Electronic Supplementary Information (ESI)

Terpyridine Isomerism as a Tool for Tuning of the Red-to-NIR Emissive Properties in Heteronuclear Gold(I)-Thallium(I) Complexes

David Royo,^a Sonia Moreno,^a María Rodríguez-Castillo,^a Miguel Monge,^a M. Elena Olmos,^{*a} Fedor I. Zubkov,^b Anastasia A. Pronina,^b Ghodrat Mahmoudi^{*c,d} and José M. López-de-Luzuriaga^{*a}

^a Departamento de Química, Instituto de Investigación en Química (IQUR), Complejo Científico Tecnológico, Madre de Dios 53, Universidad de La Rioja, 26006 Logroño, Spain. E-mail: m-elena.olmos@unirioja.es, josemaria.lopez@unirioja.es

^b Department of Organic Chemistry, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198. E-mail: fzubkov@sci.pfu.edu.ru, npronina2002@mail.ru

^c Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55136-83111, Maragheh, Iran. E-mail: ghodratmahmoudi@gmail.com

^d Samara State Technical University, Molodogvardeyskaya Str 244 Samara 443100 (Russia)

Table of Contents

1.	Characterization of the complexes	2
1	¹ H NMR signal assignement complexes	2
2	1 H NMR of L ₁ , L ₂ and L ₃ (600 MHz)	3
Э	¹ H NMR spectra of complexes 1, 2 and 3 (300 MHz, 298K)	4
4	Single crystal analysis of compounds 1-3.	6
5	IR spectra	8
2.	Optical properties	9
1	UV-Vis absorption spectra in solution	9
2 t	Experimental UV-vis solid state absorption and TD-DFT singlet-singlet and singlet- iplet for complexes.	11
3.	Computational studies	12
1	xyz for complex 1	12
2	xyz for complex 2	14

1. Characterization of the complexes

1. ¹H NMR signal assignement complexes.

Figure S1: ¹H NMR assignment of ligand L_1 .

Figure S2: ¹H NMR assignment of ligand L₂.

Figure S3: ¹H NMR assignment of ligand L_3 .

2. $\,^1\text{H}$ NMR of L_1 , L_2 and L_3 (600 MHz).

Figure S6 : ¹H NMR spectrum of L_3 in [D₆]-DMSO.

3. ¹H NMR spectra of complexes 1, 2 and 3 (300 MHz, 298K)

Figure S7: ¹H NMR spectrum of complex **1** in [D₆]-DMSO.

Figure S8: ¹H NMR spectrum of complex 2 in [D₆]-DMSO.

Figure S9: ¹H NMR spectrum of complex 3 in [D₆]-DMSO.

4. Single crystal analysis of compounds 1-3.

	1	2	3
Chemical Formula	C ₃₁ H ₁₃ Au Cl ₁₀ N ₃ S Tl	$C_{43}H_{13}Au_2CI_{20}N_3STI_2$	C ₃₁ H ₁₃ Au Cl ₁₀ N ₃ S Tl
Crystal habit	Dark-Green plate	Red plate	Orange prism
Crystal size/mm	0.166x0.037x0.017	0.121x0.106x0.016	0.121x0.x121x0.046
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	P-1	C 2/c	P -1
a/Å	10.5516(8)	44.5975(15)	11.2372(4)
b/Å	10.9165(9)	10.7247(3)	12.8751(4)
c/Å	15.3597(13)	30.8509(10)	13.5564(6)
α/°	89.270(3)°	90	76.6270(10)
β/°	86.508(3)°.	124.1240(10)	85.9050(10)
γ/°	88.089(3)°.	90	69.1070(10)°.
V/ų	1764.9(2)	12215.2(7)	1782.56(12)
Z	2	8	2
D _c ∕g cm⁻³	2.287	2.300	2.264
М	1215.34	2115.30	1215.34
F(000)	1132	7744	1129
T/ºC	26	22	26
2θmax/°	53	56	56
μ(Mo-Kα)/mm⁻¹	9.557	10.993	9.464
No. refl. Measured	38612	137038	41470
No. unique refl.	7481	14581	8531
R _{int}	0.0834	0.0871	0.0315
R[F>2σ(F)][a]	0.0589	0.0696	0.0277
wR[F 2 , all refl.][b]	0.1548	0.2312	0.0545
No. of refl. Used [F>2σ(F)]	7481	14581	8531
No. of parameters	423	613	519
No. of restrains	20	103	134
S [c]	1.021	1.020	1.071
Max. residual electron density/e·Å ⁻³	1.486	2.219	0.66

Table S1 : Data collection and structure refinement details for 2-4

Figure S10: Partial view of the polymeric chain in the crystal structure of **1** formed via Au…Tl interactions with the labelling scheme for the atom positions and crystallographic axes (red *a*, green *b* and blue *c*). Hydrogen atoms have been omitted for clarity. #1: -x+1, -y+1, -z+1; #2: -x+1, -y, -z+1.

Figure S11: Partial view of the 2D network in the crystal structure of **2** formed via Au…TI interactions and bridging L_2 ligands with the labelling scheme for the atom positions and crystallographic axes (red *a*, green *b* and blue *c*). Hydrogen atoms have been omitted for clarity. #1: x,y+1,z; #2: x,-y,z-1/2; #3: x,y-1,z; #4: x,-y,z+1/2

Figure S12: Partial view of the 2D network in the crystal structure of **3** formed via Au…TI interactions and bridging L_3 ligands with the labelling scheme for the atom positions and crystallographic axes (red *a*, green *b* and blue *c*). Hydrogen atoms have been omitted for clarity. #1: -x+2,-y,-z; #2: -x+1,-y,-z; #3: x,y,z-1; #4: -x+2,-y,-z+1.

5. IR spectra

Figure S13: FT-IR spectrum of complex 1.

Figure S14: FT-IR spectrum of complex 2.

Figure S15: FT-IR spectrum of complex 3.

2. Optical properties

1. UV-Vis absorption spectra in solution

Figure S16: UV-Vis absorption spectra in DMSO solution of complex **1** (2.96 \cdot 10⁻⁵ M), **L**₁ (1.9 \cdot 10⁻⁵ M) and [NBu₄][Au(C₆Cl₅)₂] (3.39 \cdot 10⁻⁵ M).

Figure S17: UV-Vis absorption spectra in DMSO solution of complex 2 (4.28 \cdot 10⁻⁵ M), L₂ (2.71 \cdot 10⁻⁵ M) and [NBu₄][Au (C₆Cl₅)₂] (3.39 \cdot 10⁻⁵ M).

Figure S18: UV-Vis absorption spectra in DMSO solution of complex 3 ($3.75 \cdot 10^{-5}$ M), L₃ ($2.03 \cdot 10^{-5}$ M) and [NBu₄][Au (C₆Cl₅)₂] ($3.39 \cdot 10^{-5}$ M).

2. Experimental UV-vis solid state absorption and TD-DFT singlet-singlet and singlet-triplet for complexes.

Figure S19: Experimental UV-vis solid state absorption spectrum (black line), excitation (blue), TD-DFT singletsinglet excitations (red bars) and singlet-triplet (green bars) for complex **1**. The green bar only represents the energy

Figure S20: Experimental UV-vis solid state absorption spectrum (black line), excitation (blue), TD-DFT singlet– singlet excitations (red bars) and singlet-triplet (green bars) for complex 2. The green bar only represents the energy of the lowest singlet-Triplet transitions since the oscillator strength cannot be calculated.

3. Computational studies

1. xyz for model 1a

тΙ	10.60940000	4.40310000	0.91970000	С	7.74550000	2.87940000	2.29790000
Au	7.85850000	5.04140000	0.00000000	С	7.78980000	2.64250000	3.64130000
Au	13.27210000	5.04140000	0.00000000	С	12.13540000	5.96810000	-2.75750000
Cl	7.95370000	1.81210000	1.09240000	С	11.96220000	5.99880000	-4.04780000
Cl	11.54330000	7.38260000	-4.95110000	С	12.49270000	3.63020000	-3.97710000
Cl	6.93240000	6.90040000	2.57010000	С	12.33270000	4.90350000	-4.61350000
Cl	7.64240000	3.11550000	6.32810000	С	7.43880000	3.64740000	4.68420000
Cl	7.15970000	6.10890000	5.55560000	С	7.46620000	4.35720000	1.90900000
Cl	12.06860000	7.55230000	-1.89310000	С	7.33090000	5.26610000	2.93420000
Cl	11.95170000	4.68310000	-6.45180000	С	12.64980000	3.69500000	-2.70450000
Cl	7.94950000	0.97080000	4.09030000	Cl	12.99190000	2.22580000	-1.78000000
Cl	12.60890000	2.10930000	-4.86630000	ΤI	5.10750000	5.67960000	-0.91970000
С	12.69640000	4.85280000	-1.96210000	Cl	7.76320000	8.27060000	-1.09240000
с	7.45310000	4.81340000	4.36600000	CI	8.78450000	3.18230000	-2.57010000

Cl	8.07450000	6.96720000	-6.32810000	С	11.91210000	1.11870000	4.41900000
Cl	8.55720000	3.97380000	-5.55560000	Н	12.20190000	1.15360000	5.32150000
Cl	7.76750000	9.11190000	-4.09030000	С	10.22900000	7.46920000	1.14900000
С	8.26380000	5.26930000	-4.36600000	Н	10.32000000	7.19710000	0.23730000
С	7.97140000	7.20330000	-2.29790000	С	10.70970000	5.98660000	8.69670000
С	7.92710000	7.44020000	-3.64130000	Н	10.08000000	6.63750000	8.42230000
С	8.27810000	6.43530000	-4.68420000	С	11.33670000	3.66020000	5.81550000
С	8.25070000	5.72560000	-1.90900000	Н	11.59280000	2.89380000	6.31410000
С	8.38600000	4.81660000	-2.93420000	С	11.22910000	5.89130000	10.07540000
Cl	15.00100000	2.70020000	4.95110000	Н	11.06470000	6.56610000	10.72570000
Cl	14.47560000	2.53050000	1.89310000	С	11.73790000	0.00540000	2.26250000
Cl	14.59260000	5.39960000	6.45180000	Н	11.89080000	-0.76280000	1.72810000
Cl	13.93540000	7.97350000	4.86630000	С	11.85960000	4.90120000	10.34060000
С	13.84790000	5.22990000	1.96210000	Н	12.14910000	4.66970000	11.2160000
С	14.40880000	4.11470000	2.75750000	С	12.02010000	-0.11530000	3.62360000
С	14.58200000	4.08390000	4.04780000	Н	12.27420000	-0.94370000	4.01430000
С	14.05150000	6.45250000	3.97710000	С	11.23990000	5.06510000	7.90120000
С	14.21150000	5.17920000	4.61350000	С	11.21930000	3.62970000	4.45440000
С	13.89440000	6.38770000	2.70450000	С	10.31560000	6.99630000	3.46450000
Cl	13.55240000	7.85690000	1.78000000	S	3.52560000	6.14370000	-8.89460000
S	12.19130000	3.93900000	8.89460000	Ν	4.83040000	5.55960000	-3.65900000
Ν	10.88650000	4.52310000	3.65900000	Ν	4.71410000	7.94260000	-2.45700000
Ν	11.00280000	2.14010000	2.45700000	С	4.92090000	4.09500000	-5.67410000
С	10.79600000	5.98780000	5.67410000	Н	5.06400000	3.25400000	-6.08520000
Н	10.65290000	6.82870000	6.08520000	С	4.42330000	9.03510000	-1.69690000
С	11.29360000	1.04760000	1.69690000	Н	4.54350000	9.02110000	-0.74930000
Н	11.17340000	1.06160000	0.74930000	С	5.02100000	4.24130000	-4.33070000
С	10.69590000	5.84150000	4.33070000	С	4.61400000	5.23080000	-6.43410000
С	11.10290000	4.85200000	6.43410000	Ν	5.34780000	3.27310000	-2.12110000
Ν	10.36910000	6.80970000	2.12110000	С	5.86360000	1.09440000	-1.74990000
С	9.85340000	8.98840000	1.74990000	Н	6.08640000	0.41550000	-1.11770000
Н	9.63060000	9.66720000	1.11770000	С	4.37490000	7.83230000	-3.74730000
С	11.34200000	2.25050000	3.74730000	С	5.58770000	1.80520000	-3.97710000
С	10.12920000	8.27750000	3.97710000	Н	5.52740000	1.63250000	-4.90120000
н	10.18950000	8.45020000	4.90120000	С	5.87040000	0.77710000	-3.05800000
С	9.84650000	9.30560000	3.05800000	Н	6.06060000	-0.10270000	-3.34680000
Н	9.65640000	10.18540000	3.34680000	С	3.80480000	8.96400000	-4.41900000

н	3.51500000	8.92920000 -	5.32150000	С	3.97900000	10.07730000	-2.26250000
С	5.48790000	2.61360000 -	1.14900000	Н	3.82610000	10.84560000	-1.72810000
Н	5.39690000	2.88560000 -	0.23730000	С	3.85730000	5.18160000	-10.34060000
С	5.00720000	4.09610000 -	8.69670000	Н	3.56780000	5.41310000	-11.21600000
н	5.63690000	3.44520000 -	8.42230000	С	3.69680000	10.19810000	-3.62360000
С	4.38020000	6.42250000 -	5.81550000	Н	3.44270000	11.02640000	-4.01430000
Н	4.12410000	7.18890000 -	6.31410000	С	4.47700000	5.01760000	-7.90120000
С	4.48780000	4.19140000 -1	10.07540000	С	4.49760000	6.45300000	-4.45440000
н	4.65220000	3.51660000 -2	10.72570000	С	5.40130000	3.08650000	-3.46450000

Figure S21: Model 1a. Color code: yellow (gold), grey (carbon), blue (nitrogen), orange (sulfur), brown (thallium) and green (chlorine).

2. xyz for model 2a

Au	12.91460000	0.47210000	3.06930000	Cl	8.18870000	-0.12870000	7.63650000
Au	14.17810000	5.76410000	4.07020000	Cl	15.71260000	4.23090000	-1.20700000
TI	14.41300000	-2.06080000	3.65180000	Cl	18.26990000	1.20970000	1.16280000
TI	13.55200000	2.95960000	4.58610000	Cl	12.24630000	0.59410000	-0.16290000
Cl	16.21020000	1.00810000	3.43940000	Cl	17.35980000	0.98130000	-1.79110000
Cl	13.60580000	4.48610000	1.04170000	Cl	13.39880000	-0.25850000	6.38170000
Cl	11.15730000	-0.51590000	8.48050000	Cl	18.69940000	4.69530000	-0.60040000

Cl	9.73740000	0.73460000	2.57920000	С	11.47850000	6.64930000	5.09510000
Cl	14.33240000	0.69280000	-2.45690000	С	16.60600000	1.01990000	0.79940000
Cl	9.44630000	6.96030000	8.51120000	С	6.30680000	2.95040000	11.20660000
Cl	11.09190000	6.81020000	3.39440000	Н	6.42100000	3.11720000	10.29800000
Cl	8.84040000	7.27460000	5.47300000	С	9.83040000	2.41200000	12.21280000
Cl	7.48540000	0.46010000	4.69080000	Н	9.71730000	2.23030000	13.11890000
Cl	12.33490000	6.29110000	9.43770000	С	11.11080000	2.43670000	11.63310000
Cl	19.57640000	5.62830000	2.20150000	С	10.04890000	2.91500000	9.55420000
Cl	14.54600000	5.77850000	7.34970000	С	12.37240000	1.44350000	13.75280000
Cl	17.44400000	6.08950000	4.41570000	Н	11.66700000	1.03480000	14.19460000
S	13.89140000	2.77770000	12.12340000	С	10.15690000	3.47270000	5.40660000
С	14.29670000	0.80440000	1.56810000	Н	10.18190000	3.57400000	4.48320000
С	8.74850000	2.66620000	11.40070000	С	16.95370000	5.49100000	2.88590000
С	13.91650000	0.71860000	0.22730000	С	11.20370000	2.73800000	10.27180000
С	10.74840000	-0.21340000	6.82410000	Н	12.03230000	2.81810000	9.86200000
С	11.45980000	0.16410000	4.49740000	С	12.96460000	6.22030000	6.81130000
С	16.21840000	0.94380000	-0.51080000	С	17.56460000	4.87970000	0.61550000
Ν	11.33590000	3.24530000	6.04260000	С	12.31670000	2.14070000	12.53210000
С	15.64120000	0.95240000	1.79540000	С	4.92910000	2.75410000	13.06840000
С	12.74510000	6.31150000	5.43730000	Н	4.08060000	2.76470000	13.44300000
С	9.41710000	-0.03110000	6.45890000	С	11.26910000	3.06510000	7.33230000
С	9.13970000	0.23590000	5.13080000	Н	12.05930000	2.86160000	7.77510000
С	16.20330000	4.67490000	0.39330000	С	8.96130000	3.42550000	7.40120000
Ν	5.91140000	2.52670000	13.84990000	Н	8.16630000	3.52140000	7.87230000
С	7.35340000	2.69080000	11.95230000	С	11.96820000	6.43050000	7.74860000
С	15.24570000	4.80470000	1.39190000	С	8.94820000	3.56490000	5.99910000
С	10.10330000	0.33890000	4.16290000	Н	8.16170000	3.71010000	5.52090000
С	11.73400000	-0.09330000	5.84340000	С	5.02560000	2.98040000	11.74800000
Ν	8.85170000	2.92680000	10.10330000	Н	4.27410000	3.14790000	11.22400000
С	10.42780000	6.88950000	5.99400000	С	17.95150000	5.30870000	1.88730000
С	14.86100000	0.78400000	-0.75850000	С	14.61780000	2.09130000	13.51280000
С	15.59640000	5.26150000	2.68420000	Н	15.51680000	2.16750000	13.73300000
С	7.11000000	2.50310000	13.28550000	С	10.11840000	3.14980000	8.09590000
н	7.84210000	2.34600000	13.83670000	С	13.76300000	1.49070000	14.18190000
С	10.70790000	6.76190000	7.32460000	Н	14.01710000	1.06070000	14.96820000

14.56490000	-2.52670000	1.08030000	С	19.85720000	-2.73800000	-2.49770000
22.54480000	-2.77770000	-0.64610000	Н	20.68580000	-2.81810000	-2.90760000
17.40200000	-2.66620000	-1.36890000	С	20.97010000	-2.14070000	-0.23750000
19.98940000	-3.24530000	-6.72700000	С	13.58260000	-2.75410000	0.29880000
16.00690000	-2.69080000	-0.81730000	Н	12.73410000	-2.76470000	0.67340000
17.50520000	-2.92680000	-2.66630000	С	19.92260000	-3.06510000	-5.43730000
15.76350000	-2.50310000	0.51590000	Н	20.71280000	-2.86160000	-4.99440000
16.49560000	-2.34600000	1.06710000	С	17.61480000	-3.42550000	-5.36830000
14.96020000	-2.95040000	-1.56300000	Н	16.81980000	-3.52140000	-4.89730000
15.07450000	-3.11720000	-2.47160000	С	17.60160000	-3.56490000	-6.77040000
18.48390000	-2.41200000	-0.55680000	Н	16.81520000	-3.71010000	-7.24870000
18.37080000	-2.23030000	0.34940000	С	13.67910000	-2.98040000	-1.02160000
19.76420000	-2.43670000	-1.13650000	Н	12.92760000	-3.14790000	-1.54560000
18.70230000	-2.91500000	-3.21540000	С	23.27130000	-2.09130000	0.74320000
21.02590000	-1.44350000	0.98330000	Н	24.17020000	-2.16750000	0.96350000
20.32040000	-1.03480000	1.42500000	С	18.77180000	-3.14980000	-4.67370000
18.81030000	-3.47270000	-7.36290000	С	22.41650000	-1.49070000	1.41230000
18.83540000	-3.57400000	-8.28640000	н	22.67060000	-1.06070000	2.19860000

Ν

S

Figure S22: Model 2a. Color code: yellow (gold), grey (carbon), blue (nitrogen), orange (sulfur), brown (thallium) and green (chlorine).