Supporting Information

Construction of thermally stable Tb³⁺-activated green-emitting phosphors: doping concentration and excitation wavelength dual driving strategy

Die Hu,^{a,b} Ran Xiao, ^a Xiang Lv,^a Chunwei Yang,^a Jianxia Liu,^a Yuefeng Zhao,^a Ning Guo,^{a,*}

^a Department of Chemistry, University of Shanghai for Science and Technology, Shanghai 200093,

P. R. China.

^b Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093,

P. R. China.

*Corresponding author: E-mail: <u>guoning@usst.edu.cn</u>

Figure S1. Rietveld refinement patterns for X-ray diffraction patterns of (a) $Gd_{0.999}TaO_4:0.1\%Tb^{3+}$ (b) $Gd_{0.995}TaO_4:0.5\%Tb^{3+}$ (c) $Gd_{0.98}TaO_4:2\%Tb^{3+}$.

Figure S2

Figure S2. Raman spectra of $Gd_{1-x}TaO_4$: xTb^{3+} (x = 0.1%, 0.5%, 2%).

Figure S3. Gaussian fit to the excitation spectrum of photoluminescence of $Gd_{0.999}TaO_4:0.1\%Tb^{3+}$. The wavelength expressed in terms of photon energy (eV) is the horizontal coordinate. $I(E) = I(\lambda) \times \lambda^2$.

Figure S4. Diffuse reflectance spectrum of Gd_{1-x}TaO₄:xTb³⁺ (x =0.1%, 0.5%, 2%) and computed band gap spectrum fitted with Kubelka-Munk formula.

Figure S5. Contour plots of 303-523K variable temperature emission of $Gd_{1-x}TaO_4:xTb^{3+}$ (x = 0.1%, 0.5%, 2%) phosphor at 232, 264 and 308 nm at different excitation wavelengths (a-c: x = 0.1%, d-f: x = 0.5%, g-i: x = 2%).

Figure S6. Excitation line of BaSO₄ and the emission spectrum of Gd_{1-x}TaO₄:xTb³⁺ (x =0.1%, 0.5%, 2%) phosphor. (a) λ_{ex} =264nm x=0.1%, (b) λ_{ex} =264nm x=0.5%, (c) λ_{ex} =264nm x=2%, (d) λ_{ex} =308nm x=0.1%, (e) λ_{ex} =308nm x=0.5%, (f) λ_{ex} =308nm x=2%. The data was collected by using an integrating sphere. The inset shows a magnification of the emission spectrum from 450 nm to 700 nm.

Figure S7 (a-c) $Gd_{1-x}TaO_4:xTb^{3+}$ (x = 0.1%, 0.5%, 2%) in variable temperature chromaticity coordinates (x, y), and the insets are the corresponding CIE chromaticity diagrams.

Figure S8 Photoluminescence of Gd_{0.999}TaO₄:0.1%Tb³⁺.

Figure S9 Variable temperature excitation spectrum of $Gd_{1-x}TaO_4:xTb^{3+}$ (x = 0.1%, 0.5%) under monitored excitation at 546 nm (a)x = 0.1% (b)x = 0.5%.

Table S1	Data of moles of all reagents used in the synthesis of $Gd_{1-x}TaO_4:xTb^{3+}$ (x =
0.1%, 0.5%,	2%). and masses.

Samples prepared	raw materials	relative molecular mass	mole number/mol	theoretical value/g	Actual weighing value/g
	Gd_2O_3	362.4982	0.0050	0.9053	0.9052
G_{4} T ₀ O ·0 1% Th ³⁺	Ta ₂ O ₅	441.8928	0.0050	1.1047	1.1048
$Gu_{0.999}$ 1 aO_4 : 0. 1 % 1 D^{3}	Tb_4O_7	747.6972	0.0050	0.0009	0.0009
	Li ₂ CO ₃	73.8909	0.0050	0.0020	0.0022
	Gd_2O_3	362.4982	0.0050	0.9017	0.9017
C_{1}^{-1} $T_{2}O_{2}O_{2}O_{2}^{-1}O_{2}^$	Ta_2O_5	441.8928	0.0050	1.1047	1.1044
$Gu_{0.995}$ 1 a O_4 :0.3% 10°	Tb_4O_7	747.6972	0.0050	0.0046	0.0048
	Li ₂ CO ₃	73.8909	0.0050	0.0020	0.0022
	Gd_2O_3	362.4982	0.0050	0.8881	0.8882
C_{1}^{-1} T ₂ O $\cdot 2^{0/2}$ Th ³⁺	Ta_2O_5	441.8928	0.0050	1.1047	1.1047
$Gu_{0.98}$ 1 a O_4 :2% 1 0°	Tb_4O_7	747.6972	0.0050	0.0187	0.0185
	Li ₂ CO ₃	73.8909	0.0050	0.0020	0.0020

Parameter	$Gd_{0.999}TaO_4:0.1\%Tb^{3+}$	$Gd_{0.995}TaO_4{:}0.5\% Tb^{3+}$	$Gd_{0.98}TaO_4:2\%Tb^{3+}$
Space group	I 2/a	I 2/a	I 2/a
Structure	Monoclinic	Monoclinic	Monoclinic
a (Å)	5.3541	5.3478	5.3508
b (Å)	11.0199	11.0108	11.0083
c (Å)	5.1620	5.1579	5.1633
$\alpha = \gamma (deg)$	90.000	90.000	90.000
β(deg)	96.480	96.506	96.646
Unit cell volume $(Å^3)$	302.623	301.759	302.090
$R_p(\%)$	3.25	3.03	2.91
R_{wp} (%)	4.49	4.10	3.81
χ^2	1.828	1.888	1.574

Table S2 The relevant Rietveld refinement parameters and crystallographic data.

Sample (Bond length(Å))	$Gd_{0.999}TaO_4:$ 0.1%Tb ³⁺	$Gd_{0.995}TaO_4$: 0.5%Tb ³⁺	Gd _{0.98} TaO ₄ : 2%Tb ³⁺
Ta-Tb ³⁺	3.5029	3.5013	3.4972
Ta-Tb ³⁺	3.9855	3.9457	3.9279
Ta-Tb ³⁺	3.9230	3.9457	3.9943
Ta-Tb ³⁺	3.9629	3.9223	3.9943
Ta-Tb ³⁺	3.6648	3.6737	3.6320
Average	3.8078	3.7977	3.8091

Table S3 The bond length in GSAS Refined Phosphors.

Excitation wavelength	${ m Gd}_{0.999}{ m TaO}_4$: 0.1%Tb ³⁺ (ms)	Gd _{0.995} TaO ₄ : 0.5%Tb ³⁺ (ms)	Gd _{0.98} TaO ₄ : 2%Tb ³⁺ (ms)
232 nm	1.301	1.307	1.249
264 nm	2.425	2.330	1.165
308 nm	1.419	2.345	1.157

Table S4 The data of the lifetime of $Gd_{1-x}TaO_4:xTb^{3+}$ (x = 0.1%, 0.5%, 2%) under different excitations.

 /			
Sample	$Gd_{0.999}TaO_4$: 0.1%Tb ³⁺	$Gd_{0.995}TaO_4:$ 0.5%Tb ³⁺	$Gd_{0.98}TaO_4:$ 2%Tb ³⁺
I _{abs}	60.35%	60.71%	55.71%
IQE	12.33%	27.89%	95.29%
EQE	7.44%	16.93%	53.09%

Table S5 The data of I_{abs} , IQE and EQE on $Gd_{1-x}TaO_4:xTb^{3+}$ (x = 0.1%, 0.5%, 2%). ($\lambda_{ex}=264 \text{ nm}$)

Sample	$Gd_{0.999}TaO_4:$ 0.1%Tb ³⁺	$Gd_{0.995}TaO_4:$ 0.5%Tb ³⁺	$Gd_{0.98}TaO_4:$ 2%Tb ³⁺
I _{abs}	25.60%	32.15%	27.60%
IQE	3.45%	5.61%	10.07%
EQE	0.88%	1.80%	2.78%

Table S6 The data of I_{abs} , IQE and EQE on $Gd_{1-x}TaO_4$: xTb^{3+} (x = 0.1%, 0.5%, 2%). (λ_{ex} =308nm)