Supporting Information

Enhancing CO₂/N₂ and CH₄/N₂ separation performance by saltmodified aluminum-based metal-organic frameworks

Peng Zhang, Sai Ma, Yujuan Zhang, Chaohui He*, Tuoping Hu*

Department of Chemistry, College of Chemistry and Chemical Engineering, North

University of China, Taiyuan, 030051, Shanxi, P. R. China

*Corresponding authors E-mail: hechaohui0076@163.com; hutuoping@nuc.edu.cn

Isosteric heat of adsorption

The adsorption heat for CO₂, CH₄ and N₂ on MOF-253, MOF-253@Cu(BF₄)₂, MOF-253@Zn(BF₄)₂ and MOF-253@ZnSiF₆ were calculated using the Clausius-Clapeyron equation as follows:

$$Q_{st} = RT^2 \left(\frac{\partial lnp}{\partial T}\right)_{q}$$

where Q_{st} represents the adsorption heat (kJ/mol), P is the pressure (kPa), T represents the temperature (K), R is a constant and q represents the adsorption amount (mmol/g).

Ideal adsorbed solution theory (IAST) calculations

The single-component adsorption isotherms of CO₂, CH₄ and N₂ on MOF-253, MOF-253@Cu(BF₄)₂, MOF-253@Zn(BF₄)₂ and MOF-253@ZnSiF₆ obtained at 298 K were fitted using the dual site Langmuir-Freundlich model.

$$q = q_{A,sat} \frac{b_A p^{VA}}{I + b_A p^{VA}} + q_{B,sat} \frac{b_B p^{VB}}{I + b_B p^{VB}}$$

where q represents the adsorbed capacity per mass of adsorbent (mol/kg), $q_{A,sat}$ and $q_{B,sat}$ are the saturation uptake capacities at site A and site B, respectively, b_A and b_B represent the constant at adsorption site A and site B, respectively, P represents the total pressure of the gas at the equilibrium (kPa) and v represents the Freundlich exponent.

The adsorption selectivity defined as follows:

$$S_{ads} = \frac{q_A/q_B}{y_A/y_B}$$

where q_A and q_B represent the component molar loading within the MOFs and y_A and y_B are the corresponding mole fraction used in the feed gas mixture.

Density-functional theory (DFT) calculations

The binding sites for CO_2 and CH_4 in MOF-253@ZnSiF_6 were identified using DFT calculations. This task is accomplished using the Quantum-Espresso package in Material Studio software. In order to explain the Van der Waals interactions, the dispersive forces (semi-empirical) were added to the traditional DFT in the calculation. The crystal structure of MOF-253@ZnSiF_6 was first optimized and CO_2 or CH_4 were then introduced at different positions in the MOF structure with adequate relaxation.

Fig. S1. (a) PXRD patterns recorded for MOF-253; (b) PXRD patterns recorded for MOF-253@Cu(BF₄)₂, MOF-253@Zn(BF₄)₂ and MOF-253@ZnSiF₆ (c) SEM and EDS images of MOF-253; (d) SEM images of MOF-253, MOF-253@Cu(BF₄)₂, MOF-253@Zn(BF₄)₂ and MOF-253@ZnSiF₆.

Fig. S2. TGA curves of MOF-253, MOF-253@Cu(BF_4)_2, MOF-253@Zn(BF_4)_2 and

MOF-253@ZnSiF₆.

Fig. S3. N₂ adsorption-desorption isotherms of MOF-253, MOF-253@Cu(BF₄)₂, MOF-253@Zn(BF₄)₂ and MOF-253@ZnSiF₆ at 77 K.

Fig. S4. The pore size distributions of MOF-253, MOF-253@Cu(BF₄)₂, MOF-

253@Zn(BF₄)₂ and MOF-253@ZnSiF₆ obtained by DFT method.

Fig. S5. The single-adsorption isotherms of (a) MOF-253. (b) MOF-253@Cu(BF₄)₂,
(c) MOF-253@Zn(BF₄)₂ and (d) MOF-253@ZnSiF₆ for CO₂, CH₄ and N₂ at 273, 288 and 298 K.

Fig. S6. The adsorption heat of MOF-253, MOF-253@Cu(BF₄)₂, MOF-253@Zn(BF₄)₂

and MOF-253@ZnSiF₆ for N₂.

Fig. S7. The adsorption selectivity of (a) CO_2/N_2 (1/1, v/v) and (b) CH_4/N_2 (1/1, v/v) for MOF-253, MOF-253@Cu(BF₄)₂, MOF-253@Zn(BF₄)₂ and MOF-253@ZnSiF₆ at 298 K.

Fig. S8. The breakthrough experimental set-up schematic.

Fig. S9. PXRD patterns of MOF-253@ZnSiF₆ treated at different conditions.

Fig. S10. CO_2 , CH_4 , and N_2 adsorption isotherms at 298 K in a series of salt-modified MOF-253 with dual-site Langmuir-Freundlich model fits.

	Structure	Molecular size (Å ³)	Kinetic diameter (Å)	Boiling point (K)	Polarizability (×10 ⁻²⁵ /cm ³)	Quadrupole moment (×10 ²⁶ /esu cm ²)
CO ₂		3.18 × 3.33 × 5.36	3.3	194.7	29.11	-4.30
CH ₄	8	3.7 × 3.7 × 3.7	3.758	111.66	25.93	0
N ₂		3.6 × 3.6 × 3.6	3.64	77.35	17.403	1.52

Table S1 Physicochemical properties of CO_2 , CH_4 and N_2 .

Table S2 EDS element content analysis for MOF-253, MOF-253@Cu(BF_4)₂, MOF-253@Zn(BF_4)₂ and MOF-253@ZnSiF₆.

Adsorbents	Al (wt.%)	N (wt.%)	Cu (wt.%)	Zn (wt.%)	F (wt.%)
MOF-253	53.230	46.770	-	-	-
MOF-253@Cu(BF ₄) ₂	17.490	17.984	33.640	-	30.886
MOF-253@Zn(BF ₄) ₂	16.523	15.768	-	38.332	29.377
MOF-253@ZnSiF ₆	17.646	16.160	-	41.324	22.854

Table S3 ICP metals content analysis for MOF-253, MOF-253@Cu(BF_4)₂, MOF-253@Zn(BF_4)₂ and MOF-253@ZnSiF₆.

Adsorbents	Al (wt.%)	Cu (wt.%)	Zn (wt.%)
MOF-253	17.1	-	-
MOF-253@Cu(BF ₄) ₂	15.7	17.7	-
MOF-253@Zn(BF ₄) ₂	13.9	-	12.0
MOF-253@ZnSiF ₆	12.8	-	15.7

Table S4 Adsorption capacity of MOF-253@ZnSiF₆ in equilibrium and dynamic conditions.

	Equilibrium adsorption (1 bar)	Breakthrough experiments $(CO_2/N_2 \text{ or } CH_4/N_2, 1/4)$
CO_2 (cm ³ /g)	61.9	16.1
CH ₄ (cm ³ /g)	14.4	4.2

Adsorbents	CO ₂ uptake (cm ³ /g)	N ₂ uptake (cm ³ /g)	CO ₂ /N ₂ uptake ratio	Reference
MOF-253	19.48	1.69	11.5	This work
MOF-253@Cu(BF ₄) ₂	54.96	3.02	18.1	This work
MOF-253@Zn(BF ₄) ₂	62.7	3.3	19	This work
MOF-253@ZnSiF ₆	61.95	3.5	17.7	This work
In(aip) ₂	28.1	0.2	140.5	[1]
UTSA-280	67.3	6	11.2	[2]
NJUBai35	72.8	4	18.2	[3]
Cu-Fpymo	39.2	0.33	118	[4]
NKMOF-9a	46.4	2.2	21.1	[5]
MUV-26a	33.15	0.56	59.2	[6]
FJUT-3	51	5	10.2	[7]
FJUT-4	23.5	1.3	18.1	[8]

Table S5 Summary of the equilibrium uptakes, CO_2/N_2 uptake ratio in some reported MOFs

Adsorbents	CH ₄ uptake (cm ³ /g)	N ₂ uptake (cm ³ /g)	CH ₄ /N ₂ uptake ratio	Reference
MOF-253	5.36	1.69	3.2	This work
MOF-253@Cu(BF ₄) ₂	9.72	3.02	3.2	This work
MOF-253@Zn(BF ₄) ₂	11.62	3.3	3.5	This work
MOF-253@ZnSiF ₆	14.39	3.5	4.1	This work
Al-BPDC	5.90	2.70	2.2	[9]
Al-NDC	10.86	3.39	3.2	[9]
Al-BDC	15.98	5.06	3.1	[9]
Al-FUM-Me	27.19	5.18	5.2	[9]
Al-CDC	32.1	5.1	6.3	[10]
Al-FUM	20.44	5.15	3.9	[11]
MIL-53(Al)	5.21	4.35	1.2	[12]

Table S6 Summary of the equilibrium uptakes, CH_4/N_2 uptake ratio in some reported MOFs

Table S7 Dual-Langmuir-Freundlich fitting parameters for CO_2 , CH_4 and N_2 in MOF-253 at 298 K.

		Site A			Site B	
	$q_{ m A,sat}$	$b_{ m A}$	V _A	$q_{ m B,sat}$	$b_{ m B}$	$\nu_{ m B}$
	$cm^3 g^{-1}$	bar-1	dimensionless	cm ³ g ⁻¹	bar-1	dimensionless
CO ₂	305.34	0.07	0.85	0.55	0.47	6.60
CH4	24.49	0.26	1.05	0.26	4.92	0.65
N_2	0.04	77.46	114.08	17.01	0.11	0.83

Table S8 Dual-Langmuir-Freundlich fitting parameters for CO_2 , CH_4 and N_2 in MOF- $253@Cu(BF_4)_2$ at 298 K.

		Site A			Site B	
	$q_{ m A,sat}$	$b_{ m A}$	VA	$q_{\mathrm{B,sat}}$	$b_{ m B}$	$ u_{ m B}$
	cm ³ g ⁻¹	bar-1	dimensionless	cm ³ g ⁻¹	bar-1	dimensionless
CO ₂	0.59	1.15	11.03	89.03	1.59	0.99
CH_4	1.48	2.08	2.32	61.63	0.16	1.05
N_2	8.45	0.26	1.43	3.39	0.59	0.77

Table S9 Dual-Langmuir-Freundlich fitting parameters for CO_2 , CH_4 and N_2 in MOF- $253@Zn(BF_4)_2$ at 298 K.

		Site A			Site B	
	$q_{\mathrm{A,sat}}$	$b_{ m A}$	VA	$q_{ m B,sat}$	$b_{ m B}$	$\nu_{ m B}$
	$cm^3 g^{-1}$	bar-1	dimensionless	cm ³ g ⁻¹	bar-1	dimensionless
CO ₂	123.76	0.92	0.95	3.42	93.88	6.23
CH4	13.12	0.01	11.11	60.67	0.23	0.97
N_2	23.92	0.16	0.90	0.09	7.48	8.18

Table S10 Dual-Langmuir-Freundlich fitting parameters for CO_2 , CH_4 and N_2 inMOF-253@ZnSiF_6 at 298 K.

		Site A			Site B	
	$q_{ m A,sat}$	$b_{ m A}$	VA	$q_{ m B,sat}$	$b_{ m B}$	$\nu_{ m B}$
	cm ³ g ⁻¹	bar-1	dimensionless	cm ³ g ⁻¹	bar-1	dimensionless
CO ₂	0.65	13.25	3.28	140.57	0.77	0.94
CH_4	0.04	20.92	28.79	95.41	0.18	0.95
N_2	0.04	35.56	25.30	39.09	0.10	0.91

References

- [1] Y.-M. Gu, H.-F. Qi, S. Qadir, T.-J. Sun, R. Wei, S.-S. Zhao, X.-W. Liu, Z. Lai, S.-
- D. Wang, Chem. Eng. J., 2022, 449, 137768.
- [2] R.-B. Lin, L. Li, A. Alsalme, B. Chen, Small Struct., 2020, 1, 2000022.
- [3] J. Jiang, Z. Lu, M. Zhang, J. Duan, W. Zhang, Y. Pan, J. Bai, J. Am. Chem. Soc.,
 2018, 140, 17825-17829.
- [4] Y. Shi, Y. Xie, H. Cui, Z.A. Alothman, O. Alduhaish, R.-B. Lin, B. Chen, Chem. Eng. J., 2022, 446, 137101.
- [5] S. Geng, H. Xu, C.-S. Cao, T. Pham, B. Zhao, Z. Zhang, Angew. Chem. Int. Ed., 2023, 62, e202305390.
- [6] I. Abanades Lazaro, E.C. Mazarakioti, E. Andres-Garcia, B.J.C. Vieira, J.C. Waerenborgh, I.J. Vitorica-Yrezabal, M. Gimenez-Marques, G. Minguez Espallargas, J. Mater. Chem. A, 2023, 11, 5320-5327.
- [7] L. Zhang, Z. He, Y. Liu, J. You, L. Lin, J. Jia, S. Chen, N. Hua, L.A. Ma, X. Ye, Y.
 Liu, C.X. Chen, Q. Wang, ACS Appl Mater Interfaces, 2023, 15, 30394-30401.
- [8] L. Zhang, S. Lin, Y. Liu, X. Zeng, J. You, T. Xiao, Y. Feng, Z. He, S. Chen, N.
 Hua, X. Ye, Z.-W. Wei, C.-X. Chen, *Inorg. Chem.*, 2023, 62, 8058-8063.
- [9] M. Chang, T. Yan, Y. Wei, J.-X. Wang, D. Liu, J.-F. Chen, ACS Appl. Mater. Interfaces, 2022, 14, 25374-25384.
- [10] M. Chang, Y. Zhao, D. Liu, J. Yang, J. Li, C. Zhong, *Sustainable Energy Fuels*, 2020, 4, 138-142.
- [11] H. Zhenghui, H. Peng, L. Jia, S. Fang, Z. Youquan, C. Kungang, Y. Yunpan, K.

Chengjun, Z. Zhaoqiang, J. Hongbing, Sep. Purif. Technol., 2022, 286, 120446.

[12] A. Pereira, A.F.P. Ferreira, A. Rodrigues, A.M. Ribeiro, M.J. Regufe, *Microporous Mesoporous Mater.*, 2022, **331**, 111648.