## **Electronic Supplementary Information (ESI)**

## Photocytotoxic Kinetically Stable Ruthenium(II)-N,N-donor Polypyridyl

## **Complexes of Oxalate for Anticancer Activity Against HepG2 Liver Cancer Cells**

Juhi Sayala<sup>a</sup>, Ekta Srivastava<sup>b</sup>, Priyaranjan Kumar<sup>a</sup>, Nitin Shukla<sup>a</sup>, Ashok Kumar<sup>b</sup>, Ashis K. Patra<sup>a\*</sup>

Authors address: <sup>a</sup>Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India, Email: <u>akpatra@iitk.ac.in</u>

<sup>b</sup>Department of Biological Science & Bioengineering Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

<sup>c</sup>Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

<sup>d</sup>Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India

<sup>e</sup>The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India

| Contents                                                                                                   | Page No. |
|------------------------------------------------------------------------------------------------------------|----------|
| Figure S1. Solid-state FTIR overlay (in KBr pellets) for complexes 1–3.                                    | 3        |
| Figure S2. <sup>1</sup> H NMR of complex 1.                                                                | 4        |
| Figure S3. <sup>1</sup> H NMR of complex 2.                                                                | 5        |
| Figure S4. <sup>1</sup> H NMR of complex 3.                                                                | 5        |
| Figure S5. Hydrolysis of complexes 2 and 3 in DMF-Tris buffer medium (pH 7.2).                             | 5        |
| Figure S6. Dark stability of complexes 2 and 3 in DMF using absorption spectroscopy.                       | 6        |
| Figure S7. Time-dependent <sup>1</sup> H-NMR spectra of the complex 1.                                     | 6        |
| Figure S8. Time-dependent <sup>1</sup> H-NMR spectra of the complex 2.                                     | 7        |
| Figure S9. Time-dependent <sup>1</sup> H-NMR spectra of the complex 3.                                     | 7        |
| Figure S10. Photoreactivity of the complex 3 in green light.                                               | 8        |
| <b>Figure S11</b> . Green light irradiated time-dependent <sup>1</sup> H-NMR spectra of complex <b>1</b> . | 9        |
| <b>Figure S12</b> . Green light irradiated time-dependent <sup>1</sup> H-NMR spectra of complex <b>2</b> . | 10       |
| <b>Figure S13</b> . Green light irradiated time-dependent <sup>1</sup> H-NMR spectra of complex <b>3</b> . | 11       |
| Figure S14. Measurement of singlet oxygen generation by complex 1 using absorption                         | 12       |
| spectroscopy.                                                                                              |          |
| Figure S15. Measurement of singlet oxygen generation by complex 2 using absorption                         | 13       |
| spectroscopy.                                                                                              |          |
| Figure S16. Absorption spectral Singlet oxygen generation of the complex 3.                                | 14       |
| Figure S17. Measurement of singlet oxygen generation of complexes 1, 2, and 3 using                        | 15       |
| emission spectroscopy.                                                                                     |          |
| Figure S18. DNA binding studies by ethidium bromide (EB) displacement assay for                            | 16       |
| complexes 2 and 3.                                                                                         |          |
| Figure S19. Fluorescence emission spectra of BSA upon addition of complex 2.                               | 17       |
| Figure S20. Fluorescence emission spectra of BSA upon addition of complex 3.                               | 18       |



**Figure S1.** An overlay of the solid-state FT-IR spectra of the complexes **1**, **2**, **3** and oxalic acid in KBr pellet.



Figure S2. <sup>1</sup>H NMR spectrum of complex [ $Ru^{II}(phen)_2(ox)$ ] (1) (400 MHz, DMSO-d<sub>6</sub>).



**Figure S3.** <sup>1</sup>H NMR spectrum of complex  $[Ru^{II}(dpq)_2(ox)]$  (**2**) (400 MHz, DMSO-d<sub>6</sub>).



**Figure S4**. <sup>1</sup>H NMR spectrum of complex [Ru<sup>II</sup>(dppz)<sub>2</sub>(ox)] (**3**) (400 MHz, DMSO-d<sub>6</sub>).



**Figure S5**. The electronic absorption changes of the complex **2** (a) and **3** (b) (48  $\mu$ M) upon solvation for 240 min in the dark in 5% (v/v) DMF-5 mM Tris-HCl/NaCl buffer (pH = 7.2) mixture. Inset: Changes in  $A_{272 \text{ nm}}$  and  $A_{363 \text{ nm}}$  for complexes **2** and **3**.



**Figure S6**. The electronic absorption changes of the complexes (48  $\mu$ M) **2** (a) and **3** (b) upon solvation for 0–240 min in the dark in DMF. Inset: Changes in A<sub> $\lambda$ </sub> for complexes **2** and **3**.



**Figure S7**. Time-dependent <sup>1</sup>H-NMR spectra of the complex **1** (DMSO-d<sub>6</sub>, 500 MHz). (a) Overlay of the region 7.50-8.50 ppm.



**Figure S8**. Time-dependent <sup>1</sup>H-NMR spectra of the complex **2** (DMSO-d6, 500 MHz). (a) Overlay of the region 7.50-9.50 ppm.



**Figure S9**. Time-dependent <sup>1</sup>H-NMR spectra of the complex **3** (DMSO-d<sub>6</sub>, 500 MHz). (a) Overlay of the region 7.50-9.60 ppm.



**Figure S10.** The green light ( $\lambda_{irrad}$  = 530 nm) LED (3 V, 158 lm@700 mA) induced spectral changes observed for the complexes **3** in DMF. Absorption spectral traces of complex **3** (24 µM) for the 0-60 min. Inset: Changes in  $A_{273 \text{ nm}}$ ,  $A_{362 \text{ nm}}$  and  $A_{380 \text{ nm}}$  of complex **3** with photoirradiation time.



**Figure S11**. Green light ( $\lambda_{irr}$  =530 nm) irradiated Time-dependent <sup>1</sup>H-NMR spectra of the complex **1** (DMSO-d<sub>6</sub>, 500 MHz). (a) Overlay of the region 7.50-9.60 ppm. Maroon trace (0 h) and green trace (4 h).



**Figure S12**. Green light ( $\lambda_{irr}$  =530 nm) irradiated time-dependent <sup>1</sup>H-NMR spectra of the complex **2** (DMSO-d<sub>6</sub>, 500 MHz). (a) Overlay of the region 7.50-9.60 ppm. Maroon trace (0 h) and green trace (4 h).



**Figure S13**. Greenlight ( $\lambda_{irr}$  =530 nm) irradiated Time-dependent <sup>1</sup>H-NMR spectra of the complex **3** (DMSO-d<sub>6</sub>, 500 MHz). (a) Overlay of the region 7.50-9.60 ppm. Maroon trace (0 h) and green trace (4 h).



**Figure S14**. The absorption spectral profile of DPBF (50  $\mu$ M) with **1** (10  $\mu$ M) in the dark for 10 min shows the dark stability (a). Overlay of  $A/A_0$  at 414 nm for complex **1** with DPBF in the dark and green-light LED ( $\lambda_{irr}$  = 530 nm, 3V, 158 lm@700mA) for 0–10 min (b). Spectra were recorded at 298 K in DMF solution.



**Figure S15.** Absorption spectral profile of DPBF (50  $\mu$ M) with **2** (10  $\mu$ M) upon green light irradiation ( $\lambda_{irr}$ =530 nm) for 10 min shows the  ${}^{1}O_{2}$  generation (a) and, in the dark for 10 min shows the dark stability (b). Overlay of  $A/A_{0}$  at 414 nm for complex **2** with DPBF in the dark and green-light LED ( $\lambda_{irr}$  = 530 nm, 3V 158 lm@700mA) for 0–10 min (c). Spectra were recorded at 298 K in DMF solution.



**Figure S16.** Absorption spectral profile of DPBF (50  $\mu$ M) with **3** (10  $\mu$ M) upon green light irradiation ( $\lambda_{irr}$  = 530 nm) for 10 min shows the  ${}^{1}O_{2}$  generation (a) and, in the dark for 10 min shows the dark stability (b). Overlay of  $A/A_{0}$  at 414 nm for complex **3** with DPBF in the dark and green-light LED ( $\lambda_{irr}$  = 530 nm, 3V, 158 lm@700 mA) for 0–10 min (c). Spectra were recorded at 298 K in DMF solution.



**Figure S17.** The emission spectral profile of DPBF (50  $\mu$ M) with complexes **1**, **2** and **3** (5  $\mu$ M) upon green light irradiation ( $\lambda_{irr}$  = 530 nm) for 10 min shows the  ${}^{1}O_{2}$  generation (b, d, f) and, in the dark for 10 min shows the dark stability (a, c, e), Green-light LED ( $\lambda_{irr}$  = 530 nm, 3V, 158 lm@700 mA) for 0–10 min (c). Spectra were recorded at 298 K in DMF solution,  $\lambda_{exc}$ =415 nm,  $\lambda_{em}$ =460 nm.



**Figure S18**. Emission spectrum of ethidium bromide (EB)-bound to DNA in the presence of complexes **2** (a) and **3** (b). ([EB] = 12.5  $\mu$ M, [DNA] = 15  $\mu$ M, [**2**] = 0-102  $\mu$ M, [**3**] = 0-45  $\mu$ M,  $\lambda_{ex}$  = 546 nm, Ex. and Em. slit width = 10 nm. The arrow shows the intensity change upon increasing complex concentration.



**Figure S19**. (a) The BSA (2  $\mu$ M) binding of the complex **2** (0-15  $\mu$ M) in 0.7% (v/v) DMF-5 mM Tris-HCl/NaCl buffer (pH = 7.2) at 298 K,  $\lambda_{ex/em}$  = 295/345 nm and slit width = 10/5. (b) The Scatchard plot for the determination of the static equilibrium binding constant from the intercept and number of binding sites available (*n*) from the slope of the plot. (c) The tyrosine fluorescence emission quenching of BSA upon increasing concentration of complex **2** using synchronous fluorescence studies. (d) The tryptophan fluorescence emission quenching of BSA upon increasing concentration of complex **2** using synchronous fluorescence studies.



**Figure S20**. (a) The BSA (2  $\mu$ M) binding of the complex **3** (0-15  $\mu$ M) in 0.7% (v/v) DMF-5mM Tris-HCl/NaCl buffer (pH=7.2) at 298 K,  $\lambda_{ex/em}$  = 295/345 nm and Ex./Em. slit widths= 10/5 nm. (b) The tyrosine fluorescence emission quenching of BSA upon increasing concentration of complex **3** using synchronous fluorescence studies. (d) The tryptophan fluorescence emission quenching of BSA upon increasing concentration of complex **3** using synchronous fluorescence studies.