cl₂.

Figure S 3: ¹³C{¹H} NMR spectrum of $mer-[Re(^{Pyr}PNP'^{Bu})(CO)_3]^+$, [3](PF₆) in CD₂Cl₂.

Figure S 4: ${}^{31}P{}^{1}H$ NMR spectrum of *mer*-[Re(${}^{Pyr}PNP'{}^{Bu})(CO)_{3}$]⁺, [3](PF₆) in CD₂Cl₂.

Figure S 5: ¹⁹F NMR spectrum of *mer*–[Re($^{Pyr}PNP'^{Bu}$)(CO)₃]⁺, [3](PF₆) in CD₂Cl₂.

Figure S 6: ${}^{1}H-{}^{1}H \text{ COSY NMR}$ spectrum of *mer*-[Re(${}^{Pyr}PNP'{}^{Bu}$)(CO)₃]⁺, [**3**](PF₆) in CD₂Cl₂.

Figure S 7: ¹H–¹³C HSQC NMR spectrum of *mer*–[Re(^{Pyr}PNP^{*t*Bu})(CO)₃]⁺, [**3**](PF₆) in CD₂Cl₂.

4.2 mer-[Re(^{Pyr}PNP^{tBu})(CO)₃]⁺, [3](BF₄)

Figure S 8: Excerpt of IR spectrum (KBr) of mer-[Re(^{Pyr}PNP^{tBu})(CO)₃]⁺, [3](BF₄) showing vibrations of BF₄⁻.

4.3 mer-[Tc(^{Pyr}PNP^{tBu})(CO)₃]⁺, [5](PF₆)

Figure S 9: IR spectrum (KBr) of *mer*-[Tc(^{Pyr}PNP^{*t*Bu})(CO)₃]⁺, [5](PF₆).

Figure S 10: ¹H NMR spectrum of *mer*-[Tc(^{Pyr}PNP^{tBu})(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 11: ${}^{13}C{}^{1}H$ NMR spectrum of *mer*-[Tc(${}^{Pyr}PNP'{}^{Bu}$)(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 12: ¹³C DEPT-135 NMR spectrum of *mer*-[$Tc(^{Pyr}PNP'^{Bu})(CO)_3$]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 13: ${}^{31}P{}^{1}H$ NMR spectrum of *mer*-[Tc(${}^{Pyr}PNP'{}^{Bu}$)(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 14: ¹⁹F NMR spectrum of *mer*– $[Tc(^{Pyr}PNP'^{Bu})(CO)_3]^+$, [5](PF₆) in CD₂Cl₂.

Figure S 15: ⁹⁹Tc NMR spectrum of *mer*–[Tc(^{Pyr}PNP^{tBu})(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 16: ${}^{1}H-{}^{1}H$ COSY NMR spectrum of *mer*-[Tc(${}^{Pyr}PNP'{}^{Bu}$)(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 17: ${}^{1}H-{}^{13}C$ HSQC NMR spectrum of *mer*-[Tc(${}^{Pyr}PNP'{}^{Bu}$)(CO)₃]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 18: ${}^{1}H-{}^{13}C$ HMBC NMR spectrum of *mer*-[Tc(${}^{Pyr}PNP'{}^{Bu})(CO)_{3}$]⁺, [5](PF₆) in CD₂Cl₂.

Figure S 19: γ -trace of *mer*-[^{99m}Tc(^{Pyr}PNP'^{Bu})(CO)₃]⁺, [7]⁺.

Figure S 20: UV-trace of *mer*-[Tc(^{Pyr}PNP^{*i*Bu})(CO)₃]⁺, [5]⁺.

Figure S 21: HPLC traces for the coinjection of $mer-[Tc(^{Pyr}PNP'^{Bu})(CO)_3]^+$, $[5]^+$ (top, UV-trace) with $mer-[^{99m}Tc(^{Pyr}PNP'^{Bu})(CO)_3]^+$, $[7]^+$ (bottom, γ -trace).

4.5 *fac*-[Re(κ²-terpy)(CO)₃(PO₂F₂)], [9]

Figure S 22: IR spectrum (KBr) of fac-[Re(κ^2 -terpy)(CO)₃(PO₂F₂)], [9].

Figure S 23: ¹H NMR spectrum of fac-[Re(κ^2 -terpy)(CO)₃(PO₂F₂)], [9] in THF- d_8 .

Figure S 24: ³¹P{¹H} NMR spectrum of fac-[Re(κ^2 -terpy)(CO)₃(PO₂F₂)], [9] in THF- d_8 .

Figure S 25: ¹⁹F{¹H} NMR spectrum of fac-[Re(κ^2 -terpy)(CO)₃(PO₂F₂)], [9] in THF- d_8 .

4.6 *fac*-[Re(κ²-terpy)(CO)₃Br], [10]

Data in agreement with literature.^[14]

4.7 *fac*-[Tc(κ²-terpy)(CO)₃Cl], [11]

Figure S 26: IR spectrum (KBr) of *fac*–[Tc(κ²–terpy)(CO)₃Cl], [11].

Figure S 27: ¹H NMR spectrum of *fac*-[Tc(κ^2 -terpy)(CO)₃Cl], [11] at 298 K in CD₂Cl₂.

Figure S 28: ¹H NMR spectrum of *fac*-[Tc(κ^2 -terpy)(CO)₃Cl], [11] at 235 K in CD₂Cl₂.

Figure S 29: ¹³C{¹H} NMR spectrum of fac-[Tc(κ^2 -terpy)(CO)₃Cl], [11] at 298 K in CD₂Cl₂.

Figure S 30: ¹H–¹H COSY NMR spectrum of *fac*–[Tc(κ^2 -terpy)(CO)₃Cl], [11] at 235 K in CD₂Cl₂.

Figure S 31: ¹H–¹³C HSQC NMR spectrum of fac–[Tc(κ^2 -terpy)(CO)₃Cl], [11] at 298 K in CD₂Cl₂.

5 Crystallographic Data

CCDC entries 2307669-2307674 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/structures.

5.1 2,6-bis((di-tertbutylphosphino)methyl)pyridine (^{Pyr}PNP^{rBu}) (2)

Figure S32: Ellipsoid displacement plot^[15] of ^{Pyr}PNP^{tBu} (2). Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity. Molecule has been prepared according to literature procedure (c.f. *General Experimental Details*).^[5]

Tabla S1+	Tabulated	values o	f selected	bond le	anothe and	angles in	the crusts	l structure of (2)
Table ST:	Tabulateu	values o	i selecteu	bolla la	enguis and	i angles m	the crysta	ii situctute of (<u>4</u>).

	Selected bond lengths		Selected bond angles
P1-C4	1.8611(16) Å	C4–P1–C5	102.50(8)°
P1C5	1.8900(19) Å	C4–P1–C9	99.47(8)°
P1C9	1.8891(18) Å	C5-P1-C9	110.92(9)°
N1-C3	1.3438(18) Å	C3-N1-C31	118.30(19)°
C1–C2	1.383(2) Å	C2C1C21	119.2(2)°
C2–C3	1.390(2) Å	N1-C3-C2	122.47(15)°
C3–C4	1.510(2) Å	C1–C2–C3	118.79(16)°

Table S2: Crystallographic data of ^{Pyr}PNP^{*t*Bu} (2).

Empirical formula Formula weight Diffractometer Radiation Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] α [°] β [°] γ[°] Volume [Å3] Ζ $\rho_{calc} \left[g/cm^3 \right]$ μ [mm⁻¹] F(000) Crystal size [mm³] Crystal description 2Θ range for data collection [°] Index ranges Reflections collected Independent reflections Reflections observed Criterion for observation Completeness to theta Absorption correction Min./max. transmission Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / [e Å⁻³] $C_{23}H_{43}NP_2$ 395.52 Rigaku XtaLAB Synergy, Dualflex, HyPix CuK α (λ = 1.54184 Å) 160 monoclinic C2/c 15.9398(4) 6.2656(2)25.0585(8) 90 96.419(3) 90 2486.96(13) 4 1.056 1.613 872.0 $0.125 \times 0.08 \times 0.071$ clear, yellowish colorless block 2.9 to 78.8 $-20 \le h \le 17, -7 \le k \le 7, -30 \le l \le 32$ 10581 2652 $[R_{int} = 0.0409, R_{sigma} = 0.0284]$ 2456 $I > 2\sigma(I)$ 97.2% to 81.330° gaussian 0.769/1.000 2652/0/125 1.079 $R_1 = 0.0563$, $wR_2 = 0.1482$ $R_1 = 0.0583, wR_2 = 0.1508$ 0.58/-0.46

5.2 mer-[Re(^{Pyr}PNP^{tBu})(CO)₃]⁺, [3](PF₆)

Figure S33: Ellipsoid displacement $plot^{[15]}$ of *mer*-[Re(^{Pyr}PNP^{tBu})(CO)₃](PF₆) ([**3**](PF₆)). Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity.

Table S3: Tabulated values of selected bond lengths and angles in the crystal structure of $[3](PF_6)$.

	Selected bond lengths		Selected bond angles
Re1–P1	2.4431(18) Å	P1-Re1-P2	159.03(7)°
Re1–P2	2.4565(17) Å	P1-Re1-N1	79.41(14)°
Re1–N1	2.215(5) Å	P2–Re1–N1	79.63(14)°
Re1–C24	2.017(8) Å	P1-Re1-C24	91.5(2)°
Re1-C25	1.921(11) Å	P1-Re1-C25	100.3(3)°
Re1–C26	1.998(7) Å	P1-Re1-C26	90.2(2)°
C24–O1	1.095(10) Å	C24–Re1–C25	87.9(4)°
C25–O2	1.163(12) Å	C25-Re1-C26	90.5(3)°
C26–O3	1.105(9) Å	C24–Re1–C26	177.9(3)°

 Table S4: Crystallographic data of mer-[Re(^{Pyr}PNP^{tBu})(CO)₃](PF₆) ([3](PF₆)).

Empirical formula Formula weight	$C_{26}H_{43}Br_{0.28}F_{4.34}NO_3P_{2.73}Re$
Diffractometer	Rigaku OD XtaLAB Synergy Dualfley Pilatus
Diffactometer	200K
Radiation	$CuK\alpha (\lambda = 1.54184 \text{ Å})$
Temperature [K]	160
Crystal system	triclinic
Space group	PĪ
a[Å]	8.4694 (2)
b [Å]	12.7901 (2)
c[Å]	15.8962 (3)
α [°]	105.675(2)
β[°]	104.744(2)
γ ^[°]	92.815(2)
Volume [Å3]	1590.42 (6)
Z	2
$\rho_{calc} \left[g/cm^3 \right]$	1.655
$\mu [mm^{-1}]$	9.636
F(000)	789.0
Crystal size [mm ³]	$0.068 \times 0.047 \times 0.021$
Crystal description	plate, yellowish
2Θ range for data collection [°]	6.012 to 159.956
Index ranges	$-10 \le h \le 10, -16 \le k \le 16, -20 \le l \le 20$
Reflections collected	57628
Independent reflections	$6827 [R_{int} = 0.0817, R_{sigma} = 0.0316]$
Reflections observed	6199
Criterion for observation	I>2σ (I)
Completeness to theta	98.3% to 79.978°
Absorption correction	gaussian
Min./max. transmission	0.484/0.845
Data/restraints/parameters	6827/12/384
Goodness-of-fit on F ²	1.082
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0558, wR_2 = 0.1477$
Final R indexes [all data]	$R_1 = 0.0609, wR_2 = 0.1523$
Largest diff. peak/hole / [e Å ⁻³]	1.54/-2.98

Note: The PF_6^- counterion is disordered with Br^- at an occupancy of 0.28.

5.3 mer-[Re(^{Pyr}PNP^{tBu})(CO)₃]⁺, [3](BF₄)

Figure S34: Ellipsoid displacement $plot^{[15]}$ of *mer*-[Re(^{Pyr}PNP^{tBu})(CO)₃](BF₄) ([**3**](BF₄)). Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity.

Table S5: Tabulated values of selected bond lengths and angles in the crystal structure of [3](BF₄).

	Selected bond lengths		Selected bond angles
Re1–P1	2.4454(12) Å	P1-Re1-P2	158.30(4)°
Re1–P2	2.4477(12) Å	P1-Re1-N1	79.28(11)°
Re1–N1	2.200(4) Å	P2-Re1-N1	79.03(11)°
Re1–C24	2.004(5) Å	P1–Re1–C24	90.82(16)°
Re1–C25	1.925(5) Å	P1-Re1-C25	100.88(16)°
Re1-C26	1.975(5) Å	P1-Re1-C26	88.12(16)°
C24–O1	1.117(7) Å	C24–Re1–C25	90.3(2)°
C25–O2	1.140(6) Å	C25-Re1-C26	89.8(2)°
C26–O3	1.145(6) Å	C24–Re1–C26	178.9(2)°

 Table S6: Crystallographic data of mer-[Re(^{Pyr}PNP^{tBu})(CO)₃](BF₄) ([3](BF₄)).

Empirical formula	$C_{52}H_{86}B_{1.95}Br_{0.05}F_{7.8}N_2O_6P_4Re_2$
Formula weight	$\frac{1504.78}{1000}$
Diffractometer	Rigaku OD XtaLAB Synergy, Dualflex, Pilatus
	200K
Radiation	$CuKa (\lambda = 1.54184 A)$
I emperature [K]	160
Crystal system	triclinic
Space group	P1
	8.87921 (7)
b [Å]	12.57039 (13)
c [Å]	27.5441 (2)
α [°]	85.4844 (7)
β [°]	89.7211 (6)
γ [°]	89.6147 (8)
Volume [Å3]	3064.69 (5)
Z	2
$\rho_{calc} \left[g/cm^3 \right]$	1.631
$\mu [mm^{-1}]$	9.226
F(000)	1503.0
Crystal size [mm ³]	$0.082 \times 0.072 \times 0.035$
Crystal description	plate, yellow
20 range for data collection [°]	6.438 to 159.324
Index ranges	$-11 \le h \le 11, -15 \le k \le 15, -35 \le l \le 34$
Reflections collected	81167
Independent reflections	12861 [$R_{int} = 0.0586$, $R_{sigma} = 0.0286$]
Reflections observed	11547
Criterion for observation	I>2σ (I)
Completeness to theta	99.6% to 79.662°
Absorption correction	gaussian
Min./max. transmission	0.270/0.698
Data/restraints/parameters	12861/48/740
Goodness-of-fit on F ²	1.086
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0383$, $wR_2 = 0.1040$
Final R indexes [all data]	$R_1 = 0.0420, WR_2 = 0.1063$
Largest diff. peak/hole / [e Å ⁻³]	1.14/-2.39

Note: One of the BF_4^- counterions is disordered with Br^- at an occupancy of 0.05.

5.4 mer-[Tc(^{Pyr}PNP^{tBu})(CO)₃]⁺, [5](PF₆)

Figure S35: Ellipsoid displacement $plot^{[15]}$ of *mer*-[Tc(^{Pyr}PNP^{tBu})(CO)₃](PF₆) ([**5**](PF₆)). Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity.

Table S7: Tabulated values of selected bond lengths and angles in the crystal structure of [5](PF₆).

	Selected bond lengths		Selected bond angles
Tc1–P1	2.4578(10) Å	P1-Tc1-P2	159.76(4)°
Tc1–P2	2.4495(10) Å	P1-Tc1-N1	80.02(9)°
Tc1–N1	2.206(3) Å	P2-Tc1-N1	79.75(9)°
Tc1–C24	1.993(5) Å	P1-Tc1-C24	88.34(14)°
Tc1-C25	1.917(5) Å	P1-Tc1-C25	100.76(16)°
Tc1-C26	1.988(5) Å	P1-Tc1-C26	90.68(13)°
C24–O1	1.118(6) Å	C24–Tc1–C25	88.2(2)°
C25–O2	1.144(6) Å	C25-Tc1-C26	90.6(2)°
C26–O3	1.122(6) Å	C24–Tc1–C26	178.35(18)°

 Table S8: Crystallographic data of mer-[Tc(^{Pyr}PNP^{tBu})(CO)₃](PF₆) ([5](PF₆)).

Empirical formula	$C_{26}H_{43}Cl_{0.4}F_{3.6}NO_3P_{2.6}Tc$
Formula weight	6/8./I
Diffractometer	Rigaku OD XtaLAB Synergy, Dualflex, Pilatus 200K
Radiation	$CuK\alpha (\lambda = 1.54184 \text{ Å})$
Temperature [K]	160
Crystal system	triclinic
Space group	PĪ
a[Å]	8.38590 (10)
b[Å]	12.89050 (10)
c[Å]	15.67840 (10)
α [°]	106.0060 (10)
β[°]	103.6810 (10)
γ[°]	92.6590 (10)
Volume [Å3]	1571.54 (3)
Z	2
$\rho_{calc} \left[g/cm^3 \right]$	1.434
$\mu [{ m mm}^{-1}]$	5.705
F(000)	702.0
Crystal size [mm ³]	$0.13 \times 0.096 \times 0.041$
Crystal description	plate, yellow
2 Θ range for data collection [°]	6.072 to 158.478
Index ranges	$-10 \le h \le 10, -16 \le k \le 16, -18 \le l \le 19$
Reflections collected	63888
Independent reflections	$6773 [R_{int} = 0.0556, R_{sigma} = 0.0201]$
Reflections observed	6637
Criterion for observation	I>2σ (I)
Completeness to theta	99.9% to 79.239°
Absorption correction	gaussian
Min./max. transmission	0.700/1.000
Data/restraints/parameters	6773/4/377
Goodness-of-fit on F ²	1.056
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0555, wR_2 = 0.1747$
Final R indexes [all data]	$R_1 = 0.0560, wR_2 = 0.1753$
Largest diff. peak/hole / [e Å ⁻³]	2.83/-1.08

Note: The PF_6^- counterion is disordered with Cl⁻ at an occupancy of 0.40, omitted in Figure S35.

5.5 *fac*-[Re(κ²-terpy)(CO)₃(PO₂F₂)], [9]

Figure S36: Ellipsoid displacement $plot^{[15]}$ of *fac*-[Re(κ^2 -terpy)(CO)₃(PO₂F₂)] [**9**]. Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity. The unit cell contains both the shown isomer, while the second isomer is omitted for clarity.

Table 57. Tabulated values of selected bolid lengths and angles in the crystal structure of p	Table S	S9: 1	Fabulated	values o	f selected	bond	lengths	and	angles	in the	crystal	structure	e of [9	9].
---	---------	--------------	-----------	----------	------------	------	---------	-----	--------	--------	---------	-----------	---------	-----

	Selected bond lengths		Selected bond angles
Re1–N1	2.165(5) Å	N1-Re1-N2	74.98(19)°
Re1–N2	2.215(5) Å	N1-Re1-C16	175.5(3)°
Re1-C16	1.915(9) Å	N1-Re1-C17	96.5(3)°
Re1–C17	1.906(7) Å	N1-Re1-C18	94.5(3)°
Re1-C18	1.900(8) Å	N1-Re1-O7	79.6(2)°
Re1–O7	2.167(6) Å	O7–P1–O8	108.8(3)°
C16–O1	1.169(10) Å	C16-Re1-C17	87.3(3)°
C17–O2	1.146(9) Å	C17–Re1–C18	88.7(3)°
C18–O3	1.142(9) Å	C16–Re1–C18	88.1(3)°

Table S10: Crystallographic data of *fac*–[Re(κ^2 -terpy)(CO)₃(PO₂F₂)] [9].

Empirical formula	$C_{36}H_{22}Br_{0.26}F_{3.48}N_6O_{9.48}P_{1.74}Re_2$	
Formula weight	6/8./I	
Diffractometer	Rigaku OD XtaLAB Synergy, Dualflex, Pilatus	
	200K	
Kadiation	$CuK\alpha (\lambda = 1.54184 \text{ A})$	
I emperature [K]	160	
Crystal system	triclinic	
Space group	P ₁	
a [Å]	8.4380 (2)	
b [Å]	9.6908 (2)	
c [Å]	27.1602 (4)	
α [°]	96.4300 (10)	
β[°]	97.0310 (10)	
γ ^[°]	104.920 (2)	
Volume [Å3]	2105.92 (8)	
Z	2	
$\rho_{calc} \left[g/cm^3 \right]$	1.898	
$\mu [mm^{-1}]$	12.643	
F(000)	1145.0	
Crystal size [mm ³]	0.12 imes 0.072 imes 0.018	
Crystal description	plate, yellow	
20 range for data collection [°]	6.632 to 147.798	
Index ranges	$-10 \le h \le 10, -11 \le k \le 12, -33 \le l \le 31$	
Reflections collected	53308	
Independent reflections	$8152 [R_{int} = 0.0663, R_{sigma} = 0.0276]$	
Reflections observed	7569	
Criterion for observation	$I>2\sigma(I)$	
Completeness to theta	99.8% to 73.899°	
Absorption correction	gaussian	
Min./max. transmission	0.535/1.000	
Data/restraints/parameters	8152/1/551	
Goodness-of-fit on F ²	1.074	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0415$, $wR_2 = 0.1047$	
Final R indexes [all data]	$R_1 = 0.0442, WR_2 = 0.1066$	
Largest diff. peak/hole / [e Å ⁻³]	1.33/-2.64	

Note: The unit cell contains both isomers, but only one is shown in Figure S36. The $PO_2F_2^-$ counterion is disordered with Br⁻ at an occupancy of 0.13.

5.6 *fac*-[Tc(κ²-terpy)(CO)₃Cl], [11]

Figure S37: Ellipsoid displacement plot^[15] of fac-[Tc(κ^2 -terpy)(CO)₃Cl] [11]. Ellipsoids represent 35% probability. Hydrogen atoms are omitted for clarity.

Table S11: Tabulated values of selected bond lengths and angles in the crystal structure of [11].

	Selected bond lengths		Selected bond angles
Tc1–N1	2.1779(12) Å	N1-Tc1-N2	75.09(5)°
Tc1–N2	2.2378(12) Å	N1-Tc1-C20	175.97(5)°
Tc1-C20	1.9248(16) Å	N1-Tc1-C30	92.80(5)°
Tc1-C30	1.8901(16) Å	N1-Tc1-C40	97.72(6)°
Tc1-C40	1.9124(16) Å	N1-Tc1-Cl1	85.99(3)°
Tc1–Cl1	2.5040(4) Å	N2-Tc1-Cl1	82.53(3)°
C20–O20	1.1453(19) Å	C20-Tc1-C30	89.10(6)°
C30–O30	1.146(2) Å	C30-Tc1-C40	88.32(7)°
C40–O40	1.143(2) Å	C20–Tc1–C40	85.88(7)°

Table S12: Crystallographic data of fac-[Tc(κ^2 -terpy)(CO)₃Cl)] [11].

Empirical formula Formula weight Diffractometer Radiation Temperature [K] Crystal system Space group a [Å] b [Å] c [Å] α [°] β [°] γ [°] Volume [Å3] Ζ $\rho_{calc} \left[g/cm^3 \right]$ μ [mm⁻¹] F(000) Crystal size [mm³] Crystal description 2Θ range for data collection [°] Index ranges Reflections collected Independent reflections Reflections observed Criterion for observation Completeness to theta Absorption correction Min./max. transmission Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / [e Å⁻³]

 $C_{18}H_{11}ClN_3O_3Tc$ 450.75 Rigaku XtaLAB Synergy, Dualflex, HyPix MoK α ($\lambda = 0.71073$ Å) 160 monoclinic $I2/_a$ 16.6643 (3) 7.04490 (10) 29.6513 (6) 90 102.168 (2) 90 3402.81 (11) 8 1.760 1.027 1792.0 $0.57 \times 0.41 \times 0.1$ plate, green 5.002 to 59.144 $-21 \le h \le 21, -9 \le k \le 9, -40 \le l \le 36$ 24908 $4254 [R_{int} = 0.0221, R_{sigma} = 0.0157]$ 4032 $I > 2\sigma(I)$ 99.9% to 29.6630° gaussian 0.224/1.000 4254/0/235 1.069 $R_1 = 0.0190, wR_2 = 0.0473$ $R_1 = 0.0204, wR_2 = 0.0479$ 0.51/-0.37

6. References

- [1] R. Alberto, R. Schibli, A. Egli, A. P. Schubiger, U. Abram, T. A. Kaden, *J. Am. Chem. Soc.* **1998**, *120*, 7987–7988.
- [2] R. Lengacher, Y. Wang, H. Braband, O. Blacque, G. Gasser, R. Alberto, *Chem. Commun.* **2021**, *57*, 13349–13352.
- [3] R. Alberto, A. Egli, U. Abram, K. Hegetschweiler, V. Gramlich, A. P. Schubiger, J. Chem. Soc. Dalt. Trans. 1994, 2815–2820.
- [4] R. Alberto, R. Schibli, A. Egli, W. A. Herrmann, G. Artus, U. Abram, T. A. Kaden, J. Organomet. Chem. 1995, 492, 217–224.
- [5] Z. Li, T. M. Rayder, L. Luo, J. A. Byers, C. K. Tsung, J. Am. Chem. Soc. 2018, 140, 8082– 8085.
- [6] R. C. Clark, J. S. Reid, Acta Crystallogr. Sect. A 1995, 51, 887–897.
- [7] "CrysAlisPro (version 1.171.40.68a), Rigaku Oxford Diffraction," 2019.
- [8] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- [9] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- [10] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
- [11] A. L. Spek, Acta Crystallogr. Sect. C 2015, 71, 9–18.
- [12] M. L. Besmer, H. Braband, T. Fox, B. Spingler, A. P. Sattelberger, R. Alberto, *Inorg. Chem.* 2023, 62, 10727–10735.
- [13] H.-O. Kalinowski, S. Berger, S. Braun, 13C-NMR-Spektroskopie, Thieme, New York, 1984.
- [14] E. W. Abel, V. S. Dimitrov, N. J. Long, K. G. Orrell, A. G. Osborne, H. M. Pain, V. Sik, M. B. Hursthouse, M. A. Mazide, J. Chem. Soc. Dalt. Trans. 1993, 597–603.
- [15] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565–565.