Supporting Information for:

CYCU-3: An Al(III)-based MOF for SO₂ capture and detection

Juan L. Obeso,^{a,b,+} Valeria B. López-Cervantes,^{a,+} Catalina V. Flores,^{a,b,+} Ana Martínez,^c Yoarhy A. Amador-Sánchez,^b N.S. Portillo-Velez,^d Hugo A. Lara-García,^e Carolina Leyva,^a Diego Solis-Ibarra^{b*} and Ricardo A. Peralta,^{d*}

^aInstituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, México

^bLaboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, México.

^cDepartamento de Materiales de baja Dimensionalidad. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Interior SN, Ciudad Universitaria, CP 04510, Coyoacán, CDMX, México.

^dInstituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico City 0100, Mexico.

^eDepartamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, México.

⁺These authors contributed equally to this work.

Table of contents

S1. Experimental details	S3
S2. Results and Discussion	S4
S3. References	S18

S1. Experimental details

Analytical instruments

Powder X-Ray Diffraction Patterns (PXRD)

Using a nickel filter, PXRD was recorded on a D-5000 Diffractometer, Ultima IV, with Cu-K α 1 radiation ($\lambda = 1.5406$ Å). The patterns were recorded in the 2 θ range 2–50° with a step scan of 0.02° and a scan rate of 0.05° min⁻¹.

Fourier-transform infrared spectroscopy (FT-IR)

FT-IR spectra were obtained in the 4000-500 cm⁻¹ range on a Shimadzu IRTracer-100 spectrometer with a Golden Gate Single Reflection diamond ATR cell.

Thermal gravimetric analysis (TGA)

TGA was performed using a TA Instruments Q500HR analyzer under an N₂ atmosphere using the high-resolution mode (dynamic rate TGA) at a scan rate of 5 °C min⁻¹, from room temperature to 800 °C.

Solid-State Ultraviolet-visible spectroscopy (UV-Vis)

Absorption measurements were performed from 200-800 nm using a Shimadzu spectrophotometer UV-2600 equipped with an ISR-2600Plus integrating sphere and a BaSO₄ blank.

Fluorescence spectroscopy

Emission spectra were taken in an Edinburgh Instrument FS5 fluorimeter using a continuous wave 150 W ozone-free xenon arc lamp at room temperature. For the emission experiments, the solid samples were slightly ground in an agate mortar to homogenize the microcrystals. They were later packed into the quartz sample holders and positioned in the instrument. Measurements were carried out using an excitation wavelength of 343 nm, with an additional 345 nm high pass on the detector side to remove any remnant light from the excitation source. The measurements were collected with a step size of 0.3 nm, a dwell time of 0.50 s, and two runs for every scan. The excitation bandwidth was set at 0.10 nm, and the emission bandwidth for the detector at 3.00 nm.

S2. Results and Discussion Synthesis of CYCU-3 PXRD

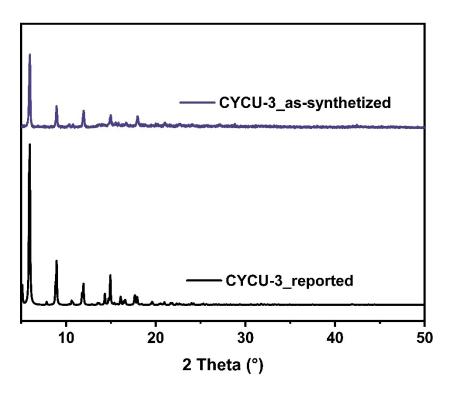


Figure S1. PXRD patterns of CYCU-3 reported, and CYCU-3 as-synthetized.

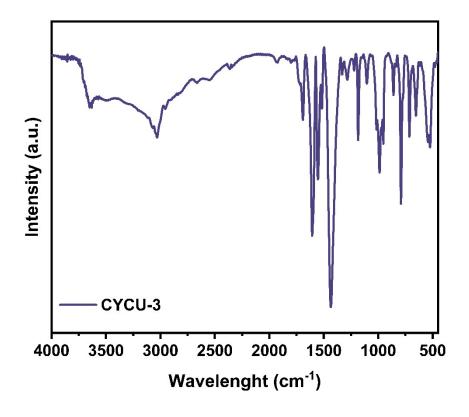


Figure S2. FTIR spectra of CYCU-3 as-synthetized.

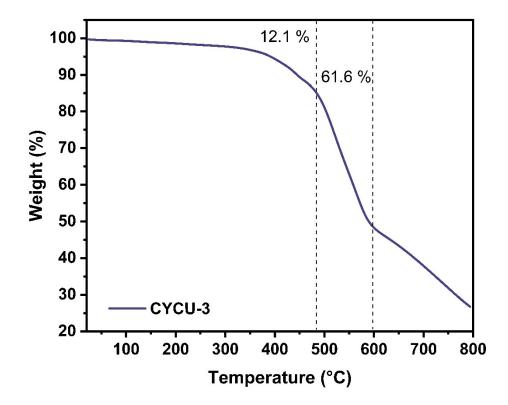


Figure S3. TGA analysis profile of CYCU-3 as-synthetized.

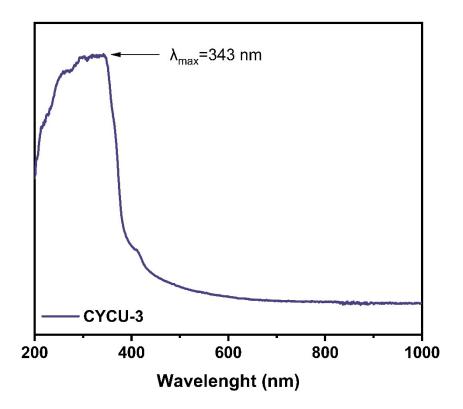


Figure S4. Solid-state UV-Vis spectra of CYCU-3 as-synthetized.

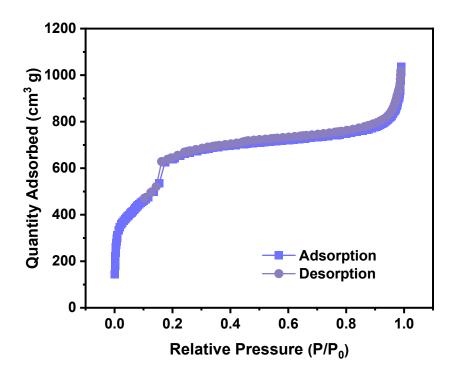


Figure S5. Nitrogen isotherm at 77 K of CYCU-3 as-synthetized.

Gases Adsorption experiments

Table S1. Comparison of SO2 uptake at 1 bar for different Al(III)-based MOFs.						
MOFs	Vp (cm ³ g ⁻¹)	BET (m ² g ⁻¹)	SO ₂ uptake (mmol g ⁻¹)	Temperature (K)	Ref.	
CYCU-3	1.36	2711	11.03	298	This work	
MOF-303	0.58	1211.78	7.86	298	1	
MIL-53(Al)- TDC	0.45	1260	8.9	298	2	
MIL-53(Al)- BDC	0.51	1210	10.8	298		
MIL-100(Al)	0.824	1890	16.3	293	3	
MIL-96	0.24	530	6.5	293		
DUT-4	0.71	1348	13.6	298	4	
MIL-160	0.46	1170	7.2	293	5	
CAU-23	0.51	1176	8.4	293	6	
CAU-10	0.25	630	4.47	298	7	

CYCU-3 after SO₂ adsorption experiments

PXRD patterns after dry SO₂ adsorption and after wet SO₂ exposure

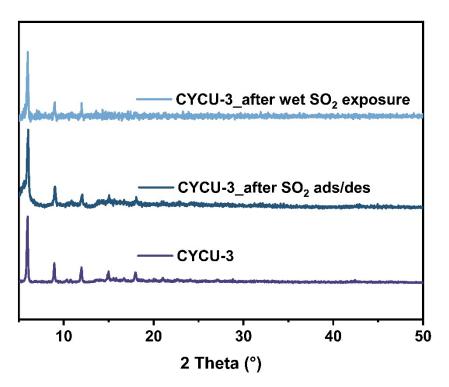


Figure S6. PXRD patterns of CYCU-3: as-synthetized, after dry SO₂ adsorption and wet SO₂ exposure.

Nitrogen isotherm after SO₂ experiments

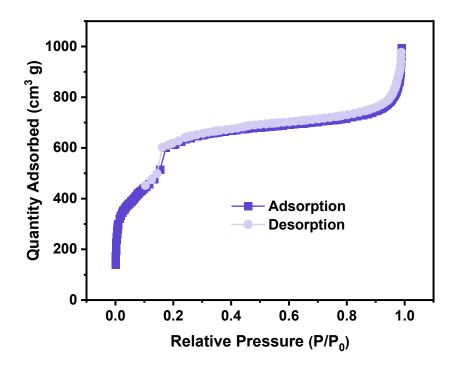


Figure S7. Nitrogen isotherm at 77 K of CYCU-3 after SO₂ experiments

Isosteric heat of SO₂ adsorption experiments

The heat of adsorption of CYCU-3 was calculated accordingly to the reported literature,⁸ using a virial-type equation (Eq. S1) to fit the low coverage region of two adsorption isotherms at 298 and 303 K (Figure S8).

$$Ln (n/p) = A_0 + A_1\eta + A_2\eta^2 + \cdots$$
 Eq. S1

Where p is the pressure in kPa, n is the amount adsorbed and A_0 , A_1 , ... are the virial coefficients. The plot *Ln* (*P*) *vs. n* can fit both isotherms simultaneously (Figure S9). From the linear fittings, the virial coefficients are used to estimate the enthalpy of adsorption.

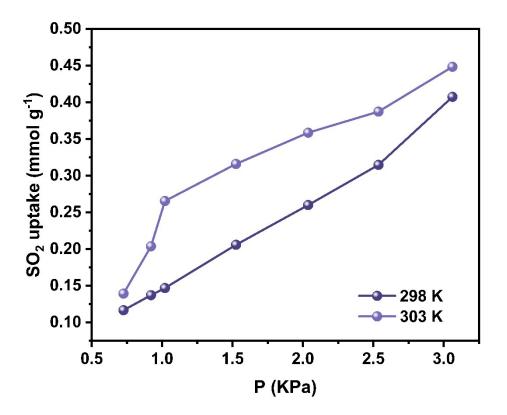


Figure S8. SO₂ adsorption isotherms of CYCU-3 at 298 and 303 K.

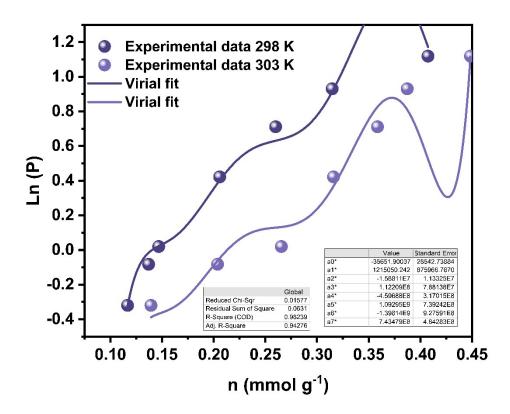


Figure S9. Virial fitting plots for the adsorption isotherms of SO₂ for CYCU-3.

System for ex situ wet SO₂ exposure experiments

The system (Figure S10) contains two principal parts:

A. The gas generator, in which Na_2SO_3 is added to a two-neck ball flask [1], of which is capped with a rubber stopper through which Na_2SO_3 is injected with a syringe [2]. One of which is covered with a rubber stopper through which concentrated H_2SO_4 is injected with a glass syringe [2], while the other is covered with a rubber stopper [3]. Concentrated H_2SO_4 [2] is injected through a glass syringe while the other port is connected to the saturation chamber.

B. The saturation chamber, made of a round flask [3], is connected to a vacuum line [4] and a vacuum line [4]. vacuum line [4] and a pressure gauge [5].

To start the process, a sample of about 20 mg in a 1.5 mL glass vial was activated in a sand bath at 423 K under vacuum for 24 h. The sample was then placed in the saturation chamber, and the system was evacuated with a vacuum line. The vial was then placed in the saturation chamber, and the system was evacuated with a vacuum line. Next, 1 bar of SO₂ gas was generated by dripping 1.2 mL of concentrated H₂SO₄ over 2 g of Na₂SO₃, the sample was left continuously exposed to the gas for 3 hours. For the sample exposed to 0.1 bar SO₂, the sample was activated in the same way, and 0.12 mL of concentrated H₂SO₄ was dripped onto 0.2 g of Na₂SO₃. The sample was left continuously exposed to the gas for 3 hours.

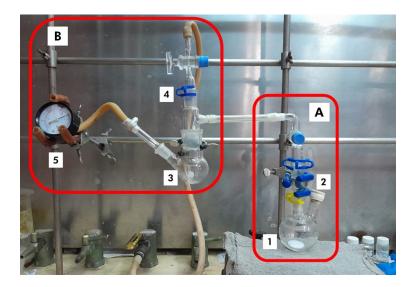
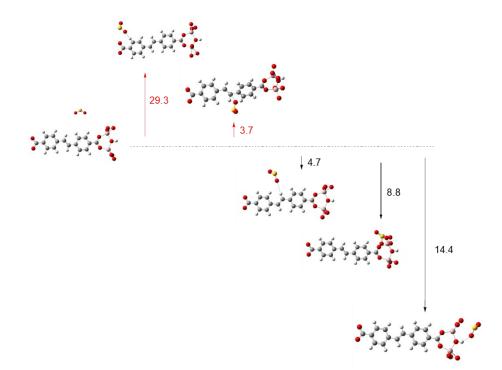



Figure S10. Homemade system for wet SO₂ adsorption experiments.

SO₂ computational chemistry

Figure S11. Partial optimization of SO₂ molecule interaction with five different positions in CYCU-3.

Fluorescence experiments

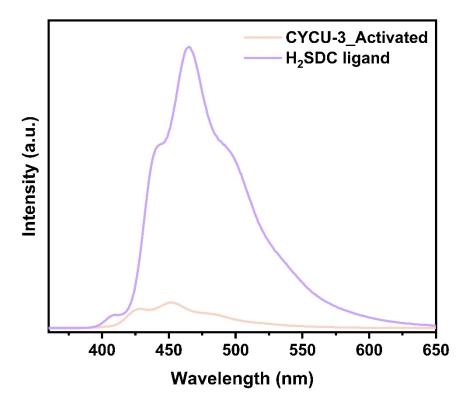
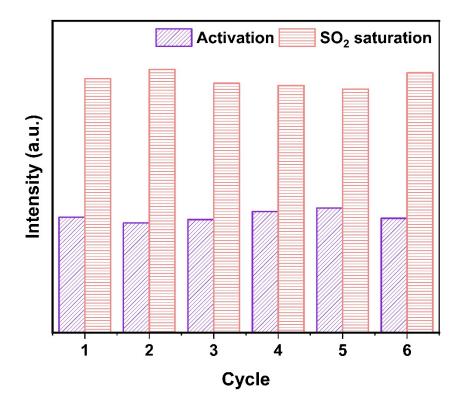
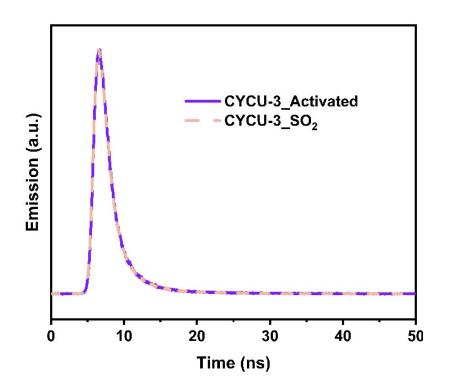




Figure S12. Solid-State emission spectra of H₂SDC linker and CYCU-3 activated.

Figure S13. Photoluminescence intensity of activated and SO₂-saturated cycles of a CYCU-3 sample.

16

Figure S14. Time-resolved photoluminescence decay spectra of activated CYCU-3 and SO₂-saturated CYCU-3 measured at 450 nm emission.

Table S2. Average decay lifetime for CYCU-3.						
Sample	τ_1 (ns)	τ_2 (ns)	τ ₃ (ns)	Fluorescence lifetime (ns)		
Activated	0.8508	1.1969	8.4462	2.20766		
SO ₂ saturated	0.6226	1.6658	6.9300	2.08989		

S4. References

- Obeso, J. L.; Martínez-Ahumada, E.; López-Olvera, A.; Ortiz-Landeros, J.; Lara-García, H. A.; Balmaseda, J.; López-Morales, S.; Sánchez-González, E.; Solis-Ibarra, D.; Leyva, C.; Ibarra, I. A. MOF-303 as an Effective Adsorbent to Clean CH₄: SO₂ Capture and Detection. *ACS Appl. Energy Mater.* 2022. https://doi.org/10.1021/acsaem.2c02983.
- López-Olvera, A.; Zárate, J. A.; Martínez-Ahumada, E.; Fan, D.; Díaz-Ramírez, M. L.; Sáenz-Cavazos, P. A.; Martis, V.; Williams, D. R.; Sánchez-González, E.; Maurin, G.; Ibarra, I. A. SO₂ Capture by Two Aluminum-Based MOFs: Rigid-like MIL-53(Al)-TDC versus Breathing MIL-53(Al)-BDC. *ACS Appl. Mater. Interfaces* 2021, *13* (33), 39363–39370. https://doi.org/10.1021/acsami.1c09944.
- Brandt, P.; Xing, S.-H.; Liang, J.; Kurt, G.; Nuhnen, A.; Weingart, O.; Janiak, C. Zirconium and Aluminum MOFs for Low-Pressure SO₂ Adsorption and Potential Separation: Elucidating the Effect of Small Pores and NH₂ Groups. *ACS Appl. Mater. Interfaces* 2021, *13* (24), 29137–29149. https://doi.org/10.1021/acsami.1c06003.

- (4) López-Olvera, A.; Pioquinto-García, S.; Antonio Zárate, J.; Diaz, G.; Martínez-Ahumada, E.; Obeso, J. L.; Martis, V.; Williams, D. R.; Lara-García, H. A.; Leyva, C.; Soares, C. V.; Maurin, G.; Ibarra, I. A.; Dávila-Guzmán, N. E. SO₂ Capture in a Chemical Stable Al(III) MOF: DUT-4 as an Effective Adsorbent to Clean CH₄. *Fuel* **2022**, *322*, 124213. https://doi.org/10.1016/j.fuel.2022.124213.
- (5) Brandt, P.; Nuhnen, A.; Lange, M.; Möllmer, J.; Weingart, O.; Janiak, C. Metal– Organic Frameworks with Potential Application for SO₂ Separation and Flue Gas Desulfurization. ACS Appl. Mater. Interfaces 2019, 11 (19), 17350–17358. https://doi.org/10.1021/acsami.9b00029.
- Jansen, C.; Tannert, N.; Lenzen, D.; Bengsch, M.; Millan, S.; Goldman, A.; Jordan, D. N.; Sondermann, L.; Stock, N.; Janiak, C. Unravelling Gas Sorption in the Aluminum Metal-organic Framework CAU-23: CO₂, H₂, CH₄, SO₂ Sorption Isotherms, Enthalpy of Adsorption and Mixed-adsorptive Calculations. *Zeitschrift für Anorg. und Allg. Chemie* 2022, 648 (17). https://doi.org/10.1002/zaac.202200170.
- Zárate, J. A.; Domínguez-Ojeda, E.; Sánchez-González, E.; Martínez-Ahumada, E.; López-Cervantes, V. B.; Williams, D. R.; Martis, V.; Ibarra, I. A.; Alejandre, J. Reversible and Efficient SO₂ Capture by a Chemically Stable MOF CAU-10: Experiments and Simulations. *Dalt. Trans.* 2020, 49 (27), 9203–9207. https://doi.org/10.1039/D0DT01595D.
- (8) Nuhnen, A.; Janiak, C. A Practical Guide to Calculate the Isosteric Heat/Enthalpy of Adsorption via Adsorption Isotherms in Metal–Organic Frameworks, MOFs. *Dalt. Trans.* **2020**, *49* (30), 10295–10307. https://doi.org/10.1039/D0DT01784A.