Electronic Supplementary Information

Photochromism and single-component white light emission from a metalloviologen complex based on 1,5-naphthyridine

Ning-Ning Zhang,*a Ya-Nan Zhang,^a Li Li,^c Zhen-Yu Li,^b Ya-Tong Liu,^a Yunyun Dong,^a Yong Yan*a and Ming-Sheng Wang^d

^aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.

^bSchool of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China.

^cSchool of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000,

P. R. China.

^dState Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China.

*Email: zhangning@lcu.edu.cn (N. N. Zhang); yanyong@lcu.edu.cn (Y. Yan)

Additional graphics

	Compound 1	
CCDC	2307757	
Formula	CdCl ₂ C ₈ H ₆ N ₂	
Mr	313.45	
Crystal size (mm ³)	0.42*0.17*0.1	
Crystal system	monoclinic	
Space group	C2/m	
<i>a</i> (Å)	15.1638(14)	
b (Å)	3.8071(4)	
<i>c</i> (Å)	8.2899(7)	
α (deg)	90	
β(deg)	103.338(5)	
γ(deg)	90	
V (Å ³)	465.67(8)	
D _{calcd} (g/cm ³)	2.236	
Ζ	2	
F(000)	300	
Abs coeff (mm ⁻¹)	2.865	
R_1^{a}	0.0331(478)	
ωR_2^{b}	0.0903(480)	
GOF on F ²	1.177	

 Table S1. Crystal data and structural refinements for compound 1.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|;$

$${}^{b}\omega R_{2} = \{\sum \omega [(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum \omega [(F_{o})_{2}]^{2} \}^{1/2}$$

Fig. S1 PXRD patterns of compound 1: simulated, simulated data using single-crystal data; before, measured data for as-synthesized samples; after, measured data for colored samples; decolored, measured data for its heated sample at 200 °C for 1 day.

Fig. S2 IR spectra of compound 1: before, measured data for as-synthesized samples; after, measured data for colored samples.

Fig. S3 Thermogravimetric curve of compound 1 under N_2 with heating rate of 10 °C/min.

Fig. S4 ESR spectra of irradiated 1 (26 mg, a) and TEMPO (0.3 mg, b) in the solid state under the same test conditions.

Fig. S5 The excitation spectra of fresh solid-state sample 1 monitored at 431 nm (a) and 580

nm (b), respectively.

Fig. S6 Spectral diagram of quantum yield test of 1 at $\lambda_{ex} = 370$ nm.

Fig. S7 The CIE maps of 1 before and after irradiation at excitation wavelength of 365 nm.

Fig. S8 Lifetime curves of 1 monitored at 431 nm (a) and 580 nm (b), respectively.

Table S2. The CIE coordinates, Color Temperature (CT) and Color-rendering Index (CRI) offresh solid-state sample 1 at different excitation wavelength from 340 to 370 nm.

λ_{ex} of Complex 1	CIE	CT (T/K)	CRI
340 nm	(0.401, 0.393)	3615	82.54
350 nm	(0.371, 0.366)	4191	87.08
360 nm	(0.300, 0.293)	7981.	94.04
365 nm_before	(0.283, 0.272)	10640	92.94
365 nm_after	(0.262, 0.244)	19603	92.49
370 nm	(0.269, 0.252)	15718	92.00

Table 3. Typical part single-component white light emitting compounds and CRI values at specific excitation wavelengths (λ_{ex}).

Compounds ^{ref}	CRI values	λ _{ex} (nm)
$(H_2DABCO)(Pb_2Cl_6)^1$	96	300
$Ba_2[Sn(OH)_6][B(OH)_4]_2^2$	94.1	283
Compound 1 [this work]	94.04	360
$[Mg_3(OH)_2(1,4-NDC)_2(dppe)(H_2O)]^3$	93.12	380
$\{[Zn(bpdo)(fum)(H_2O)_2]\}_n^4$	92.1	370
(C6H5C2H4NH3)2PbBr2Cl2 ⁵	91	385

$(C_5H_{14}N_2)PbBr_4^6$	90	330
(C ₇ H ₁₆ N)PbBr ₃ ⁶	89	330
$(C_6H_{14}N)PbBr_3^6$	88	330
1-(4-carboxyphenyl)-1,2,3-triazole ⁷	88	370
$(C_5H_{14}N_2)_2Pb_3Br_{10}^6$	86	330
2-MOP ⁸	86	383
[H ₂ DABCO][Ag ₂ Br ₄ (DABCO)] ⁹	85	376
(3APr)PbCl4 ¹⁰	85	330
$(C_6H_{16}N_2)PbBr_4^6$	84	330
(2meptH ₂)PbCl ₄ ¹¹	84	330
1-(4-acetylphenyl)-1,2,3-triazole ⁷	83	376
(3APr)PbBr4 ¹⁰	83	330
[DMEDA]PbCl4 ¹²	78	365
$(C_6H_{16}N_2)_3Pb_2Br_{10}^6$	77	330
(3APr)PbI4 ¹⁰	77	330
$(C_6H_{16}N_2)PbBr_4^6$	76	330
[DMPDA]PbCl4 ¹²	75	377

References

1. G.-E Wang, G. Xu, M.-S. Wang, L.-Z. Cai, W.-H. Li and G.-C. Guo, Semiconductive 3-D haloplumbate framework hybrids with high color rendering index white-light emission, *Chem. Sci.*, 2015, **6**, 7222–7226.

2. M.-X. Yu, C.-P. Liu, Y.-F. Zhao, S.-C. Li, Y.-L. Yu, J.-Q. Lv, L. Chen, F.-L. Jiang and M.-C. Hong, White-Light Emission and Circularly Polarized Luminescence from a Chiral Copper(I) Coordination Polymer through Symmetry-Breaking Crystallization. *Angew. Chem. Int. Ed.*, 2023, **62**, e202201590.

3. Z.-F. Wu, B. Tan, J.-Y. Wang, C.-F. Du, Z.-H. Deng and X.-Y. Huang. Tunable photoluminescence and direct whitelight emission in Mg-based coordination networks, *Chem. Commun.*, 2015, **51**, 157–160.

4. N.-N. Zhang, L.-D. Xin, L. Li, Y.-N. Zhang, P.-P. Wu, Y.-F. Han, Y. Yan and K.-G. Qu. Multifunctional Crystalline Coordination Polymers Constructed from 4,4'-Bipyridine-*N*,*N*'-dioxide: Photochromism, White-Light Emission, and Photomagnetism, *ACS Omega*, 2023, **8**, 34017–34021.

5. S. Yang, Z. Lin, J. Wang, Y. Chen, Z. Liu, E. Yang, J. Zhang and Q. Ling, High Color Rendering Index White-Light Emission from UV-Driven LEDs Based on Single Luminescent Materials: Two-Dimensional Perovskites (C₆H₅C₂H₄NH₃)₂PbBr_xCl_{4-x}, *ACS Appl. Mater. Interfaces*, 2018, **10**, 15980–15987.

6. L. Mao, P. Guo, M. Kepenekian, I. Hadar, C. Katan, J. Even, R. D. Schaller, C. C. Stoumpos and M. G. Kanatzidis, Structural Diversity in White-LightEmitting Hybrid Lead Bromide Perovskites, *J. Am. Chem. Soc.*, 2018, **140**, 13078–13088.

N.-N. Zhang, C. Sun, X.-M. Jiang, X.-S. Xing, Y. Yan, L.-Z. Cai, M.-S. Wang and G.-C. Guo, Single-component small-molecule white lightorganic phosphors, *Chem. Commun.*, 2017, 53, 9269–9272.

8. H. Hu, S. A. Morris, X. Qiao, D. Zhao, T. Salim, B. Chen, E. E. M. Chia and Y. M. Lam, Molecular engineering of two-dimensional hybrid perovskites with broadband emission for white light-emitting diodes, *J. Mater. Chem. C*, 2018, **6**, 10301–10307.

9. C. Sun, Y.-H. Guo, Y. Yuan, W.-X. Chu, W.-L. He, H.-X. Che, Z.-H. Jing, C.-Y. Yue. and X.-W. Lei. Broadband White-Light Emission in One-Dimensional Organic–Inorganic Hybrid Silver Halide, *Inorg. Chem.*, 2020, **59**, 4311–4319.

10. X. Li, P. Guo, M. Kepenekian, I. Hadar, C. Katan, J. Even, C. C. Stoumpos, R. D. Schaller and M. G. Kanatzidis, Small Cyclic Diammonium Cation Templated (110)-Oriented 2D Halide (X=I, Br, Cl) Perovskites with WhiteLight Emission, Chem. Mater., 2019, 31, 3582–3590.

11. Z. Wu, C. Ji, Z. Sun, S. Wang, S. Zhao, W. Zhang, L. Li and J. Luo, Broadband white-light emission with a high color rendering index in a two-dimensional organic–inorganic hybrid perovskite, *J. Mater. Chem. C*, 2018, **6**, 1171–1175.

12. C.-Q. Jing, J. Wang, H.-F. Zhao, W.-X. Chu, Y. Yuan, Z. Wang, M.-F. Han, T. Xu, J.-Q. Zhao and X.-W. Lei, Improving Broadband White-Light Emission Performances of 2D Perovskites by Subtly Regulating Organic Cations, *Chem.–Eur. J.*, 2020, **26**, 10307–10313.