SUPPLEMENTARY INFORMATION

Organometallic Ru(II), Rh(III) and Re(I) complexes of sterane-based bidentate ligands: Synthesis, solution speciation, interaction with biomolecules and anticancer activity

Tamás Pivarcsik, Márton A. Kiss, Uroš Rapuš, Jakob Kljun, Gabriella Spengler, Éva Frank, Iztok Turel, Éva A. Enyedy*

Characterization of the organometallic complexes

Chemical shifts (δ) are reported in ppm. ¹H NMR spectra are referenced to residual peaks of NMR solvent CDCl₃ at 7.26 (referenced against the singlet line), and chemical shifts in ¹³C NMR spectra relative to NMR solvent CDCl₃ at 77.16 (referenced against central line of triplet). The multiplicities are abbreviated as s = singlet, d = doublet, dd = doublet of the doublets dt = doublet of triplets and m = multiplet. Coupling constants (J) are given in Hz. MestReNova version 14.3 was used for NMR data processing.

[RhCp*(4-Me-bpy-St-OH)Cl]Cl (1)

¹**H NMR** (CDCl₃, δ/ppm, Figure S1.): 9.014 (d, J = 8.03 Hz, 0.46 H, H_{lig}(6'')), 8.904 (d, J = 8.08 Hz, 0.54 H, H_{lig}(6''), 8.771 (s, 0.46 H, H_{lig}(5')), 8.744 (s, 0.54 H, H_{lig}(5')), 8.685 (d, J = 5.11 Hz, 0.45 H, H_{lig}(3'')), 8.671 (d, J = 5.58 Hz, 0.55 H, H_{lig}(3'')), 8.298 (td, J = 7.88 Hz; J = 1.36 Hz, 0.46 H, H_{lig}(4'')), 8.269 (td, J = 8.02 Hz; J = 1.42 Hz, 0.54 H, H_{lig}(4'')), 7.651 (dd, J = 6.16 Hz; J = 0.79 Hz, 0.45 H, H_{lig}(5'')), 7.631 (dd, J = 6.48 Hz; J = 0.79 Hz, 0.55 H, H_{lig}(5'')), 3.686 (m, 1H, H_{lig}(17)), 3.701 (dd, J = 4.77 Hz, 0.50 H, H_{lig}(4)), 3.110 (dd, J = 18.85 Hz; 13.25 Hz, 0.50 H, H_{lig}(4)), 2.923 (dd, J = 18.89 Hz; 4.39 Hz, 0.50 H, H_{lig}(4)), 2.524 (dd, J = 17.05 Hz; 12.56 Hz, 0.50 H, H_{lig}(4)), 2.841 (dd, J = 17.31 Hz; 7.13 Hz, 1H, H_{lig}(1)), 2.380 (d, J = 16.91 Hz; 0.50 H, H_{lig}(1)), 2.272 (d, J = 17.57 Hz; 0.50 H, H_{lig}(1)), 2.551 (d, J = 5.22 Hz; 3H, H_{lig}(1''')), 2.095 (m, 1H, H_{lig}(5)), 1.913 (m, 1H), 1.844 - 1.625 (m-s, 6H), 1.584 (s, 7H, HC₅Me₅(CH₃)), 1.557 (s, 8H, HC₅Me₅(CH₃)), 1.519 - 1.254 (m-s, 10H), 1.160 (t, J = 11.94 Hz, 1H), 1.046 - 0.821 (m-s, 6H), 0.935; 0.803; 0.782; 0.741 (s-s, 6H, H_{lig}(18, 19)).

¹³**C NMR** (CDCl₃, δ/ppm, Figure S2.): 158.77 (C(3)), 158.50 (C(3)), 156.59 (C(2'')), 156.29 (C(2'')), 152.49 (C(6')), 152.40 (C(6')), 151.99 (C(6'')), 151.97 (C(6'')), 151.91 (C(4')), 151.46 (C(4')), 141.23 (C(4'')), 141.14 (C(4'')), 136.52 (C(2)), 136.47 (C(2)), 127.19 (C(5')), 125.03 (C(5'')), 124.87 (C(5'')), 124.26 (C(3'')), 124.19 (C(3'')), 97.00 (C(C₅)), 96.94 (C(C₅)), 81.70 (C(17)), 81.68 (C(17)), 53.75 (C(9)), 53.67 (C(9)), 50.88 (C(14)), 50.77 (C(14)), 42.86 (C(13)), 42.85 (C(13)), 42.31 (C(13)), 41.23 (C(5)), 41.01 (C(5)), 40.72 (C(5)), 39.37 (C(1)), 38.08 (C(1)), 36.59 (C(12)), 36.53 (C(12)), 35.49 (C(10)), 35.45 (C(10)), 35.37 (C(4)), 34.42 (C(8)), 31.04 (C(7)), 30.81 (C(7)), 30.44 (C(16)), 30.42 (C(16)), 27.98 (C(6)), 27.90 (C(6)), 23.38 (C(15)), 23.36 (C(15)), 20.99 (C(11)), 19.80 (C(1''')), 19.76 (C(1''')), 12.94 (C(18)), 12.68 (C(18)), 11.14 (C(19)), 11.12 (C(19)), 9.72 (C(Me₅)), 9.37 (C(Me₅)).

ESI-HRMS (positive): calc. for [RhCp*(4-Me-bpy-St-OH)Cl]⁺ (C₃₈H₅₁ClN₂ORh): 689.2745 (m/z) found: 689.2727 (m/z).

Synthesis of [RhCp*(4-Ph-bpy-St-OH)Cl]Cl (2)

¹**H NMR** (CDCl₃, δ/ppm, Figure S3.): 8.792 (dd, 1H, H_{lig}(3'')), 8.404 (dd, 1H, H_{lig}(6'')), 8.685 (d, J = 5.11 Hz, 1H, H_{lig}(4'')), 8.055 (s, 0.56 H, H_{lig}(5')), 8.027 (s, 0.44 H, H_{lig}(5')), 7.743 (ddd, 1H, H_{lig}(5'')), 7.555 (td, J = 7.80 Hz; J = 1.74 Hz, 2H, H_{lig}(3''' & 5''')), 7.512 (m, 1H, H_{lig}(4''')), 7.400 (dd, J = 14.26 Hz; J = 7.10 Hz, 2H, H_{lig}(2''' & 6''')), 3.856 (dd, J = 18.09; J = 5.44, 4.87 Hz, 0.46 H, H_{lig}(4)), 3.640 (q, J = 19.33 Hz; J = 8.58 Hz, 1H, H_{lig}(17)), 3.201 (d, J = 12.62 Hz, 0.20 H, H_{lig}(4)), 3.168 (d, J = 13.02 Hz, 0.40 H, H_{lig}(4)), 3.111 (d, J = 4.88 Hz, 0.38 H, H_{lig}(4)), 3.079 (d, J = 4.97 Hz, 0.19 H, H_{lig}(4)), 2.863 (d, J = 17.47 Hz, 0.50 H, H_{lig}(1)), 2.623 (dd, J = 17.75; J = 11.86 Hz, 0.50 H, H_{lig}(4)), 2.537 (d, J = 16.94 Hz, 0.50 H, H_{lig}(1)), 2.333 (d, J = 16.58 Hz, 0.50 H, H_{lig}(1)), 2.077 (m, 1H, H_{lig}(5)), 1.915 - 1.695 (m-s, 6H), 1.673 (s, 7H, HC₅M_{e5}(CH₃)), 1.655 (s, 8H, HC₅Me₅(CH₃)), 1.481 - 1.254 (m-s, 10.50 Hz, 10.50 Hz,

13H), 1.091 – 0.938 (m-s, 4H), 0.856 – 0.779 (m-s, 2H), 0.883; 0.736; 0.704; 0.654 (s-s, 6H, H_{lig}(18, 19)).

¹³**C** NMR (CDCl₃, δ/ppm, Figure S4.): 160.62 (C(3)), 160.54 (C(3)), 155.97 (C(2'')), 155.72 (C(2'')), 154.49 (C(6')), 154.31 (C(6')), 152.45 (C(4')), 151.97 (C(4')), 151.97 (C(6'')), 151.92 (C(6'')), 141.00 (C(1''')), 141.95 (C(1''')), 136.64 (C(4'')), 136.45 (C(4'')), 135.38 (C(2)), 135.19 (C(2)), 129.49 (C(4''')), 129.35 (C(4''')), 129.04 (C(3''' & 5''')), 128.48 (C(2''' & 6''')), 128.31 (C(2''' & 6''')), 127.69 (C(5'')), 127.65 (C(5'')), 123.93 (C(3'')), 123.71 (C(3'')), 122.78 (C(5')), 122.38 (C(5')), 97.52 (C(C₅), 97.49 (C(C₅)), 97.47 (C(C₅), 97.44 (C(C₅)), 81.71 (C(17)), 53.37 (C(9)), 53.35 (C(9)), 50.78 (C(14)), 50.72 (C(14)), 42.77 (C(13)), 42.36 (C(13)), 42.11 (C(5)), 42.04 (C(5)), 40.07 (C(1)), 38.85 (C(1)), 36.46 (C(12)), 36.43 (C(12)), 35.78 (C(10)), 35.47 (C(4)), 35.36 (C(4)), 34.63 (C(8)), 30.96 (C(7)), 30.81 (C(7)), 30.46 (C(16)), 28.00 (C(6)), 23.36 (C(15)), 23.34 (C(15)), 20.83 (C(11)), 12.43 (C(18)), 12.15 (C(18)), 11.05 (C(19)), 11.03 (C(19)), 10.00 (C(Me₅)).

ESI-HRMS (positive): calc. for $[RhCp^{*}(4-Ph-bpy-St-OH)Cl]^{+}$ (C₄₃H₅₃ClN₂ORh): 751.2901 (m/z) found: 751.2883 (m/z).

Synthesis of [RuCym(4-Me-bpy-St-OH)Cl]Cl (3)

¹**H NMR** (CDCl₃, δ/ppm, Figure S5.): 9.682 (m, 0.38 H, H_{lig}(3'')), 9.544 (m, 0.62 H, H_{lig}(3'')), 8.232 (dd, J = 8.11 Hz, 0.38 H, H_{lig}(6'')), 8.214 (dd, J = 8.35 Hz, 0.62 H, H_{lig}(6'')), 8.043 (m, 1H, H_{lig}(4'')), 8.019 (s, 0.38 H, H_{lig}(5')), 7.992 (s, 0.62 H, H_{lig}(5')), 7.777 (m, 0.38 H, H_{lig}(5'')), 7.730 (m, 0.62 H, H_{lig}(5'')), 6.274 (m, 0.38 H, H_{Cym}(C3)), 6.100 (m, 0.62 H, H_{Cym}(C3)), 6.035 (m, 1H, H_{Cym}(C3)), 5.941 (d, 0.62 H, H_{Cym}(C2)), 5.851 (d, 0.38 H, H_{Cym}(C2)), 5.686 (d, 0.62 H, H_{Cym}(C2)), 5.638 (d, 0.38 H, H_{Cym}(C2)), 3.712 (dd, J = 4.48 Hz, 0.38 H, H_{lig}(4)), 3.692 (m, 1H, H_{lig}(17)), 3.346 (dd, J = 18.38; 5.23 Hz, 0.62 H, H_{lig}(4)), 3.190 (dd, J = 18.27; 12.73 Hz, 0.62 H, H_{lig}(4)), 2.821 (dd, Under the peak H_{lig}(1), 0.38 H, H_{lig}(4)), 2.836 (d, J = 17.63 Hz, 0.38 H, H_{lig}(1)), 2.792 (d, J = 16.96 Hz, 0.62 H, H_{lig}(1)), 2.601 – 2.501 (m, 1H, H_{Cym}(C5)), 2.466 (s, 1H, H_{Cym}(C8)), 2.461 (s, 2H, H_{Cym}(C8)), 2.417 (d, J = 16.84 Hz, 0.62 H, H_{lig}(1)), 2.303 (d, J = 11.81 Hz, 0.62 H, H_{lig}(1)), 2.280 (s, 1H, H_{lig}(1''')), 2.232 (s, 2H, H_{lig}(1''')), 2.104 (m, 1H, H_{lig}(5)), 1.956 – 1.878 (m, 2H), 1.860 – 1.781 (m, 2H), 1.759 – 1.682 (m, 3H), 1.539 – 1.141 (m, Sterane protons), 1.061 – 1.003 (d-s, 6H, H_{Cym}(C6 & C7)), 0.884 (s, 1H, H_{lig}(18)), 0.819 (s, 1H, H_{lig}(19)), 0.780 (s, 2H, H_{lig}(18)), 0.681 (s, 2H, H_{lig}(19)).

¹³**C NMR** (CDCl₃, δ/ppm, Figure S6.): 160.40 (C(3)), 160.06 (C(3)), 157.13 (C(2'')), 156.65 (C(2'')), 155.55 (C(6')), 154.94 (C(6')), 152.57 (C(6'')), 152.40 (C(6'')), 151.09 (C(4')), 150.82 (C(4')), 139.71 (C(4'')), 139.63 (C(4'')), 136.05 (C(2)), 135.76 (C(2)), 128.22 (C(5')), 127.83 (C(5')), 123.08 (C(5'')), 122.96 (C(3'')), 122.86 (C(3'')), 105.75 (C(C4)),104.12 (C(C1)),88.65 (C(C3 & C2)),85.85 (C(C3 & C2)),84.08 (C(C3 & C2)),83.64 (C(C3 & C2)), 81.78 (C(17)), 81.72 (C(17)), 53.91 (C(9)), 53.62 (C(9)), 50.87 (C(14)), 50.81 (C(14)), 42.90 (C(13)), 42.88 (C(13)), 42.18 (C(13)), 41.37 (C(1)), 41.32 (C(1)), 41.13 (C(1)), 40.06 (C(5)), 40.02 (C(5)), 36.64 (C(12)), 36.58 (C(12)), 35.47 (C(10)), 34.76 (C(4)), 34.20 (C(8)), 31.13 (C(7)), 31.05 (C(7)), 30.95 (C(C5)), 30.82 (C(C5)), 30.51 (C(16)), 30.46 (C(16)), 28.41 (C(6)), 28.26 (C(6)), 23.38 (C(15)), 22.50 (C(C6 & C7)), 22.31 (C(C6 & C7)), 22.11 (C(C6 & C7)), 21.79 (C(C6 & C7)), 21.05 (C(11)), 21.01 (C(11)), 19.90 (C(1''')), 19.80 (C(1''')), 19.12 (C(C8)), 18.90 (C(C8)), 12.79 (C(18)), 12.31 (C(18)), 11.19 (C(19)).

ESI-HRMS (positive): calc. for $[RuCym(4-Me-bpy-St-OH)CI]^+$ (C₃₈H₅₀ClN₂ORu): 687.2655 (m/z) found: 687.2641 (m/z).

Synthesis of [RuCym(4-Ph-bpy-St-OH)Cl]Cl (4)

¹**H NMR** (CDCl₃, δ/ppm, Figure S7.): 9.860 (m, 0.33 H, H_{lig}(3'')), 9.716 (m, 0.67 H, H_{lig}(3'')), 8.020 (dd, 0.33 H, H_{lig}(6'')), 8.014 (dd, 0.67 H, H_{lig}(6'')), 8.014 (t, Under the peak H_{lig}(6''), 0.67 H, H_{lig}(4'')), 7.975 (t, J = 7.91; 9.38 Hz, 0.33 H, H_{lig}(4'')), 7.858 (m, 0.33 H, H_{lig}(5'')), 7.806 (m, 0.67 H, H_{lig}(5'')), 7.788 (s, 0.67 H, H_{lig}(5')), 7.747 (s, 0.33 H, H_{lig}(5')), 7.556 – 7.505 (m, 3H, H_{lig}(3''' – 5''')), 7.343 (d, J = 6.53 Hz, 2H, H_{lig}(2''' & 6''')), 6.214 (m, 0.67 H, H_{cym}(C3)), 6.134 (d, J = 4.97 Hz, 0.67 H, H_{cym}(C2)), 5.962 (d, J = 5.63 Hz, 0.33 H, H_{cym}(C2)), 5.823 (d, J = 5.18 Hz, 0.67 H, H_{cym}(C2)), 5.771 (d, J = 3.91 Hz, 0.33 H, H_{cym}(C2)), 3.854 (dd, J = 17.42, 4.74 Hz, 0.33 H, H_{lig}(4)), 3.636 (m, J = 14.03 Hz, 8.07 Hz, 7.74 Hz, 1H, H_{lig}(17)), 3.538 (dd, J = 18.50, 5.83, 6.00 Hz, 0.67 H, H_{lig}(4)), 3.292 (dd, J = 18.66, 11.67 Hz, 12.04, 0.67 H, H_{lig}(4)), 2.904 (dd, J = 17.34, 12.15 Hz, 12.47, 0.33 H, H_{lig}(4)), 2.838 (d, J = 17.58 Hz, 0.67 H, H_{lig}(1)), 2.702 (d, J = 16.73 Hz, 0.67 H, H_{lig}(1)), 2.626 (m, 1H, H_{cym}(C5)), 2.562 (d, J = 16.74 Hz, 0.67 H, H_{lig}(1)),

2.315 (s, 1H, $H_{Cym}(C8)$), 2.295 (d, Under the peak $H_{Cym}(C8)$, 0.33 H, $H_{Iig}(1)$), 2.270 (s, 2H, $H_{Cym}(C8)$), 2.068 (m, 1H, $H_{Iig}(5)$), 2.060 – 2.020 & 1.829 – 1.729 (m, 4H), 1.464 – 1.229 (m, 10H), 1.089 – 1.050 (d-s, 6H, $H_{Cym}(C6 \& C7)$), 0.959 (s, 1H, $H_{Iig}(18)$), 0.750 (s, 1H, $H_{Iig}(19)$), 0.695 (s, 2H, $H_{Iig}(18)$), 0.564 (s, 2H, $H_{Iig}(19)$).

¹³**C** NMR (CDCl₃, δ/ppm, Figure S8.): 162.61 (C(3)), 161.58 (C(3)), 157.97 (C(2'')), 157.29 (C(2'')), 155.20 (C(6')), 154.49 (C(6')), 153.66 (C(4')), 153.68 (C(4')), 152.80 (C(6'')), 152.49 (C(6'')), 139.39 (C(1''')), 139.32 (C(1''')), 136.84 (C(4'')), 136.74 (C(4'')), 134.97 (C(2)), 134.52 (C(2)), 129.43 (C(4''')), 129.31 (C(4''')), 129.06 (C(3''' & 5''')), 129.02 (C(3''' & 5''')), 128.76 (C(5'')), 128.23 (C(5'')), 128.39 (C(2''' & 6''')), 128.08 (C(2''' & 6''')), 122.26 (C(3'')), 122.16 (C(3'')), 121.61 (C(5')), 121.46 (C(5')), 106.33 (C(C4)), 104.09 (C(C1)), 88.84 (C(C3 & C2)), 86.60 (C(C3 & C2)), 84.07 (C(C3 & C2)), 83.80 (C(C3 & C2)), 81.78 (C(17)), 81.71 (C(17)), 53.52 (C(9)), 53.23 (C(9)), 50.78 (C(14)), 50.73 (C(14)), 42.82 (C(13)), 42.79 (C(13)), 42.64 (C(13)), 42.44 (C(1)), 42.34 (C(1)), 41.49 (C(1)), 40.70 (C(5)), 40.66 (C(5), 36.52 (C(12)), 36.46 (C(12)), 35.47 (C(10)), 35.45 (C(10)), 35.01 (C(4)), 34.37(C(8)), 31.24 (C(7)), 31.14 (C(7)), 30.89 (C(C5)), 30.81 (C(C5)), 30.51 (C(16)), 30.46 (C(16)), 28.45 (C(6)), 28.33 (C(6)), 23.36 (C(15)), 22.55 (C(C6 & C7)), 22.29 (C(C6 & C7)), 22.18 (C(C6 & C7)), 21.85 (C(C6 & C7)), 20.87 (C(11)), 20.80 (C(11)), 19.16 (C(C8)), 18.95 (C(C8)), 12.36 (C(18)), 11.86 (C(18)), 11.09 (C(19)), 11.05 (C(19)).

ESI-HRMS (positive): calc. for [RuCym(4-Ph-bpy-St-OH)Cl]⁺ (C₄₃H₅₂ClN₂ORu): 749.2812 (m/z) found: 749.2798 (m/z).

Synthesis of [Re(CO)₃(4-Me-bpy-St-OH)Cl]Cl (5)

¹**H NMR** (CDCl₃, δ/ppm, Figure S9.): 9.092 (td, J = 4.92 Hz; J = 0.83 Hz, 1H, H(3'')), 8.114 (t, J = 7.93 Hz; 1H, H(6'')), 7.998 (td, J = 7.89 Hz; J = 1.55, 1.44 Hz, 1H, H(4'')), 7.802 (d, J = 7.30 Hz; 1H, H(5')), 7.468 (m, J = 1.16 Hz, 1H, H(5'')), 3.676 (m, 1H, H(17)), 3.523 (dd, J = 17.85; 5.36 Hz, 0.50 H, H(4)), 3.260 (dd, J = 17.83; 5.16 Hz, 0.50 H, H(4)), 3.128 (dd, J = 17.85; 12.26 Hz, 0.50 H, H(4)), 2.930 (dd, J = 17.84; 12.29 Hz, 0.50 H, H(4)), 2.773 (dd, J = 17.13; 5.94 Hz, 1H, H(1)), 2.409 (s, 3H, H(1''')), 2.314 (dd, J = 16.00, 1H, H(1)), 2.098 (m, 1H, H(5)), 1.902 (dq, 1H), 1.811 (m, 2H), 1.727 - 1.626 (m, 3H), 1.527 - 1.428 (m-s, 4H), 1.352 - 1.282 (m-s, 2H), 1.190 - 1.129 (m-s, 1H), 1.051 - 0.858 (m-s, 4H), 0.843 (d, J = 4.34, 3H, H(18)), 0.796 (d, J = 1.64, 3H, H(19)).

¹³**C NMR** (CDCl₃, δ/ppm, Figure S10.): 197.47 , 197.40, 197.09 (C(C1 – C3)), 159.46 (C(3)), 159.21 (C(3)), 157.40 (C(2'')), 157.21 (C(2'')), 152.95 (C(6')), 152.83 (C(6')), 152.71 (C(6'')), 152.67 (C(6'')), 150.06 (C(4')), 150.05 (C(4')), 138.69 (C(4'')), 135.25 (C(2)), 135.17 (C(2)), 126.32 (C(5')), 126.07 (C(5')), 122.72 (C(5'')), 122.59 (C(5'')), 122.27 (C(3'')), 122.14 (C(3'')), 81.93 (C(17)), 81.89 (C(17)), 53.97 (C(9)), 53.85 (C(9)), 50.93 (C(14)), 50.86 (C(14)), 42.98, 42.88, 42.49, 42.43, 42.12, 41.44 (C(13 & 5 & 1)), 36.70 (C(12)), 36.67 (C(10)), 35.52 (C(4)), 35.45 (C(4)), 34.23 (C(8)), 34.11 (C(8)), 30.97 (C(7)), 30.94 (C(7)), 30.89 (C(7)), 30.61 (C(16)), 30.59 (C(16)), 27.80 (C(6)), 27.72 (C(6)), 23.38 (C(15)), 21.07 (C(11)), 20.07 (C(1''')), 20.01 (C(1''')), 12.34 (C(18)), 12.22 (C(18)), 11.14 (C(19)), 11.12 (C(19)).

ESI-HRMS (positive): calc. for [Re(CO)₃(4-Me-bpy-St-OH)CH₃CN] (C₃₃H₄₂N₃O₄Re): 728.2498 (m/z) found: 728.2488 (m/z).

Synthesis of [Re(CO)₃(4-Ph-bpy-St-OH)Cl]Cl (6)

¹**H NMR** (CDCl₃, δ/ppm, Figure S11.): 9.125 (dq, J = 5.53 Hz, 0.90 H, H(3'')), 9.102 (d, J = 5.08 Hz, 0.05 H, H(3'')), 9.078 (d, J = 4.89 Hz, 0.05 H, H(3'')), 8.179 (t, J = 7.83 Hz, 0.10 H, H(6'')), 8.102 (t, J = 8.46 Hz, 0.90 H, H(6'')), 8.102 (Under the peak H(6''), 0.10 H, H(4'')), 7.987 (td, J = 7.74 Hz; J = 1.40 Hz, 0.90 H, H(4'')), 7.917 (s, 0.06 H, H(5')), 7.888 (s, 0.04 H, H(5')), 7.840 (d, J = 9.94 Hz, 0.90 H, H(5')), 7.626 – 7.563 (0.20 H, H(5'', 3''', 4''', 5''')), 7.557 – 7.470 (4H, H(5'', 3''', 4''', 5''')), 7.376 – 7.353 (0.20 H, H(2''' & 6''')), 7.339 (dt, J = 6.61 Hz, 0.95 H, H(2''' & 6''')) and 7.312 (dt, J = 6.53 Hz, 0.85 H, H(2''' & 6''')), 3.665 (dd, J = 18.82; 5.75 Hz, 0.50 H, H(4)), 3.624 (m, 1H, H(17)), 3.433 (dd, J = 17.32; 5.43 Hz, 0.50 H, H(4)), 3.159 (dd, J = 18.00; 12.17 Hz, 0.50 H, H(4)), 2.969 (dd, J = 18.02; 11.78 Hz, 0.50 H, H(4)), 2.751 (dd, J = 17.08; 8.25 Hz, 1H, H(1)), 2.374 (d, J = 22.25; 17.22 Hz, 1H, H(1)), 2.072 (m, 1H, H(5)), 1.852 – 1.601 (m-s, 6H), 1.491 – 1.254 (m-s, 10H), 1.067 – 0.779 (m-s, 6H), 0.755 (d, J = 6.03 Hz, 3H, H(18)), 0.722 (d, J = 3.00 Hz, 3H, H(19))

¹³**C** NMR (CDCl₃, δ/ppm, Figure S12.): 197.40, 197.33, 196.98 (C(C1 – C3)), 160.82 (C(3)), 160.61 (C(3)), 157.30 (C(2'')), 157.13 (C(2'')), 153.26 (C(6')), 153.21 (C(6')), 153.19 (C(4')), 153.15 (C(4')), 152.77 (C(6'')), 152.74 (C(6'')), 138.77 (C(1''')), 138.74 (C(1''')), 137.54 (C(4'')), 137.51 (C(4'')), 134.14 (C(2)), 133.95 (C(2)), 129.11, 128.99, 128.97, 128.16, 128.08 (C(2''' – 6''')), 126.51 (C(5'')), 126.30

(C(5")), 122.88 (C(3")), 122.76 (C(3")), 121.98 (C(5')), 121.80 (C(5')), 81.92 (C(17)), 81.87 (C(17)), 53.60 (C(9)), 53.46 (C(9)), 50.86 (C(14)), 50.78 (C(14)), 43.58 (C(5)), 43.13 (C(5)), 42.80 (C(13)), 42.77 (C(1)), 42.66 (C(1)), 42.55 (C(1)), 42.43 (C(1)), 36.58 (C(12)), 36.54 (C(12)), 35.52 (C(4)), 35.45 (C(4)), 35.42 (C(8)), 35.33 (C(8)), 30.95 (C(7)), 30.87 (C(7)), 30.60 (C(16)), 30.57 (C(16)), 27.85 (C(6)), 27.82 (C(6)), 23.36 (C(15)), 20.87 (C(11)), 20.86 (C(11)), 11.86 (C(18)), 11.80 (C(18)), 11.06 (C(19)), 11.03 (C(19)). ESI-HRMS (positive): calc. for $[Re(CO)_3(4-Ph-bpy-St-OH)CH_3CN]$ (C₃₈H₄₄N₃O₄Re): 790.2655 (m/z) found: 790.2636 (m/z).

Figure S1. ¹H NMR spectrum of [RhCp*(4-Me-bpy-St-OH)Cl]Cl (**1**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S2. ¹³C NMR spectrum of [RhCp*(4-Me-bpy-St-OH)Cl]Cl (1) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S3. ¹H NMR spectrum of [RhCp*(4-Ph-bpy-St-OH)Cl]Cl (**2**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S4. ¹³C NMR spectrum of [RhCp*(4-Ph-bpy-St-OH)Cl]Cl (**2**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S5. ¹H NMR spectrum of [RuCym(4-Me-bpy-St-OH)Cl]Cl (**3**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S6. ¹³C NMR spectrum of [RuCym(4-Me-bpy-St-OH)Cl]Cl (**3**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S7. ¹H NMR spectrum of [RuCym(4-Ph-bpy-St-OH)Cl]Cl (**4**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S8. ¹³C NMR spectrum of [RuCym(4-Ph-bpy-St-OH)Cl]Cl (**4**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S9. ¹H NMR spectrum of $[Re(CO_3)(4-Me-bpy-St-OH)CI]$ (**5**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S10. ¹³C NMR spectrum of [Re(CO₃)(4-Me-bpy-St-OH)Cl] (**5**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S11. ¹H NMR spectrum of $[Re(CO_3)(4-Ph-bpy-St-OH)CI]$ (**6**) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S12. ¹³C NMR spectrum of $[Re(CO_3)(4-Ph-bpy-St-OH)Cl]$ (6) in CDCl₃. Inserted structure shows the numbering of peaks.

Figure S13. High resolution electrospray ionization MS (HR-ESI-MS) spectrum of [RhCp*(4-Me-bpy-St-OH)Cl]Cl (1) recorded in CH₃CN.

Figure S14. High resolution electrospray ionization MS (HR-ESI-MS) spectrum of [RhCp*(4-Ph-bpy-St-OH)Cl]Cl (2) recorded in CH₃CN.

Figure S15. High resolution electrospray ionization MS (HR-ESI-MS) spectrum of [RuCym(4-Me-bpy-St-OH)CI]CI (**3**) recorded in CH₃CN.

Figure S16. High resolution electrospray ionization MS (HR-ESI-MS) spectrum of [RuCym(4-Ph-bpy-St-OH)Cl]Cl (4) recorded in CH₃CN.

Figure S17. High resolution electrospray ionization MS (HR-ESI-MS) spectrum of [Re(CO₃)(4-Me-bpy-St-OH)CI] (**5**) recorded in CH₃CN.

Figure S18. High resolution electrospray ionization MS (HR-ESI-MS) spectrum of $[Re(CO_3)(4-Ph-bpy-St-OH)CI]$ (6) recorded in CH₃CN.

Figure S19. Quantitative-NMR: ¹H NMR spectrum of maltol and [RhCp*(4-Me-bpy-St-OH)Cl]Cl (1) complex together with maltol in DMSO- d_6 . Based on the integrals the RhCp* complex is found with 2 chloride ions and 4 water molecules.

Figure S20. Photograph of the analysed crystal of complex [Re(CO)₃(4-Me-bpy-St-OH)Cl] (5).

		OH H H H H H H H H H H H H H	OH H H H H H H H H H H H H H H H H H H
logD _{7.40}		+ 3.01 ± 0.05	+ 3.43 ± 0.25
$\mathbf{pK}_{a1}: \mathbf{N1'}_{2pp}\mathbf{H}^+$		5.21 ^ª	8.54ª
p <i>K</i> _{a2} : OH _{phenol}		4.49 ^a	8.52ª
IC ₅₀ / μΜ	LNCaP	>100	>100
	PC3	>100	>100
	MCF-7	8.7 ± 0.8	15.2 ± 0.2
	Colo205	3.9 ± 0.1	9.5 ± 0.4

Table S1. log*D* values at pH = 7.40 and p K_a values^a of the (*N*,*O*) ligands along with the determined IC₅₀ values (expressed in μ M) in human cancerous cell lines.

^a As precipitation was also observed even at higher DMSO content (60% (v/v) DMSO/H2O), UV-vis or ¹H NMR titrations could not be performed, the pK_a values were predicted by the Marvin software of ChemAxon.^{S11}

Reference SI1: ChemAxon, Ltd. Instant J. Chem. / MarwinSketch; ChemAxon Ltd.: Budapest, Hungary, 2012.

Complex	(5)
CCDC No.	2302275
Empirical formula	$C_{31}H_{36}CIN_2O_4Re$
Formula weight	722.27
Temperature [K]	150.00(10)
Crystal system	triclinic
Space group	P1
a [Å]	8.9975(3)
b [Å]	12.9898(4)
c [Å]	13.9898(5)
α [°]	110.232(3)
β [°]	107.742(3)
γ [°]	91.611(3)
Volume [ų]	1444.82(9)
Z	2
ρ_{calc} [g cm ⁻³]	1.660
μ [mm ⁻¹]	4.336
F(000)	720.0
Crystal size [mm ³]	$0.1 \times 0.08 \times 0.02$
Radiation	Μο Κα
	(λ = 0.71073)
2O range for data collection [°]	4.802 to 58.912
	-12 ≤ h ≤ 12,
Index ranges	-17 ≤ k ≤ 17,
	-19 ≤ l ≤ 19
Reflections collected	20202
	12182
Independent reflections	[R _{int} = 0.0378,
	R _{sigma} = 0.0656]
Data/restraints/parameters	12182/3/651
Goodness-of-fit on F ²	0.975
Final R indexes $[1 > 2\sigma(1)]$	$R_1 = 0.0320$,
	$wR_2 = 0.0578$
Final R indexes [all data]	$R_1 = 0.0416$,
	$wR_2 = 0.060$
Largest diff. peak / hole [e Å ⁻³]	1.26/-1.35
Flack parameter	-0.036(9)

Table S2. Crystallographic data for complex [Re(CO)₃(4-Me-bpy-St-OH)Cl] (5).

Figure S21. (a) ¹H NMR spectra of 4-Me-bpy-St-OH in the low-field region at different pH values, and (b) chemical shift values of the C(5')H proton (\diamond) along with the fitted (dashed) line. { c_{ligand} = 680 μ M, *I* = 0.10 M KCl, 30% (v/v) DMSO- d_6/H_2O }

Scheme S1. Solution equilibrium processes occurring in the solution of the half-sandwich RuCym and RhCp* complexes.

Figure S22. Complex formation process in time for (a) RhCp* – 4-Me-bpy-St-OH and (b) RuCym – 4-Me-bpy-St-OH (1:1) systems at pH = 4.0 followed by UV-vis spectrophotometry. (c) Absorbance values at 330 nm as a function of time: RhCp* (•), RuCym (•). { $c_{RuCym/RhCp*} = c_{ligand} = 30 \ \mu\text{M}$, $T = 25.0 \ ^{\circ}\text{C}$, $\ell = 1 \ \text{cm}$, $30\% \ (v/v) \ \text{DMSO/H}_2\text{O}$ }

Figure S23. UV-vis spectra of the RuCym – 4-Me-bpy-St-OH (1:1) system at various pH values (1.92 \rightarrow 5.74). The spectrum of the organometallic triaqua cation (black dashed line), ligand (grey dotted line) and their additive spectrum (red solid line) are also indicated. Notably, the aqua co-ligands are replaced partly by chlorido ligands in the presence of chloride ions. { $c_{RuCym} = c_{ligand} = 30 \mu$ M, I = 0.10 M KCl, T = 25.0 °C, $\ell = 1$ cm, 30 % (v/v) DMSO/water}

Figure S24. Concentration distribution curves calculated for the RhCp^{*} – 4-Me-bpy-St-OH (orange, solid and dashed lines) and for the RuCym – 4-Me-bpy-St-OH (black, solid and dashed lines) (1:1) systems. { $c_{ligand} = c_{RhCp^*/RuCym} = 30 \ \mu\text{M}$, $I = 0.10 \ \text{M}$ KCl, $T = 25.0 \ ^{\circ}\text{C}$, $30\% \ (v/v) \ \text{DMSO/H}_2\text{O}$ }

Figure S25. pH-potentiometric titration curve of the [RhCp*(4-Me-bpy-St-OH)Cl]Cl complex (1) (\diamond) along with the fitted (dashed) line { $c_{complex} = 660 \ \mu$ M, $I = 0.20 \ M \ KNO_3$, $T = 25.0 \ C$ }

Figure S26. (a) UV-vis spectra of the [RhCp*(4-Me-bpy-St-OH)Cl]Cl complex (**1**) at various pH values (5.01 \rightarrow 11.34). (b) Absorbance values at 337 nm (o) as a function of pH together with the fitted curve. { $c_{(1)} = 158 \ \mu\text{M}$, $l = 0.20 \ \text{M} \ \text{KNO}_3$, $T = 25.0 \ ^{\circ}\text{C}$, $\ell = 1 \ \text{cm}$ } (c) UV-vis spectra of the [RhCp*(4-Ph-bpy-St-OH)Cl]Cl complex (**2**) at various pH values (5.96 \rightarrow 10.31). (d) Absorbance values at 343 nm for the same complex as a function of pH. { $c_{(2)} = 103 \ \mu\text{M}$, $l = 0.20 \ \text{KNO}_3$, $T = 25.0 \ ^{\circ}\text{C}$, $\ell = 1 \ \text{cm}$ }

Figure S27. (a) UV–vis spectra of the [RuCym(4-Me-bpy-St-OH)Cl]Cl complex (**3**) at various pH values (4.79 \rightarrow 10.36). (b) Absorbance values at different wavelengths as a function of pH. { $c_{(3)}$ = 123 μ M, I = 0.20 M KNO₃, T = 25.0 °C, ℓ = 1 cm}

Figure S28. (a) UV-vis spectra of [RuCym(4-Me-bpy-St-OH)Cl]Cl (**3**) in the absence and presence of various equivalents of chloride ions. (b) Absorbance values at 276 nm as a function of $c_{Cl-} / c_{complex}$ ratio along with the fitted (dashed) line. { $c_{(3)} = 237 \mu$ M; pH = 7.40 (phosphate buffer); I = 0.20 M KNO₃; $\ell = 0.2$ cm; T = 25.0 °C}

Figure S29. UV-vis spectra of the [RhCp*(4-Ph-bpy-St-OH)Cl]Cl complex (**2**) in (a) PBS' buffer (pH = 7.40), (b) RPMI-1640 biological medium and d) blood serum. Absorbance values at 360 and 400 nm as a function of time in the case of (c) RPMI-1640 and (e) blood serum. { $c_{(2)} = 150 \mu$ M, $T = 25.0 \circ$ C, $\ell = 1 \text{ cm}$ }

Figure S30. UV-vis spectra of $[\text{Re}(\text{CO})_3(4\text{-Me-bpy-St-OH})\text{CI}]$ (**5**) in 30% (*v*/*v*) DMSO/H₂O at a) pH = 5.1; c) pH = 7.0 and e) pH = 12.2 followed in time. Absorbance values at 292 (b) or 330 nm (d, f) for the same systems, respectively. { $c_{(5)} = 10 \ \mu\text{M}$; $T = 25.0 \ ^\circ\text{C}$; $\ell = 1 \ \text{cm}$; 30% (*v*/*v*) DMSO/H₂O; PBS' buffer (pH = 7.0)}.

Figure S31. UV-vis spectra of [Re(CO)₃(4-Me-bpy-St-OH)Cl] (**5**) in DMF and DMSO. { $c_{(5)} = 100 \ \mu\text{M}$; $T = 25.0 \ ^{\circ}\text{C}$; $\ell = 1 \ \text{cm}$ }

Figure S32. UV-vis spectra of $[\text{Re}(\text{CO})_3(4\text{-Me-bpy-St-OH})\text{CI}]$ (**5**) in 30% (*v*/*v*) DMF/H₂O mixture at a) pH = 1.9; b) pH = 4.9 and c) pH = 11.2 followed in time. { $c_{(5)} = 8 \mu\text{M}$; T = 25.0 °C; $\ell = 1 \text{ cm}$; 30% (*v*/*v*) DMF/H₂O}.

Figure S33. UV-vis spectra of $[\text{Re}(\text{CO})_3(4\text{-Me-bpy-St-OH})\text{CI}]$ (5) in 60% (*v*/*v*) DMF/H₂O mixture at increasing chloride ion concentration at pH 7.40. { $c_{(5)} = 14 \ \mu\text{M}$; $T = 25.0 \ ^\circ\text{C}$; $\ell = 1 \ \text{cm}$; 60% (*v*/*v*) DMF/H₂O}

Figure S34. UV-vis spectra of (a) [RuCym(4-Me-bpy-St-OH)Cl]Cl (**3**) complex and (b) [RhCp*(4-Me-bpy-St-OH)Cl]Cl (**1**) in the presence of half equiv. HSA followed in time. Inset shows the charge-transfer region (350 – 500 nm) of the complexes. Absorbance values at (c) 400 nm and (d) 386 nm as a function of time for the same RuCym and RhCp* complex, respectively. { $c_{complex} = 70 \ \mu$ M; $c_{HSA} = 35 \ \mu$ M; pH = 7.40 (PBS' buffer); $\ell = 1 \ \text{cm}$; $T = 25.0 \ ^{\circ}$ C}

Figure S35. (a) UV-vis spectra and (b) CD spectra of [RuCym(4-Me-bpy-St-OH)Cl]Cl complex (**3**) in the absence and presence of various equivalents of HSA. { $c_{(3)} = 86 \ \mu\text{M}$; $c_{\text{HSA}} = 0 - 105 \ \mu\text{M}$; pH = 7.40 (PBS' buffer); $\ell = 1 \ (\text{UV-vis}) \text{ or } 0.5 \ (\text{CD}) \text{ cm}$; $T = 25.0 \ ^{\circ}\text{C}$ }

Figure S36. UV-vis spectra of ultrafiltrated (a) [RhCp*(4-Me-bpy-St-OH)Cl]Cl (**1**) and (b) [RuCym(4-Me-bpy-St-OH)Cl]Cl (**3**) complexes in the absence (red solid line) and presence of HSA (orange dashed line) along with the nonfiltered reference spectrum (black solid line). { $c_{\text{complex}} = 71 \ \mu\text{M}$; $c_{\text{HSA}} = 35 \ \mu\text{M}$; pH = 7.40 (PBS' buffer); $\ell = 1 \text{ cm}$; $T = 25.0 \ ^{\circ}\text{C}$ }

Figure S37. (a) Fluorescence emission spectra of HSA in the absence and presence of various amount of [RhCp*(4-Me-bpy-St-OH)Cl]Cl complex (1). (b) Experimental and calculated (dashed lines) relative emission intensities of HSA at 333 nm in the presence of various amounts of [RhCp*(4-Me-bpy-St-OH)Cl]Cl (1) (•), [RhCp*(4-Ph-bpy-St-OH)Cl]Cl (2) (•), [RuCym(4-Me-bpy-St-OH)Cl]Cl (3) (•) and [RuCym(4-Ph-bpy-St-OH)Cl]Cl (4) (•) complexes. { $c_{HSA} = 1 \ \mu M$; $c_{complex} = 0 - 53 \ \mu M$; $\square_{EX} = 295 \ nm$; pH = 7.40 (PBS' buffer); $T = 25 \ ^{\circ}C$; $\ell = 1 \ cm$ }

Figure S38. UV-vis spectra of (a) [RhCp*(4-Me-bpy-St-OH)Cl]Cl (1) and (b) [RuCym(4-Me-bpy-St-OH)Cl]Cl (3) in the presence of 10 equiv. MIM followed in time. Inserted figure shows the charge-transfer region (350 – 500 nm) of the complexes. (c) Absorbance values at 380 nm as a function of time for (1). { $c_{\text{complex}} = 35 \ \mu\text{M}$; $c_{\text{MIM}} = 350 \ \mu\text{M}$; pH = 7.40 (PBS' buffer); $\ell = 1 \text{ cm}$; $T = 25.0 \ \text{c}$ }

Figure S39. ¹H NMR spectra of (a) [RhCp*(4-Me-bpy-St-OH)Cl]Cl (1) and (b) [RuCym(4-Me-bpy-St-OH)Cl]Cl (3) complex alone or in the presence of 1 and 2 equiv. MIM in the low-field region. { $c_{complex} = 0.5 \text{ mM}$; $c_{MIM} = 0.5 \text{ or } 1.0 \text{ mM}$; pH = 7.40 (PBS' buffer); 10% (v/v) D₂O/H₂O; T = 25.0 °C}

Figure S40. (a) UV-vis spectra of [RhCp*(4-Me-bpy-St-OH)Cl]Cl (**1**) and (b) CD spectra of [RhCp*(4-Ph-bpy-St-OH)Cl]Cl (**2**) complex in the presence of various equivalents of MIM. (c) Absorbance values at 322 nm and (d) ellipticity values at 345 nm as a function of $c_{\text{MIM}} / c_{\text{complex}}$ ratio along with the fitted (dashed) lines for the same (**1**) and (**2**) complexes, respectively. { $c_{\text{complex}} = 63 \text{ or } 71 \mu\text{M}$; $c_{\text{MIM}} = 0 - 781 \mu\text{M}$; pH = 7.40 (PBS' buffer); $\ell = 1 \text{ cm} (\text{UV-vis}) \text{ or } 0.5 \text{ cm} (\text{CD})$; T = 25.0 °C}

Figure S41. UV-vis spectra of (a) [RuCym(4-Me-bpy-St-OH)Cl]Cl (**3**) and (b) [RhCp*(4-Me-bpy-St-OH)Cl]Cl (**1**) complex in the presence of one equiv. guanine followed in time. Inset shows the charge-transfer region (350 – 500 nm) of the complexes. Absorbance values at 328 nm as a function of time for the same (c) (**3**) and (d) (**1**) complexes. { $c_{complex} = 70 \ \mu$ M; $c_{HSA} = 70 \ \mu$ M; pH = 7.40 (20 mM phosphate buffer with 4 mM KCl); $\ell = 1 \ \text{cm}; T = 25.0 \ ^{\circ}\text{C}$ }

Figure S42. CD spectra of ct-DNA in the presence of various amounts of (a) [RuCym(4-Me-bpy-St-OH)Cl]Cl (**3**) and (b) [RhCp*(4-Me-bpy-St-OH)Cl]Cl (**1**) complex. The CD spectra of the individual complexes are also indicated (dashed lines). Ellipticity values at 336 nm as a function of $c_{complex}$ for the same (c) (**3**) and (d) (**1**) complexes in the absence (•) and presence (•) of ct-DNA. { $c_{ct-DNA} = 98 \mu$ M; $c_{complex} = 0 - 100 \mu$ M; pH = 7.40 (20 mM phosphate buffer with 4 mM KCl); $\ell = 1 \text{ cm}$; T = 25.0 °C *Note*: The CD spectra of ct-DNA were corrected with the spectra of the complexes at each point.

Figure S43. Correlation between the *in vitro* cytotoxicity data (as $pIC_{50} = -\log IC_{50}$; where IC_{50} is expressed in mol/dm³) and the distribution coefficients measured at pH 7.40 (as $logD_{pH=7.40}$) of the organometallic complexes at the different chloride ion concentrations (4 mM: \blacksquare , 24 mM: \bullet , 100 mM: \blacklozenge) in (a) LNCaP, (b) PC3 (c) MCF-7 and (d) Colo-205 human cancer cell lines (incubation time: 72 h).