Supporting Information

Fabrication of carbon-based materials derived from a cobalt-

based organic framework for enhancing photocatalytic

degradation of dyes

Wan-Lin Ma,^a Ya-Qian Zhang,^{a*} Wen-Ze Li,^{a*} Jing Li^a and Jian Luan^{a*}

^a College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China

* E-mails: zhangyaqian85@126.com; wzli@syuct.edu.cn; 2010044@stu.neu.edu.cn

Complex	Co-MOF			
Empirical formula	$C_{49}H_{59}Co_3N_8O_{20}$			
Formula weight	1256.83			
Temperature/K	293.15			
Crystal system	Monoclinic			
Space group	C2/c			
$a/\mathrm{\AA}$	34.033(4)			
b/Å	20.515(2)			
$c/{ m \AA}$	7.8110(10)			
$\alpha / ^{\circ}$	90			
$eta/^{\circ}$	95.204(4)			
γ/°	90			
Volume/Å ³	5431.1(11)			
Z	4			
$ ho_{ m calc}~{ m g/cm^3}$	1.537			
µ/mm ⁻¹	0.99			
F(000)	2600			
Crystal size/mm ³	$0.18 \times 0.17 \times 0.15$			
Radiation	MoKα ($\lambda = 0.71073$)			
2θ range for data collection/°	4.642 to 50.052			
Index ranges	$-40 \le h \le 37, -24 \le k \le 24, -9 \le l \le 9$			
Reflections collected	33805			
Independent reflections	4789 [$R_{int} = 0.0554, R_{sigma} = 0.0345$]			
Data/restraints/parameters	4789/13/339			
Goodness-of-fit on F ²	1.059			
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0777, wR_2 = 0.2317$			
Final R indexes [all data]	$R_1 = 0.1003, wR_2 = 0.2550$			

 Table S1 Crystal data and structure refinement for Co-MOF.

Co1–O1	2.198(4)	Co2–O3#1	2.169(4)				
Co1–O2	2.124(4)	Co2–O3#2	2.169(4)				
Co1–O4	2.060(5)	Co2–O6	2.074(5)				
Co1–N1	2.112(5)	Co2–O6#3	2.074(5)				
Co1-N3#1	2.107(5)	Co2–N2	2.128(5)				
Co1–C1	2.498(6)	Co2–N2#3	2.128(5)				
Co1–O5	2.080(9)	Co2–C5#2	2.519(7)				
O1–Co1–C1	30.52(16)	O3#1–Co2–C5#2	30.08(10)				
O2–Co1–O1	60.77(14)	O3#2–Co2–C5#2	30.08(10)				
O2–Co1–C1	30.27(17)	O6#3-Co2-O3#1	87.44(17)				
O4–Co1–O1	87.85(18)	O6–Co2–O3#1	89.41(18)				
O4–Co1–O2	89.8(2)	O6#3–Co2–O3#2	89.41(18)				
O4Co1N1	90.22(19)	O6–Co2–O3#2	87.44(17)				
O4–Co1–N3#1	91.3(2)	O6–Co2–O6#3	176.4(2)				
O4–Co1–C1	88.0(2)	O6–Co2–N2	93.1(2)				
O4–Co1–O5	177.4(4)	O6#3-Co2-N2#3	93.1(2)				
N1Co1O1	161.97(16)	O6#3-Co2-N2	89.2(2)				
N1–Co1–O2	101.32(18)	O6–Co2–N2#3	89.2(2)				
N1–Co1–C1	131.51(19)	O6–Co2–C5#2	88.18(12)				
N3#1-Co1-O1	98.74(16)	O6#3-Co2-C5#2	88.18(12)				
N3#1-Co1-O2	159.42(18)	N2#3-Co2-O3#1	99.91(16)				
N3#1-Co1-N1	99.22(19)	N2-Co2-O3#2	99.90(16)				
N3#1-Co1-C1	129.25(19)	N2-Co2-O3#1	159.79(17)				
O5–Co1–O1	94.5(5)	N2#3-Co2-O3#2	159.79(17)				
O5–Co1–O2	92.2(4)	N2#3-Co2-N2	100.2(3)				
O5–Co1–N1	87.8(5)	N2-Co2-C5#2	129.91(13)				
O5–Co1–C1	94.6(4)	N2#3-Co2-C5#2	129.91(13)				
O3#1–Co2–O3#2	60.2(2)						
Symmetry codes: #1 $3/2 - x$, $1/2 + y$, $1/2 - z$; #2 $1/2 + x$, $1/2 + y$, $1 + z$; #3 $2 - x$, $+ y$,							
<u>3/2 –z.</u>							

Table S2 Selected bond distances (Å) and angles (°) for Co-MOF.

Material		Rare constant k (min ⁻¹)				
	MB	RhB	GV	МО	RB	
Co-MOF	6.232	6.381	0.005	0.004	0.002	
Co-C200	5.149	7.206	0.003	0.004	0.004	
Co-C400	0.001	5.266	0.005	0.003	0.002	
Co-C600	0.002	0.001	0.006	0.007	0.002	
Co-C800	0.009	0.001	0.008	0.017	0.003	
Co-C1000	0.009	0.002	0.015	0.014	0.003	

 Table S3 Quasi-first-order rate constant of photocatalytic degradation of Co-MOF

 and its derived carbon materials.

Fig. S1 SEM images of Co-MOF.

Fig. S2 The PXRD patterns of simulated and fresh sample of Co-MOF.

Fig. S3 The FTIR spectrum of Co-MOF.

Fig. S4 The TG curve of Co-MOF.

Fig. S5 PXRD pattern of TG residue of Co-MOF.

Fig. S6 Typical SEM (a) and EDX (b–e) images of **Co-C200** and the corresponding elemental maps of Co, N, C and O.

Fig. S7 Typical SEM (a) and EDX (b–e) images of **Co-C400** and the corresponding elemental maps of Co, N, C and O.

Fig. S8 Typical SEM (a) and EDX (b–e) images of **Co-C600** and the corresponding elemental maps of Co, N, C and O.

Fig. S9 Typical SEM (a) and EDX (b–e) images of **Co-C800** and the corresponding elemental maps of Co, N, C and O.

Fig. S10 Nitrogen adsorption and desorption isotherms (Insert: the pore size distribution) of Co-C1000.

Fig. S11 XPS spectrum of Co-C1000.

Fig. S12 Raman spectrum of Co-C1000.

Fig. S13 UV-vis spectra of GV (a), MB (b), MO (c), RhB (d) and RB (e) solutions recorded with **Co-C200** after different degradation times.

Fig. S14 UV-vis spectra of GV (a), MB (b), MO (c), RhB (d) and RB (e) solutions recorded with **Co-C400** after different degradation times.

Fig. S15 UV-vis spectra of GV (a), MB (b), MO (c), RhB (d) and RB (e) solutions recorded with **Co-C600** after different degradation times.

Fig. S16 UV-vis spectra of GV (a), MB (b), MO (c), RhB (d) and RB (e) solutions recorded with **Co-C800** after different degradation times.

Fig. S17 UV-vis spectra of GV (a), MB (b), MO (c), RhB (d) and RB (e) solutions recorded with **Co-C1000** after different degradation times.

Fig. S18 Comparison of the rate constant k in the presence of **Co-MOF** and its derived carbon materials (evaluating that the reactions by the pseudo-first-order kinetic model).

Fig. S19 Typical SEM images of Co-BTC (a), Co-200 (b), Co-400 (c), Co-600 (d), Co-800 (e), Co-1000 (f).

Fig. S20 Zeta potential of Co-C1000.