Effect of the substituents on the ¹O₂ production and biological activity of (N^N^N)Pt(py) complexes.

Guillermo Romo-Islas,^{a,b} María Gil-Moles,^{c,d} Arnav Saxena,^a Antonio Frontera,^e M. Concepción Gimeno^{c,*} and Laura Rodríguez^{a,b,*}

^a Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain. e-mail: laurarodriguezr@ub.edu

^b Institut de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, 08028 Barcelona, Spain

 ^c Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain. e-mail: gimeno@unizar.es
 ^d Departamento de Química, Centro de Investigación de Síntesis Química (CISQ), Universidad de la Rioja. Complejo Científico-Tecnológico, 26004, Logroño (Spain)
 ^e Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca,

Supporting Information

Figure S1. ¹H NMR spectrum of ligand H_2L^3 in DMSO- d^6 .

Figure S2. ¹⁹F NMR spectrum of complex H_2L^3 in DMSO- d^6 .

Figure S3. ¹H NMR spectrum of ligand H_2L^4 in CDCl₃.

Figure S4. ¹⁹F NMR spectrum of complex H_2L^4 in CDCl₃.

Figure S5. ¹H NMR spectrum of complex 1-CF₃ in DMSO-*d*⁶.

Figure S6. ¹⁹F NMR spectrum of complex 1-CF₃ in DMSO-*d*⁶.

Figure S7. ESI-TOF(+) of complex 1-CF₃.

Figure S8. ¹H NMR spectrum of complex 1-CHF₂ in CDCl₃.

Figure S9. ¹⁹F NMR spectrum of complex 1-CHF₂ in CDCl₃.

Figure S10. ESI-TOF(+) of complex 1-CHF₂.

Figure S11. ¹H NMR spectrum of complex 1-CH₃ in DMSO-*d*⁶.

Figure S12. ESI-TOF(+) of complex 1-CH₃.

Figure S13. ¹H NMR spectrum of complex 2-CF₃ in DMSO-*d*⁶.

Figure S14. ¹⁹F NMR spectrum of complex 2-CF₃ in DMSO-*d*⁶.

Figure S16. ¹H NMR spectrum of complex 2-CHF₂ in DMSO-*d*⁶.

Figure S17. ¹⁹F NMR spectrum of complex 2-CHF₂ in DMSO-*d*⁶.

Figure S18. ESI-TOF(+) of complex 2-CHF₂.

Figure S19. ¹H NMR spectrum of complex 2-CH₃ in CDCl₃.

Figure S20. ESI-TOF(+) of complex 2-CH₃.

Figure S21. ¹H NMR spectrum of complex 3-CF₃ in DMSO-*d*⁶.

Figure S22. ¹⁹F NMR spectrum of complex **3-CF**₃ in DMSO-*d*⁶.

Figure S23. ESI-TOF(+) of complex 3-CF₃.

Figure S24. ¹H NMR spectrum of complex 3-CHF₂ in CDCl₃.

Figure S25. ¹⁹F NMR spectrum of complex 3-CHF₂ in CDCl₃.

Figure S27. ¹H NMR spectrum of complex 3-CH₃ in CDCl₃.

Figure S28. ¹⁹F NMR spectrum of complex 3-CH₃ in CDCl₃.

Figure S30. ¹H NMR spectrum of complex 4-CF₃ in DMSO-*d*⁶.

Figure S31. ¹⁹F NMR spectrum of complex 4-CF₃ in DMSO-*d*⁶.

Figure S32. ESI-TOF(+) of complex 4-CF₃.

Figure S34. ¹⁹F NMR spectrum of complex 4-CHF₂ in DMSO-*d*⁶.

Figure S35. ESI-TOF(+) of complex 4-CHF₂.

Figure S36. ¹H NMR spectrum of complex 4-CH₃ in CDCl₃.

Figure S37. ¹⁹F NMR spectrum of complex 4-CH₃ in CDCl₃.

Figure S38. ESI-TOF(+) of complex 4-CH₃.

Figure S39. Absorption spectra of 10⁻⁵ M DMSO air-equilibrated (A) and N₂ saturated solutions of compounds 1-CF₃, 1-CHF₂, and 1-CH₃.

Figure S40. Absorption spectra of 10⁻⁵ M DMSO air-equilibrated (A) and N₂ saturated solutions of compounds **2-CF₃**, **2-CHF₂**, and **2-CH₃**.

Figure S41. Absorption spectra of 10⁻⁵ M DMSO air-equilibrated (A) and N₂ saturated solutions of compounds 3-CF₃, 3-CHF₂, and 3-CH₃.

Figure S42. Absorption spectra of 10⁻⁵ M DMSO air-equilibrated (A) and N₂ saturated solutions of compounds 4-CF₃, 4-CHF₂, and 4-CH₃.

Complex	Wavelength (nm)	Energy (eV)	Oscillator strength	Transitions
1-CF ₃	376	3.298	0.0170	$S_0 \rightarrow S_1$
	305	4.060	0.0160	$S_0 \rightarrow S_2$
1-CHF ₂	375	3.308	0.0184	$S_0 \rightarrow S_1$
	305	4.062	0.0158	$S_0 \rightarrow S_2$
1-CH ₃	373	3.327	0.0204	$S_0 \rightarrow S_1$
	304	4.084	0.0159	$S_0 \rightarrow S_2$
2-CF ₃	382	3.244	0.0184	$S_0 \rightarrow S_1$
2-CHF ₂	381	3.256	0.0201	$S_0 \rightarrow S_1$
2-CH ₃	379	3.271	0.0220	$S_0 \rightarrow S_1$
3-CF ₃	338	3.670	0.0098	$S_0 \rightarrow S_1$
3-CHF ₂	337	3.674	0.0100	$S_0 \rightarrow S_1$
3-CH ₃	337	3.682	0.0100	$S_0 \rightarrow S_1$
4-CF ₃	341	3.633	0.0079	$S_0 \rightarrow S_1$
4-CHF ₂	341	3.637	0.0080	$S_0 \rightarrow S_1$
	316	3.930	0.0002	$S_0 \rightarrow S_2$
4-CH ₃	341	3.639	0.0079	$S_0 \rightarrow S_1$
	314	3.941	0.0000	$S_0 \rightarrow S_2$

Table S1. Calculated wavelengths of absorption, transition energies, and oscillator strength computed at the CAM-B3LYP/def2-TZVP level

Figure S34. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ (left) $S_0 \rightarrow S_2$ (right) excitation of compound 1-CHF₂, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S44. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ (left) $S_0 \rightarrow S_2$ (right) excitation of compound 1-CH₃, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S45. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ excitation of compound 2-CF₃, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S46. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ excitation of compound 2-CHF₂, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S47. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ (left) excitation of compound 2-CH₃, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S48. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ excitation of compound 3-CF₃, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S49. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ excitation of compound 3-CHF₂, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S50. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ excitation of compound 3-CH₃, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S51. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ excitation of compound 4-CF₃, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S52. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ (left) $S_0 \rightarrow S_2$ (right) excitation of compound 4-CHF₂, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S53. Representation of the NTOs involved in the $S_0 \rightarrow S_1$ (left) $S_0 \rightarrow S_2$ (right) excitation of compound 4-CH₃, with indication of the theoretical λ_{exc} , oscillator strength and relative contribution of each NTO pair.

Figure S54. Phosphorescence lifetime and residuals of 1-CF₃ in solid state.

Figure S55. Phosphorescence lifetime and residuals of $1-CHF_2$ in solid state.

Figure S56. Phosphorescence lifetime and residuals of 1-CH₃ in solid state.

Figure S57. Phosphorescence lifetime and residuals of 3-CF₃ in solid state.

Figure S58. Phosphorescence lifetime and residuals of 3-CHF₂ in solid state.

Figure S59. Phosphorescence lifetime and residuals of 3-CH₃ in solid state.

Figure S60. Phosphorescence lifetime and residuals of $4-CF_3$ in solid state.

Figure S61. Phosphorescence lifetime and residuals of $4\text{-}CHF_2$ in solid state.

Figure S62. Phosphorescence lifetime and residuals of 4-CH₃ in solid state.

Figure S63. Stability of 1-CHF₂ in PBS and DMSO (5%) at 37 °C measured by UV-Vis.

Figure S64. Stability of 1-CH₃ in PBS and DMSO (5%) at 37 °C measured by UV-Vis.

Figure S65. Stability of 2-CH₃ in PBS and DMSO (5%) at 37 °C measured by UV-Vis.

Figure S66. Stability of 3-CF₃ in PBS and DMSO (5%) at 37 °C measured by UV-Vis.

Figure S67. Stability of 3-CH₃ in PBS and DMSO (5%) at 37 °C measured by UV-Vis.

Figure S68. Stability of 4-CF₃ in PBS and DMSO (5%) at 37 °C measured by UV-Vis.

Figure S69. Stability of 4-CH₃ in PBS and DMSO (5%) at 37 °C measured by UV-Vis.